Prognostic Significance of Adoptive Immunotherapy with Tumor-associated Lymphocytes in Patients with Advanced Gastric Cancer: A Randomized Trial¹

Koji Kono,² Akihiro Takahashi, Fumiko Ichihara, Hideki Amemiya, Hidehiko Iizuka, Hideki Fujii, Takayoshi Sekikawa, and Yoshiro Matsumoto
First Department of Surgery, Yamanashi Medical University, Yamanashi 409-3898, Japan

ABSTRACT

Purpose: We performed adoptive immunotherapy (AIT) with tumor-associated lymphocytes (TALs) in combination with chemotherapy in patients with advanced-stage gastric cancer in a randomized controlled study and investigated whether or not an improved survival effect is observed with AIT.

Experimental Design: Forty-four consecutive patients with stage IV gastric cancer [staged according to the International Union against Cancer classification] were prospectively assigned to the control group (chemotherapy alone) or the AIT group (AIT plus chemotherapy). Patients in the AIT group received an adoptive transfer of cultured TALs in combination with low-dose cisplatinum/5-fluorouracil chemotherapy, whereas patients in the control group received chemotherapy alone.

Results: The 50% survival rates were 11.5 and 8.3 months in the AIT and control groups, respectively. The overall survival of patients in the AIT group was significantly better than that of patients in the control group, as analyzed by the log-rank test (P < 0.05). Multivariate analysis with Cox’s proportional hazards model revealed that AIT provided an independent prognostic factor, indicating that AIT influenced patient survival in a positive manner.

Conclusions: AIT with TALs in combination with chemotherapy was effective in prolonging survival in patients with stage IV gastric cancer.

INTRODUCTION

Gastric cancer is one of the most common cancers in Japan today. Despite various treatments such as surgery combined with chemotherapy (1), hyperthermia (2), or chemoradiotherapy (3), control of this cancer at the advanced stage remains difficult. The possibility of applying immunotherapy for this type of cancer would therefore be highly desirable. We and others have reported that CTLs from gastric cancer patients, which are restricted to MHC class I, can react specifically against autologous tumor cells (4, 5). Therefore, AIT¹ with tumor-specific CTLs represents an alternative approach for treatment of patients with gastric cancer.

It has been reported that the adoptive transfer of tumor-infiltrating lymphocytes in combination with IL-2 to patients with advanced-stage lung cancer (6), malignant melanoma, and renal cell carcinoma (7) resulted in prolonged survival or a therapeutic effect. Tumor-specific CTLs, when adoptively transferred, have therapeutic activity and can induce regression of established tumors or micrometastasis (8). With respect to gastric cancer, it has been shown that AIT, when combined with the biological response modifier OK-432, had a survival effect for patients with gastric cancer and peritoneal metastasis (9). Yamane et al. (10) reported that AIT by activated killer cells in combination with chemotherapy resulted in a clinical response in patients with advanced gastric cancer. Furthermore, we have reported that AIT with TALs had the effect of immunological modification in patients with gastric and colon cancers (11).

In the present study, we performed AIT with TALs in combination with chemotherapy in patients with advanced-stage gastric cancer in a randomized controlled study and investigated whether or not an improved survival effect is observed with AIT.

PATIENTS AND METHODS

Patients and Clinical Evaluation. Patients were eligible if they had histologically confirmed stage IV gastric cancer (staged according to the UICC classification), adequate bone marrow and renal function, and were <80 years old. One exclusion criterion was the presence of liver metastasis. Eligible patients were randomly assigned to the control group (chemotherapy alone) or the AIT group (AIT plus chemotherapy), on receipt of stage IV confirmation, no later than 10 days after surgery. All patients were monitored clinically using imaging analysis such as ultrasonography and computed tomography and classified according to conventional criteria: (a) complete response was defined as the disappearance of all measurable tumor for at least 1 month; (b) partial response was defined as

Received 10/31/01; revised 1/30/02; accepted 2/1/02.
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 Supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan
2 To whom requests for reprints should be addressed, at First Department of Surgery, Yamanashi Medical University, 1110 Tamaho, Yamanashi 409-3898, Japan. Fax: 81-552-73-6751; Tel: 81-552-73-7390; E-mail: kojikono@res.yamanashi-med.ac.jp.

