Amplification and Overexpression of Topoisomerase IIα Predict Response to Anthracycline-based Therapy in Locally Advanced Breast Cancer

John S. Coon, Elizabeth Marcus, Shalina Gupta-Burt, Steven Seelig, Kris Jacobson, Shande Chen, Vivian Renta, Geraldo Fronda, Harvey D. Preisler

ABSTRACT

Purpose: The putative association between erbB-2 overexpression and favorable response to anthracycline-based therapy in breast cancer is controversial, and the mechanism unclear. We sought to determine whether coamplification and overexpression of the topoisomerase IIα gene, near erbB-2 on chromosome 17, and a known anthracycline target, may underlie the association.

Experimental Design: Thirty-five patients who had locally advanced breast cancer (LABC) and who had received neoadjuvant, anthracycline-based therapy were studied. Copy number of topoisomerase IIα and erbB-2 was determined by fluorescence in situ hybridization, and expression by immunohistochemistry.

Results: Of 8 patients with erbB-2 amplification, 5 had a complete response (CR) or minimal residual disease (MRD), 3 had a partial response (PR), and none had stable (StD) or progressive disease (PD) at the time of mastectomy, versus 3 CR or MRD, 16 PR, and 8 StD or PD for patients without amplification (P = 0.008). In contrast, erbB-2 overexpression was not significantly associated with response (P = 0.114). Of 6 patients with topoisomerase IIα amplification, 4 had CR or MRD, 2 PR, and none StD or PD, versus 4 CR or MRD, 17 PR, and 8 StD or PD for patients without amplification (P = 0.034). All of the tumors with topoisomerase IIα amplification also had erbB-2 amplification, but not vice versa. Overexpression of topoisomerase IIα (9 patients) was also associated with favorable response (P = 0.021).

Conclusions: Coamplification of erbB-2 and topoisomerase IIα is significantly associated with favorable local response to anthracycline-based therapy in LABC. The expression data favor a plausible mechanism based on topoisomerase IIα biology.

INTRODUCTION

The therapy of LABC continues to be a difficult problem. Historically, patients had a very poor rate of survival with single modality treatment. Recently, with the routine use of multimodality therapy, specifically chemotherapy, surgery, and radiation, survival has improved (1). Favorable response to neoadjuvant chemotherapy is associated with improved survival (1). Several tumor markers have been reported to be predictors of neoadjuvant chemotherapy response in LABC, including estrogen receptor (2), progesterone receptor (2), proliferation index (2, 3), ploidy (3), and apoptotic index (3). These studies have not provided a basis for selecting optimal chemotherapy for individual patients, however. This results in some patients receiving aggressive treatment without significant benefit. A possible approach to this problem is to customize therapy for individual patients based on demonstrating molecular targets in tumors cells for specific drugs. Defining such targets may be a prerequisite for improving outcome in this disease.

The controversial and seemingly paradoxical observation that breast cancer patients with erbB-2 overexpression may benefit more than others from anthracycline-based therapy may provide a lead to defining a useful target for chemotherapy (4, 5). This observation seems paradoxical because erbB-2 is a well-known oncogene the amplification and overexpression of which have long been linked to adverse prognosis in breast carcinoma (6, 7). Furthermore, attempts to link erbB-2 upregulation to increased sensitivity to anthracyclines via manipulating expression in cell lines have been unsuccessful (8). The report that the gene for topoisomerase IIα, a well-established molecular target for anthracyclines in experimental systems, is frequently coamplified with erbB-2 in breast cancer, because of their proximity on chromosome 17, now provides a plausible, although unproved, mechanism for the putative link between erbB-2 overexpression and anthracycline response (9). That a gene amplification event commonly encountered in clinical malignancies makes affected tumors more drug-sensitive, rather than drug-resistant, runs counter to a well-accepted paradigm in...
tumor biology (9). Another recent insight that may bear on the significance of erbB-2 in LABC is the demonstration that only high-level erbB-2 overexpression in breast cancer is associated with gene amplification and is more biologically significant than low-level overexpression (compared with normal breast epithelium; Ref. 10). This appears to underlie the observation that assessing erbB-2 overexpression by immunohistochemistry may be less informative clinically than measuring gene amplification by FISH (11). Diverse methodology for assessing erbB-2 probably contributes significantly to the controversy concerning the significance of erbB-2 overexpression in this and other important contexts. The recent report that approximately 12% of breast cancers that express erbB-2 also express an activated, phosphorylated form of erbB-2, by immunohistochemistry, may further complicate the assessment of expression (12). Because of these observations, we studied both overexpression and gene copy number of both erbB-2 and topoisomerase IIα in a group of 35 patients with LABC treated with anthracycline-based neoadjuvant chemotherapy.