³The abbreviations used are: AIT, adoptive immunotherapy; TAL, tumor-associated lymphocyte; IL, interleukin; UICC, International Union against Cancer; MR, minor response; NC, no change; PD, progressive disease; TNF-α, tumor necrosis factor α.
a $\geq 50\%$ decrease of all measurable tumor for at least 1 month; (c) MR was defined as a reduction of 25–49%; (d) NC was defined as a reduction of $<25\%$; and (e) PD was defined as an increase in the tumor burden. Cytological examination of ascites and pleural effusions were performed periodically, and the cells were diagnosed as class I to class V according to the Papanicolaou classification. The present study was approved by the ethical committee of Yamanashi Medical University, and written informed consent was obtained from all individuals.

Treatment Design. All patients in both groups underwent surgery. Then, from the 5th week after surgery for 5 months, all patients received chemotherapy with cis-platinum (10 mg/day) plus 5-fluorouracil (500 mg/day) by venous infusion once a week and oral doxifluridine (600 mg/day) daily. In the AIT group (chemotherapy plus AIT), TALs were cultured for 6 weeks, and the cultured TALs were administered by i.p. bolus injection to autologous donors with malignant ascites or by i.v. bolus injection to autologous donors with malignant pleural effusion or lymph node metastasis.

All adverse events were evaluated according to the WHO toxicity scale, and treatment was stopped if toxic effects of grade 3 or 4 developed.

Preparation of Lymphocytes and Tumor Cells. A single-cell suspension was prepared from malignant ascites or pleural effusions by 100% Ficoll (Pharmacia, Uppsala, Sweden) separation. The suspension was prepared from lymph node metastases obtained at surgery by mechanical mincing. Tumor- and lymphocyte-enriched populations were prepared by centrifugation of the single-cell suspensions through a discontinuous 75%/100% Ficoll gradient (5, 11, 12).

Generation of TAL Lines. To generate tumor cell lines, tumor-enriched populations from ascites, pleural effusions, or lymph node metastases in the patients were incubated for 60 min at 37°C to remove macrophages and fibroblasts by adherence to the plastic surface. Nonadherent cells were then cultured in RPMI 1640 (Life Technologies, Inc.) with 10–20% FCS, 50 U/ml recombinant IL-2 (Shionogi) by stimulation with autologous tumor cells. The supernatants of the cultured mixtures were collected, and the TNF-α content was determined using an ELISA kit (Immunotech, Marseille, France) according to the manufacturer’s recommendations. When the amount of TNF-α for the autologous tumor cells was more than 2 times that for the allogeneic tumor cells, the reactivity was evaluated as preferential for autologous tumor cells.

Statistics. Differences between groups were compared using the Mann-Whitney test (nonparametric statistical analysis) or χ^2 test and considered statistically significant when Ps were <0.05. The cumulative survival curve was estimated by the Kaplan-Meier method, and the differences in this distribution were compared with the log-rank test. Multivariate analysis of prognostic factors for overall survival was performed using Cox’s proportional hazards model. All analysis was performed with intention to treat. All time estimates were made with the date of surgery as the baseline.

RESULTS

Patient Groups. Forty-four patients were randomly assigned to the control group (chemotherapy alone) or the AIT group (AIT plus chemotherapy) after surgery. There were no differences in the clinicopathological findings between the two groups, as shown in Table 1. Furthermore, there were no differences with regard to the extent of surgery performed or the extent of residual tumor (Table 2).

Three patients in the AIT group were not able to complete the treatment protocol because TALs could not be maintained in culture for two of them (patients 6 and 11) and one patient refused any treatments (patient 13), as shown in Table 3. These three patients were included in the analysis of the AIT group because an intent to treat analysis was performed. Thus, 22 patients in the control group and 22 patients in the AIT group were evaluated in this study.
Table 2 Background surgery before treatment

<table>
<thead>
<tr>
<th>Operation</th>
<th>Control group (n = 22)</th>
<th>AIT group (n = 22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrectomy</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Lymph node dissection</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Residual tumor*</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>R₀</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R₁</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>R₂</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Operation time (min)</td>
<td>232 ± 159</td>
<td>221 ± 139</td>
</tr>
</tbody>
</table>

* Residual tumor status after surgery was evaluated according to the tumor-node-metastasis (TNM) classification of the UICC. R₀, no residual tumor; R₁, microscopic residual tumor; R₂, macroscopic residual tumor.

Clinical Outcome after AIT. When the cultured autologous TALs were transferred to the patients, no complications, with the exception of low-grade fever, were observed.

Of the 22 patients in the AIT group, 2 patients showed a MR with diminished ascites or pleural effusion and negativity of cytology in the fluid, 5 showed NC, and 15 showed PD (Table 3). In the control group (n = 22), 1 patient showed a MR, 4 revealed NC, and 17 revealed PD. The cause of death in all patients in the both groups was disease progression of gastric cancer.

The number of transferred TALs reached \(9 \times 10^6\) to \(5 \times 10^7\), and most of the transferred T cells were CD8⁺-dominant TAL lines (Table 3). Preferential reactivity to the autologous tumor cells was observed in 3 (patients 1, 5, and 14) of 12 TAL lines tested. When the amount of TNF-α for autologous tumor cells was more than 2 times that for allogeneic tumor cells, the reactivity was evaluated as preferential for autologous tumor cells. There was no clear correlation between clinical response and preferential reactivity to autologous tumor cells (Table 3). However, the amount of TNF-α for autologous tumor cells in patients with a MR or NC was significantly higher than that in patients with PD in the AIT group (P < 0.05; Table 3).

In addition, the survival time in the AIT group did not correlate with the number of transferred cells, the amount of TNF-α released, or clinical response (Table 3).

Survival Effect of AIT. Cumulative survival rates were compared in two groups, as shown in Fig. 1. The 50% survival rates were 11.5 and 8.3 months in the AIT group and control group, respectively. The overall survival of the patients in the AIT group was significantly better than that of the patients in the control group, as analyzed by the log-rank test (P < 0.05).

To assess whether AIT represented a prognostic parameter, we used Cox’s proportional hazards model. The covariate parameters included age, gender, tumor size, depth of tumor invasion, peritoneal dissemination, lymph node metastasis, gastrectomy, and AIT. Multivariate analysis revealed that tumor size and AIT were independent prognostic factors (Table 4), indicating that AIT influenced patient survival in a positive manner.

DISCUSSION

In the present study, we showed that AIT with TALs in combination with chemotherapy prolonged the survival of patients with advanced-stage gastric cancer in a randomized controlled study.

AIT with lymphokine-activated killer cells was previously reported to have a therapeutic clinical effect in the treatment of melanoma or renal cell carcinoma (13, 14). However, it has also been shown that lymphokine-activated killer cell therapy was not effective in other types of cancer (15, 16) or for patients with advanced-stage disease (17, 18). Recently, adoptive transfer of activated T cells by stimulation with CD3 plus IL-2 was reported to be effective as an adjuvant treatment of hepatocellular carcinoma (19). Thus, to enhance the immune response against the tumor, we generated activated T-cell lines derived from TALs, and the TALs were adoptively transferred to the patients in combination with chemotherapy.

Interestingly, overall survival was significantly improved by AIT in comparison with the control group, even if we did not obtain clear clinical responses such as a complete response or even a partial response in the patients treated with AIT. This observation indicates that the transferred TALs play a functional role, to some extent, in the modulation of antitumor immunity, resulting in prolonged survival even if most of the patients received nonspecific T cells. In fact, the amount of TNF-α for autologous tumor cells in patients with MR or NC was significantly higher than that in patients with PD in the AIT group. It is possible that the transferred TALs recognized tumor cells and had the ability to produce TNF-α as the antitumor immune response, regardless of specific or nonspecific recognition. In addition, we have recently shown that AIT with TALs induced immunomodulatory effects such as an increase or a stabilization in the expression of signal-transducing TCR \(\xi\) molecules (11), and some of these patients were included in the present study.

In addition, most of the treated patients received adoptive transfer via the i.p. route in the present study. It has been shown that the nonspecific biological response modifier OK-432 has clinical effects relating to improvement of host immunity and prolongation of survival in peritoneal metastasis of gastric cancer (9, 20). OK-432, a streptococcal preparation, has the ability to induce cytokine production from macrophages or neutrophils in a nonspecific manner and to induce an inflammatory reaction inside the peritoneal space (20). Thus, it is also speculated that adoptively transferred TAL cells induced a nonspecific inflammatory reaction inside the peritoneal space, and the inflammatory reaction may be related to the improvement in survival.