MATERIALS AND METHODS

Patients. Patients with LABC who were treated with neoadjuvant, anthracycline-based chemotherapy at Cook County Hospital between 1996 and 1999 were included in this retrospective study, provided that there was sufficient paraffin-embedded tissue available from the diagnostic (pretherapy) biopsy. All of the patients had a mastectomy after completion of chemotherapy, permitting pathological assessment of the response of the breast tumor. CR was defined as no residual tumor identified in the mastectomy specimen, based on the study of H&E-stained sections. MRD was defined as no gross tumor and identified in the mastectomy specimen, based on the study of H&E-stained sections. MR was defined as a 26–49% decrease in the size of measurable lesions within the pathological specimen compared with the products of the perpendicular diameters of all measurable lesions. PD was defined as a 50% reduction in the sum of measurable lesions. StD was defined as a 26–49% decrease in the size of measurable lesions. PD was defined as a >50% reduction in the sum of the products of the perpendicular diameters of all measurable lesions within the pathological specimen compared with the clinical measurements taken at diagnosis by physical examination. MR was defined as a 26–49% decrease in the size of measurable lesions. StD was defined as a <25% increase or a decrease in the size of measurable lesions. PD was defined as a >25% increase in the size of measurable lesions at mastectomy. Studies were approved by the Institutional Review Boards at Cook County Hospital and at Rush Medical College. The patients treated as part of a clinical trial gave informed consent for the study. The requirement for consent was waived by the Institutional Review Boards for the other patients, because the study entailed minimal risk, consisting of an analysis of preexisting diagnostic specimens and clinical data.

Immunohistochemistry. In preparation for antibody staining, paraffin sections (5-μm, freshly cut) were deparaffinized and rehydrated using standard technique. A microwave antigen retrieval method was then carried out in citrate buffer (13). The tissue was stained using a Ventana ES Histo-stainer antigen retrieval method was then carried out in citrate buffer (13). The tissue was stained using a Ventana ES Histo-stainer (Ventana Medical Systems, Tucson, AZ), using supplied diaminobenzidine and avidin-biotin conjugate immunoperoxidase chemistry. Sections were stained for erbB-2 with the A 485 rabbit polyclonal antibody, Lot 035(401) from Dako Corp. (Carpinteria, CA) at 1:125 dilution. Sections were stained for topoisomerase IIα with the JH2.7 monoclonal antibody from Lab Vision Corp. (Freemont, CA) at a dilution of 1:100. A single block from the pretherapy biopsy was selected for analysis for each patient on the basis of having the greatest area of well-preserved tumor. Immunostaining frequency of all tumor cells on each slide was scored subjectively on a scale of 0 to 4 (actual cell counting was not performed) without knowledge of clinical patient data, as described previously (13). The scoring was as follows: <1% positive tumor cells, 0; 1–10%, 1; 10–35%, 2; 36–70%, 3; and >71%, 4. Tumor cell staining intensity was also scored on a scale of 0 to 4 but was found to be so closely related to frequency that it was not further considered in this study. Only cell membrane-associated staining was considered for erbB-2. Only nuclear staining was considered for topoisomerase IIα.