However, several difficulties still remain to be resolved in AIT, especially in patients with gastric cancer. First, the selection and generation of an effective lymphocyte population for adoptive transfer are poorly understood. In previous clinical trials, tumor regression was assumed to reflect direct tumor lysis mediated by infused T cells, especially CD8⁺ CTLs (21). However, it was also suggested that adoptive transfer with a combination of CD4⁺ and CD8⁺ T cells, rather than CD8⁺ T cells only, was important because cytokines derived from CD4⁺ T cells were required for the induction and maintenance of an antitumor response (22). In the present study, we showed that the amount of TNF-α for autologous tumor cells in patients...
with MR or NC was significantly higher than that in patients with PD in the AIT group. This observation indicates that the tumor’s ability to produce cytokine may be a surrogate maker that predicts responsiveness to AIT, although the amount of cytokine released did not correlate with survival time. Secondly, even if the effective CTLs are transferred adoptively to the patients, there are several mechanisms by which tumor cells can escape from tumor-specific T-cell surveillance in the tumor microenvironment in vivo (23, 24). The presence of factors such as Fas-Fas ligand interaction, oxidative metabolites, or immunosuppressive cytokines can be predicted to rapidly shut off the effector functions of CTLs (23, 24). In fact, preferential reactivity for autologous tumor cells was observed in 3 of 12 TAL

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age (yrs)/Sex</th>
<th>PS</th>
<th>Origin of TALs</th>
<th>No. of transferred cells (×10^3)</th>
<th>% Positive cells in transferred cells</th>
<th>TNF-α release (pg/ml)</th>
<th>Clinical response</th>
<th>Survival time (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50/F</td>
<td>1</td>
<td>As</td>
<td>4.8</td>
<td>97.9, 19.0, 78.2, 3.9</td>
<td>456, 102, 23</td>
<td>IP</td>
<td>661</td>
</tr>
<tr>
<td>2</td>
<td>79/F</td>
<td>1</td>
<td>As</td>
<td>4.0</td>
<td>98.1, 12.3, 86.8, 2.0</td>
<td>289, 246, 42</td>
<td>IP</td>
<td>628</td>
</tr>
<tr>
<td>3</td>
<td>56/F</td>
<td>1</td>
<td>As</td>
<td>1.0</td>
<td>97.3, 15.2, 82.1, 3.0</td>
<td>ND, 12, 25</td>
<td>IP</td>
<td>347</td>
</tr>
<tr>
<td>4</td>
<td>72/F</td>
<td>2</td>
<td>As</td>
<td>2.1</td>
<td>97.3, 49.0, 48.9, 4.6</td>
<td>56, 24, 34</td>
<td>IP</td>
<td>280</td>
</tr>
<tr>
<td>5</td>
<td>76/F</td>
<td>2</td>
<td>As</td>
<td>0.9</td>
<td>90.1, 26.9, 62.7, 8.9</td>
<td>220, 98, 67</td>
<td>IP</td>
<td>192</td>
</tr>
<tr>
<td>6</td>
<td>68/F</td>
<td>1</td>
<td>As</td>
<td>0.9</td>
<td>96.4, 41.1, 44.5, 3.5</td>
<td>ND, 55, 21</td>
<td>IV</td>
<td>345</td>
</tr>
<tr>
<td>7</td>
<td>71/M</td>
<td>1</td>
<td>Pl</td>
<td>0.9</td>
<td>97.3, 24.5, 73.6, 2.1</td>
<td>22, 10, 10</td>
<td>IP</td>
<td>787</td>
</tr>
<tr>
<td>8</td>
<td>79/F</td>
<td>1</td>
<td>As</td>
<td>0.9</td>
<td>97.3, 24.5, 73.6, 2.1</td>
<td>22, 10, 10</td>
<td>IP</td>
<td>787</td>
</tr>
<tr>
<td>9</td>
<td>50/M</td>
<td>1</td>
<td>As</td>
<td>1.2</td>
<td>98.1, 33.9, 61.4, 1.1</td>
<td>ND, 98, 111</td>
<td>IP</td>
<td>439</td>
</tr>
<tr>
<td>10</td>
<td>67/F</td>
<td>1</td>
<td>As</td>
<td>4.6</td>
<td>89.9, 44.5, 45.2, 9.3</td>
<td>23, 34, 23</td>
<td>IP</td>
<td>451</td>
</tr>
<tr>
<td>11</td>
<td>61/F</td>
<td>2</td>
<td>As</td>
<td>3.6</td>
<td>91.1, 23.4, 77.2, 8.9</td>
<td>ND, 75, 22</td>
<td>IP</td>
<td>154</td>
</tr>
<tr>
<td>12</td>
<td>70/M</td>
<td>2</td>
<td>As</td>
<td>3.6</td>
<td>91.1, 23.4, 77.2, 8.9</td>
<td>ND, 75, 22</td>
<td>IP</td>
<td>367</td>
</tr>
<tr>
<td>13</td>
<td>71/F</td>
<td>1</td>
<td>As</td>
<td>2.5</td>
<td>95.3, 45.3, 52.1, 2.3</td>
<td>321, 100, 122</td>
<td>IP</td>
<td>429</td>
</tr>
<tr>
<td>14</td>
<td>49/F</td>
<td>1</td>
<td>As</td>
<td>3.0</td>
<td>96.5, 19.1, 78.2, 2.5</td>
<td>215, 116, 45</td>
<td>IP</td>
<td>451</td>
</tr>
<tr>
<td>15</td>
<td>51/F</td>
<td>2</td>
<td>LN</td>
<td>1.0</td>
<td>96.1, 34.1, 60.1, 4.9</td>
<td>ND, 51, 12</td>
<td>IV</td>
<td>388</td>
</tr>
<tr>
<td>16</td>
<td>72/M</td>
<td>1</td>
<td>LN</td>
<td>2.0</td>
<td>92.1, 21.5, 70.1, 3.9</td>
<td>52, 22, 14</td>
<td>IP</td>
<td>451</td>
</tr>
<tr>
<td>17</td>
<td>72/F</td>
<td>1</td>
<td>As</td>
<td>3.0</td>
<td>96.5, 19.1, 78.2, 2.5</td>
<td>215, 116, 45</td>
<td>IP</td>
<td>451</td>
</tr>
<tr>
<td>18</td>
<td>71/F</td>
<td>1</td>
<td>As</td>
<td>1.2</td>
<td>91.5, 42.1, 50.1, 0.9</td>
<td>ND, 120, 55</td>
<td>IP</td>
<td>367</td>
</tr>
<tr>
<td>19</td>
<td>70/F</td>
<td>1</td>
<td>As</td>
<td>3.5</td>
<td>97.1, 22.5, 71.0, 4.5</td>
<td>ND, 251, 151</td>
<td>IP</td>
<td>395</td>
</tr>
<tr>
<td>20</td>
<td>51/M</td>
<td>2</td>
<td>LN</td>
<td>4.5</td>
<td>91.1, 35.1, 56.1, 8.9</td>
<td>59, 71, 55</td>
<td>IV</td>
<td>160</td>
</tr>
<tr>
<td>21</td>
<td>78/M</td>
<td>1</td>
<td>As</td>
<td>5.1</td>
<td>91.5, 22.1, 67.1, 9.0</td>
<td>145, 121, 198</td>
<td>IP</td>
<td>283</td>
</tr>
<tr>
<td>22</td>
<td>65/M</td>
<td>1</td>
<td>As</td>
<td>4.1</td>
<td>98.1, 40.1, 57.4, 1.9</td>
<td>21, 45, 18</td>
<td>IP</td>
<td>369</td>
</tr>
</tbody>
</table>

Table 3 Characteristics of patients treated with adoptive transfer of cultured TALs

Table 4 Association of clinicopathologic factors with overall survival evaluated by Cox’s proportional hazards model

<table>
<thead>
<tr>
<th>Significance (P)</th>
<th>Hazard ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age^a</td>
<td>0.800</td>
</tr>
<tr>
<td>Sex (male vs. female)</td>
<td>0.651</td>
</tr>
<tr>
<td>Tumor size^a</td>
<td>0.027</td>
</tr>
<tr>
<td>Depth of tumor invasion (T1–T4)^b</td>
<td>0.165</td>
</tr>
<tr>
<td>Peritoneal dissemination (p0–p3)^c</td>
<td>0.071</td>
</tr>
<tr>
<td>Lymph node metastasis (N0–N3)^d</td>
<td>0.812</td>
</tr>
<tr>
<td>Gastrectomy</td>
<td>0.261</td>
</tr>
<tr>
<td>Adoptive immunotherapy</td>
<td>0.048</td>
</tr>
</tbody>
</table>

Continuous variables.

^a: Continuous variables.

^b: T1, tumor invades lamina propria or submucosa; T2, tumor invades muscularis propria or subserosa; T3, tumor penetrates the serosa; T4, exposed serosa tumor invades adjacent structures.