FISH. Paraffin blocks were sectioned at 5 μm and mounted onto SuperFrost positively charged slides (Shandon, Inc., Pittsburgh, PA) and baked at 56°C overnight to fix the tissue onto the slides. After baking, the slides were treated with Pretreatment Solution (Vysis, Inc., Downers Grove, IL) and protease I (Vysis, Inc) according to a protocol similar to that published by Hopman et al. (14). Slides were dehydrated and then incubated in pretreatment solution for 10 min at 80°C. Slides were washed and then incubated in 4 mg/ml protease 1 in 0.2 M HCL at 37°C for 15 min, dehydrated in graded ethanol baths, and air dried. Sections were hybridized with a FISH probe combination containing a prototype SpectrumGreen LSI Topo II-α, SpectrumOrange LSI HER-2 (erbB-2), and SpectrumAqua CEP-17 (all probes from Vysis, Inc.) using a HYBrite instrument that performs codenaturation and hybridization (Vysis, Inc.). The topoisomerase IIα probe covers ~280 kb, including the entire topoisomerase IIα gene and the sequence tag site markers, WI-15402, SGC31792, and WI-17575 (a subsequently released commercial version of this Vysis multicolor probe set included an LSI Topo II-α probe targeting a larger, 400-kb region). The LSI HER-2 probe covers ~190 kb, including the entire erbB-2 gene. The CEP 17 probe contains sequence homologous to the D17Z1 satellite repeat sequence. Probe hybridization mixture was applied to each section, and glass coverslips were immediately applied and sealed with rubber cement. Slides were then codenatured at 73°C for 5 min and were hybridized at 37°C for 16–18 h. After removing the coverslips, the slides were incubated at 73°C in 2× SSC/0.3% NP40 for 2 min to remove nonspecifically bound FISH probe, and then were air dried in the dark. DAPI I counterstain (Vysis, Inc.) was applied to the specimen to allow visualization of the nuclei. The FISH slides were evaluated using a Zeiss Axioscope epifluorescence microscope (Carl Zeiss, Inc, Thornwood, NY). Signals were visualized, and counting was performed using a DAPI single-band pass filter set to visualize nuclei, a green single-band pass filter to visualize SpectrumGreen TopoII-α, an orange single-band pass filter set to visualize SpectrumOrange HER-2, and an aqua single-band pass filter set to visualize SpectrumAqua CEP-17. Signals for each probe were counted in 25–30 tumor-cell nuclei. For nuclei with greater than 20 erbB-2 or topoisomerase IIα signals, an estimate of 21 signals was used for the purpose of calculating signal ratios. A ratio of 2.5 or greater for erbB-2/CEP-17 or for topoisomerase IIα/CEP-17 was considered to indicate amplification.
Statistical Methods. Response of the tumor in the breast at the time of mastectomy was divided into three categories: CR or MRD, PR, and StD or PD. Immunohistochemistry data were categorized as overexpressed, or not, and FISH data were categorized as amplified, or not. Fisher’s exact test (2-tailed) was used to examine associations between each of the markers and response of the breast tumors to chemotherapy. Results were considered statistically significant at the 0.05 level. The sample size was small in this study. A power calculation based on Fisher’s exact test for 2×2 table (from PASS), assuming 8 CR or MRD patients and 27 other patients, showed a power of 48% if the percentage of amplified is 50% among CR or MRD patients and is 10% among other patients. The same technique was used for other categorical data. To investigate associations between patient age and response and other markers, the two-sample Wilcoxon test or the Kruskal-Wallis test (for more than two groups) was used. Age was treated as a continuous variable and was grouped by the category for response or the markers.

Table 1 Comparison of erbB-2 amplification and overexpression

<table>
<thead>
<tr>
<th></th>
<th>erbB-2 overexpressed</th>
<th>erbB-2 not overexpressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>erbB-2 amplified</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>erbB-2 not amplified</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Total patients</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>
Amplification of Topoisomerase II
(based on a 2-sided level of 0.05) is only
SD, 9.3) in 29 patients without overexpression, the power
topoisomerase II/H9251
However, if the mean age is 46.8 (SD, 7.1) in 9 patients with
patients, the power (based on a 2-sided level of 0.05) is
overexpression, and the mean age is 49.2
(9.3) in 29 patients without overexpression, the power
(based on a 2-sided level of 0.05) is only ~13%.

RESULTS
Patients. A total of 35 patients with LABC who were
treated with anthracycline-based therapy before mastectomy at
Cook County Hospital between 1996 and 1999 were included in
the study. All of the patients had biopsy-proven invasive breast
carcinoma: 19 ductal, 5 lobular, and 11 diagnosed as breast
adenocarcinoma, not otherwise specified. The ages of the pa-
tients ranged from 35 to 69 (mean, 48.5) years. Seven patients
had stage IIIB tumors, 18 had IIIA, and 10 IIIB. Twenty-two
patients received six 21-day cycles of 50 mg/m² doxorubicin
and, 500 mg/m² 5-fluorouracil (3000 mg/m² total). Five patients
achieved a CR and 3 a MRD rating in the breast at the time of
mastectomy after chemotherapy. Amplification of erbB-2 was
significantly associated with a favorable local tumor response to
chemotherapy (Table 3). Of eight patients with erbB-2 ampli-
fication, five had a CR or MRD, three had a PR, and none had
STD or PD at the time of mastectomy. In contrast, the 27 patients
without amplification had 3 CR or MRD, 16 PR, and 8 STD or
PD (P = 0.008). If CR or MRD versus all of the other responses are compared, P = 0.007.