^c: P0, no peritoneal metastasis; P1, metastasis to the adjacent peritoneum but not the distant peritoneum; P2, some metastasis to the distant peritoneum; P3, numerous sites of metastasis to the distant peritoneum.

^d: N0, no evidence of lymph node metastasis; N1, N2, and N3, metastasis to lymph nodes of groups 1, 2, and 3, respectively.
cell lines tested. However, there was no clear correlation be-
tween clinical response and reactivity to the autologous tumor
cells. It is speculated that there are several mechanisms by
which tumor cells can escape from CTLs, even if the specific
CTLs are transferred to the patients.

In conclusion, AIT with TALs in combination with chem-
otherapy was effective in prolongation of survival in patients
with stage IV gastric cancer. Furthermore, we have recently
identified HER-2/neu-derived peptides as CTL epitopes recog-
nized by gastric cancer-specific CTLs (12). Thus, AIT based on
gastric cancer-specific CTLs or vaccination based on peptide
epitopes may represent new modes of therapy for gastric cancer.
Elucidation of the mechanisms of tumor escape from the im-
une response is important to the development of novel AIT
and vaccine strategies against gastric cancer.

REFERENCES

1. Abe, R., Akiyoshi, T., and Baba, T. Two-route chemotherapy using
cisplatin and its neutralizing agent, sodium thiosulfate, for intraperito-

2. Fujimoto, S., Shrestha, R. D., Kokubun, M., Ohta, M., Takahashi,
M., Kobayashi, K., Kiuchi, S., Okui, K., Miyoshi, T., and Arimizu, N.
Intrapitoneal hyperthermic perfusion combined with surgery effective
to gastric cancer patients with peritoneal seeding. Ann. Surg., 208:

3. MacDonald, J. S., Smalley, S. R., Benedetti, J., Hundahl, A. S.,
Estes, N. C., Stemmermann, G. N., Haller, D. G., Aji, J. A., Gundersen,
L. N., Jessup, J. M., and Martenson, J. A. Chemoradiotherapy after
surgery compared with surgery alone for adenocarcinoma of the stom-

receptor V region gene usage of cytotoxic T-lymphocytes and tumor-
infiltrating lymphocytes derived from human autologous gastric signet

5. Kono, K., Ichihara, F., Iizuka, H., Sekikawa, T., and Matsumoto, Y.
Differences in the recognition of tumor-specific CD8+- T cells derived
from solid tumor, metastatic lymph nodes and ascites in patients with

6. Ratto, G. B., Zino, P., Mirabelli, S., Minuti, P., Aquilina, R.,
Frantino, G., Spessa, E., Ponte, M., Bruzzi, P., and Melioli, G. A
randomized trial of adoptive immunotherapy with tumor-infiltrating
lymphocytes and interleukin-2 versus standard therapy in the postopera-
tive treatment of resected non-small cell lung carcinoma. Cancer (Phila.),
78: 244–251, 1996.

7. Goedegebuure, P. S., Douville, L. M., Li, H., Richmond, G. C.,
Schoof, D. D., Scavone, M., and Eberlein, T. J. Adoptive immunother-
apy with tumor-infiltrating lymphocytes and interleukin-2 in patients

8. Rosenberg, S. A., Packard, B. S., Aebersold, P. M., Dolomen, D.,
Topalian, S. L., Toy, S. T., Simon, P., Lotze, M. T., Yang, J. C., Seipp,
C. A., et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in
the immunotherapy of patients with metastatic melanoma. N. Eng.

9. Mise, K., Kan, N., Okino, T., Moriguchi, Y., Harada, T., Ichinose,
Y., and Inoue, K. OK-432-combined adoptive immunotherapy as a
prognostic factor in peritoneal metastasis from gastric cancer. Jpn.
Clinical Cancer Research

Prognostic Significance of Adoptive Immunotherapy with Tumor-associated Lymphocytes in Patients with Advanced Gastric Cancer: A Randomized Trial

Koji Kono, Akihiro Takahashi, Fumiko Ichihara, et al.

Updated version Access the most recent version of this article at: http://clincancerres.aacrjournals.org/content/8/6/1767

Cited articles This article cites 24 articles, 3 of which you can access for free at: http://clincancerres.aacrjournals.org/content/8/6/1767.full#ref-list-1

Citing articles This article has been cited by 5 HighWire-hosted articles. Access the articles at: http://clincancerres.aacrjournals.org/content/8/6/1767.full#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.