Association of Molecular Markers with Response to
Therapy. The clinical end point in this study was the local
tumor response in the breast, defined by comparing the breast
tumor at presentation with the tumor, if any, at the time of
mastectomy after chemotherapy. Amplification of erbB-2 was
significantly associated with a favorable local tumor response to
chemotherapy (Table 3). Of eight patients with erbB-2 ampli-
fication, five had a CR or MRD, three had a PR, and none had
STD or PD at the time of mastectomy. In contrast, the 27 patients
without amplification had 3 CR or MRD, 16 PR, and 8 STD or
PD (P = 0.008). If CR or MRD versus all of the other responses are compared, P = 0.007.

Unlike erbB-2 gene amplification, erbB-2 overexpression
was not significantly associated with breast tumor response to
chemotherapy (P = 0.114) although if CR or MRD versus all of
the other responses are compared, there was a borderline
association (P = 0.051; Table 4). Neither of the two patients with
erbB-2 overexpression and STD or PD had erbB-2 amplification,
and in the 7 patients with PR, only one overexpressing tumor
had amplification. To further analyze the possible link between
erbB-2 overexpression and chemotherapy response, we consid-
ered separately the 27 patients without erbB-2 amplification,
including 9 with overexpression (Table 5). Among these pa-
tients, there was no evidence of an association between erbB-2
overexpression and tumor response (P = 0.843).

Table 2 Comparison of topoisomerase IIα amplification
and overexpression

<table>
<thead>
<tr>
<th>Topoisomerase IIA amplified</th>
<th>Topoisomerase IIA not amplified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topoisomerase IIα amplified</td>
<td>2</td>
</tr>
<tr>
<td>Topoisomerase IIα not amplified</td>
<td>7</td>
</tr>
<tr>
<td>Total patients</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 3 Amplification of erbB-2 is related to
chemotherapy response

<table>
<thead>
<tr>
<th>erbB-2 amplified</th>
<th>PR</th>
<th>STD or PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR or MRD</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>erbB-2 not amplified</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Total patients</td>
<td>8</td>
<td>19</td>
</tr>
</tbody>
</table>

None of the patients with erbB-2 overexpression and STD or PD had erbB-2 amplification,
and in the 7 patients with PR, only one overexpressing tumor had amplification. To further analyze the possible link between
erbB-2 overexpression and chemotherapy response, we consid-
ered separately the 27 patients without erbB-2 amplification,
including 9 with overexpression (Table 5). Among these pa-
tients, there was no evidence of an association between erbB-2
overexpression and tumor response (P = 0.843).
Amplification of topoisomerase IIα was significantly associated with a more favorable tumor response to chemotherapy (Table 6). Of six patients with amplification, 4 had CR or MRD, 2 PR, and none StD or PD, versus 4 with CR or MRD, 17 with PR, and 8 with StD or PD among patients without amplification ($P = 0.034$). If CR or MRD versus all of the other responses are compared, $P = 0.016$. Topoisomerase IIα overexpression was also significantly associated with favorable chemotherapy response (Table 7). Of 9 patients with overexpression, 5 had a CR or MRD, 2 had a PR, and 2 had StD or PD, versus 3 with CR or MRD, 17 with PR, and 6 with StD or PD among those without overexpression ($P = 0.021$). If patients with CR or MRD versus all of the other responses are compared, $P = 0.015$. None of the four patients with overexpression who failed to achieve a CR or MRD had amplification, which suggests that gene amplification is a more specific marker for favorable response than overexpression as detected by immunohistochemistry. Also, two of the three patients without overexpression who achieved CR or MRD had amplification, which suggests that immunohistochemistry alone should not be used to infer that a patient is unlikely to benefit from anthracycline-based therapy. Nevertheless, three of the five patients with overexpression who achieved CR or MRD were not amplified. This suggests that overexpression of topoisomerase IIα by immunohistochemistry, in the absence of amplification, may sometimes be biologically meaningful. Of the eight patients who achieved CR or MRD, only one had neither overexpression nor amplification.

Consideration of Other Tumor and Patient Factors.

Other available patient and tumor factors for which an association with response to therapy seemed reasonably likely were tested for such an association. There was no evidence for an association between response and patient age, the histological type of the tumor (ductal, lobular, or unspecified), tumor grade (II or III), tumor stage (IIB, IIIA, or IIIB), estrogen or progesterone receptor status (immunohistochemistry by a commercial reference laboratory), or type of chemotherapy (doxorubicin and docetaxel versus CAF). None of these factors was significantly associated with those which predicted response (erbB-2 amplification, topoisomerase IIα amplification or overexpression) except patient age, which was associated with topoisomerase IIα amplification ($P = 0.015$).

DISCUSSION

Some large studies have reported a positive association between erbB-2 overexpression and favorable response to anthracyclines in breast cancer (4, 5), but the existence of this association and its underlying mechanism remain controversial (15). This study sought to clarify several issues related to this putative association. The patients included were quite uniform with regard to stage and presentation, all falling into the relatively uncommon category of LABC. This group of patients permitted assessing a very well-defined measure of response to neoadjuvant chemotherapy, namely the effect on the tumor in the breast at the time of mastectomy. Clearly, systemic tumor response (development of clinically evident metastases) and survival are also extremely important in evaluating the efficacy of chemotherapy and will be evaluated in this group of patients when sufficient data become available. Nevertheless, these other end points appear to involve a multitude of tumor and host factors, in addition to drug sensitivity of the tumor cells. Other important features of this study are that we determined both overexpression and gene amplification for erbB-2, using a FISH strategy the performance characteristics of which have been well documented (11). Also included were expression and gene amplification studies on topoisomerase IIα, based on the recent documentation that this gene is often coamplified with erbB-2 in breast cancer and is a well-known target for topoisomerase IIα poisons, including the anthracyclines (9, 16). This suggests that coamplification of topoisomerase IIα with erbB-2 may be the principal mechanism underlying the putative relationship between erbB-2 overexpression and response to anthracyclines. Our data showed a highly significant association between erbB-2 amplification and favorable response to anthracyclines. The association between overexpression and response nevertheless failed to reach statistical significance, and no evidence was found for a link between overexpression and response in patients without amplification. These observations suggest that favorable response is associated with erbB-2 amplification, rather than overexpression itself. Although erbB-2 amplification and high-level overexpression are strongly linked in breast cancer, overexpression (compared with normal breast epithelium) without amplification is also well documented in the literature (6, 10). A recent report using special methods for quantifying overexpression suggests that overexpression in the absence of amplification is at a lower level than that associated with amplification (10). It is also important to recognize that using immunohistochemistry as a quantitative measure of erbB-2 expression is sometimes quite difficult in the small needle biopsies that comprised the patient material in this study, because of tissue edge artifacts and uncertain discrimination between specific and nonspecific staining. Therefore, some of

Table 4 Overexpression of erbB-2 versus chemotherapy response

Overexpression of erbB-2, as determined by immunohistochemistry, was not significantly associated with breast tumor response to chemotherapy ($P = 0.114$), although if CR or MRD versus all of the other responses are compared, there was a borderline association ($P = 0.051$). Response was determined by comparison of the breast tumor at presentation with the mastectomy specimen.

<table>
<thead>
<tr>
<th>erbB-2 overexpressed</th>
<th>CR or MRD</th>
<th>PR</th>
<th>STD or PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total patients</td>
<td>8</td>
<td>19</td>
<td>8</td>
</tr>
</tbody>
</table>

Table 5 Overexpression of erbB-2 versus chemotherapy response tumors with amplification excluded

For the 27 patients who did not have erbB-2 amplification, there was no evidence of an association between erbB-2 overexpression and tumor response ($P = 0.843$). Response was determined by comparison of the breast tumor at presentation with the mastectomy specimen.

<table>
<thead>
<tr>
<th>erbB-2 overexpressed</th>
<th>CR or MRD</th>
<th>PR</th>
<th>STD or PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total patients</td>
<td>3</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 6 Amplification of topoisomerase IIα is related to chemotherapy response

Amplification of topoisomerase IIα, as determined by FISH, was significantly associated with more favorable tumor response to chemotherapy (P = 0.034). If CR or MRD versus all of the other responses are compared, P = 0.016. Response was determined by comparison of the breast tumor at presentation with the mastectomy specimen. CR = complete response, MRD = minimal residual disease, PR = partial response, SD = stable disease, PD = progressive disease.

<table>
<thead>
<tr>
<th>CR or MRD</th>
<th>PR</th>
<th>STD or PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topoisomerase amplified</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Topoisomerase not amplified</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Total patients</td>
<td>8</td>
<td>19</td>
</tr>
</tbody>
</table>

Table 7 Overexpression of topoisomerase IIα is associated with chemotherapy response

Topoisomerase IIα overexpression was significantly associated with favorable chemotherapy response (P = 0.021). If patients with CR or MRD versus all of the other responses are compared, P = 0.015. Response was determined by comparison of the breast tumor at presentation with the mastectomy specimen.

<table>
<thead>
<tr>
<th>CR or MRD</th>
<th>PR</th>
<th>STD or PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topoisomerase overexpressed</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Topoisomerase not overexpressed</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>Total patients</td>
<td>8</td>
<td>19</td>
</tr>
</tbody>
</table>

Both the gene amplification and expression data for topoisomerase IIα are consistent with the notion that this protein is an important determinant of sensitivity of breast cancer to anthracycline-based therapy. This potentially important conclusion requires confirmatory evidence from additional studies because of the small size and retrospective nature of the study population. The disparity between amplification and overexpression may be partly explained by the fact that topoisomerase IIα is a cell cycle-regulated protein. In fact the frequency of topoisomerase IIα expression in a population of cells is tightly linked to the rate of cell proliferation, and topoisomerase IIα has been suggested as a proliferation marker (17). This probably tends to obscure the relationship between gene amplification and overexpression. Attempting to quantify protein expression by immunohistochemistry in small biopsy samples is also difficult, as discussed above. Our data suggest that measuring topoisomerase IIα amplification by FISH is more specific than measuring expression by immunohistochemistry for predicting anthracyline responsiveness, because four of six patients with amplification had CR or MRD, and the other two had PR. Previous studies of topoisomerase IIα expression versus response to drugs that target this have been inconsistent in finding a significant relationship (18, 19). It also appears likely, however, that FISH may miss some tumors with biologically significant topoisomerase IIα overexpression, because four patients without amplification had CR or MRD, and all but one of these had topoisomerase IIα overexpression. It may be that patients who have neither amplification nor overexpression should be offered an alternative to anthracyclines, because only one such patient had CR or MRD in our series. Clearly, however, more patients must be studied to arrive at conclusions sufficiently secure to provide the basis for planning treatment. It also appears likely that developing an optimal clinical assay for topoisomerase IIα may be at least as complex as the process for erbB-2. Measuring phosphorylation of topoisomerase IIα may also be useful because its activity may be so regulated (20).

Our data support the idea that topoisomerase IIα amplification in clinical breast cancer specimens occurs as a result of proximity to the oncogene, erbB-2, because all cases with erbB-2 amplification had topoisomerase IIα amplification, but not vice versa. In contrast to the findings of Jarvinen et al. (9), however, who described deletion of topoisomerase IIα with frequency equal to amplification in tumors with erbB-2 amplification, we did not detect topoisomerase IIα deletions. The probe set used in our study was designed primarily for detecting amplification of the topoisomerase IIα region in a three-probe multicolor assay. This provides the advantage of measuring the erbB-2, topoisomerase IIα, and chromosome 17 centromere copy numbers in each cell individually, allowing accurate identification of clonal variations. As a result, the topoisomerase IIα target region was significantly larger than that used by Jarvinen et al. (9). Therefore, their probe may have detected smaller deletions that may have been missed with our probe. Another possibility is that their smaller probe is associated with lower hybridization and/or detection efficiency, leading to the artifactual appearance of deletions in some cases. It is unclear at present whether discriminating between tumors that have deletion of one topoisomerase IIα allele, versus those that have two alleles (not amplified), would be biologically or clinically significant.

the tumors that were scored as high-level overexpressers and that did not have amplification may actually represent low-level overexpressers (false positives). Two of the patients with erbB-2 amplification were not scored as overexpressers and are presumed to be false negatives. This problem has been recognized in previous studies comparing FISH with immunohistochemistry for erbB-2, and has been attributed to protein degradation in the paraffin-embedded material, in addition to the interpretation problems mentioned above (11). This implies that the FISH assay may be technically more robust for evaluating the clinically important erbB-2 status of tumors, especially in needle biopsies such as were used in this study. This idea is supported by a recent report demonstrating greater reliability of amplification assays than immunohistochemistry for predicting prognosis based on erbB-2 status (11). The marginal association between overexpression and response is also consistent with an important role for topoisomerase IIα, because amplification of the two genes was tightly linked in our patients and in other studies (9).
References

Amplification and Overexpression of Topoisomerase IIα Predict Response to Anthracycline-based Therapy in Locally Advanced Breast Cancer

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/8/4/1061

Cited articles
This article cites 18 articles, 8 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/8/4/1061.full#ref-list-1

Citing articles
This article has been cited by 21 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/8/4/1061.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/8/4/1061.
Click on “Request Permissions” which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.