Phase I and Pharmacokinetic Study of the New Taxane Analog BMS-184476 Given Weekly in Patients with Advanced Malignancies

Ruth Plummer, Michele Ghielmini, Paula Calvert, Maurizio Voi, Josette Renard, Gilles Gallant, Elora Gupta, Hilary Calvert, and Cristiana Sessa

Northern Centre for Cancer Treatment, Newcastle Upon Tyne, United Kingdom NE4 6BE [R. P., P. C., H. C.]; Oncology Institute of Southern Switzerland, Bellinzona, CH 6504, Switzerland [M. G., C. S.]; Bristol-Myers Squibb, Waterloo, B-1410 Belgium [M. V., J. R., G. G.]; and Bristol-Myers Squibb, Princeton, New Jersey 08543 [E. G.]

ABSTRACT

Purpose: The study was designed to establish the maximum administered dose and maximum tolerated dose (MTD) of BMS-184476, an analogue of paclitaxel, given weekly for 3 consecutive weeks every 28 days, later amended to a regimen of weekly administration for 2 consecutive weeks every 21 days.

Experimental Design: Adult patients with solid tumors received BMS-184476 i.v. on days 1, 8, and 15 without premedication. The trial followed a modified accelerated titration design. Doses of 7, 14, 28, 40, 50, and 60 mg/m²/wk were investigated. Pharmacokinetics of BMS-184476 in plasma and urine were investigated by high-performance liquid chromatography assay.

Results: Fifty-three patients were treated; the maximum administered dose was 60 mg/m²/wk, and the MTD was 50 mg/m²/wk. Dose-limiting neutropenia was the main toxicity. Neutropenia at the higher dose levels frequently prevented administration of the day 15 dose, and a modified schedule at MTD dosing on days 1 and 8 every 21 days was evaluated and found more feasible for Phase II studies. Diarrhea was the main nonhematological toxicity; other toxicities were vomiting, cumulative fatigue, and loss of appetite. Two patients died of neutropenia-related complications.

Antitumor activity was observed in patients with breast and non-small cell lung cancer, with confirmed partial responses in 22% of patients. BMS-184476 was the main species found in the plasma with <5% present as paclitaxel or sulfoxide metabolites. The PKs of BMS-184476 appeared to be linear in the dose range of 7–60 mg/m².

Conclusion: The recommended dose and schedule of weekly BMS-184476 is 50 mg/m² on days 1 and 8 every 21 days.

INTRODUCTION

Taxanes were introduced into clinical practice in the 1990s as exciting new antimitotic agents active in a range of tumor types, in particular ovarian, breast, and lung cancers. Paclitaxel was initially isolated in 1971 from the bark and needles of Taxus brevifolia, the Pacific Yew tree; docetaxel is an analogue of paclitaxel synthesized from a precursor isolated from the needles of Taxus baccata, the European Yew. Both drugs are being incorporated rapidly into the treatment of many of the major solid tumors (1). Taxanes promote and stabilize the assembly of tubulin into microtubules. In the presence of the drug, cells accumulate in the mitotic phase of the cell cycle and undergo apoptosis instead of cell division (2, 3).

The initial development of paclitaxel was halted by the high incidence of hypersensitivity reactions; subsequent investigations discovered that these events could be prevented largely by premedication with steroids and antihistamine. Hypersensitivity has been attributed to the Cremophor EL/ethanol mixture used to prepare paclitaxel (4). One of the principle nonhematological toxicities of paclitaxel is peripheral neuropathy (5), and this problem is also reported with docetaxel (6). In the development of synthetic taxanes efforts have been targeted both at increasing the solubility of the drug, improving its clinical efficacy, and reducing peripheral neuropathy. BMS-184476 is the 7-methylthiomethyl ether of paclitaxel (Fig. 1), which has shown efficacy equal or superior to paclitaxel in a number of in vivo and in vitro studies in a spectrum of different tumor types sensitive to paclitaxel (7). In addition, BMS-184476 is more soluble in aqueous cosolvents, thus allowing reduction of the amount of Cremophor EL by 65–70% per mg of drug, potentially eliminating the need for premedication.

In preclinical single i.v. dose toxicology studies performed in rats and dogs, a TDL3 was defined at 72 mg/m² and 60 mg/m², respectively (7). Overall, from a qualitative point of
view, the toxicity profile of BMS-184476 was comparable with that of paclitaxel, mainly consisting of dose-related neutropenia, thrombocytopenia, gastrointestinal damage with stool changes, and macroscopic changes of the small and large intestines. Quantitatively, BMS-184476 was somewhat more toxic than paclitaxel, with the exception of neurotoxicity, for which a reduced potential could be inferred from the results of axonal degeneration in peripheral nerves in rats.

In PK studies in mice, rats, and dogs, using HPLC procedures, BMS-184476 showed a mean terminal half-life of 1.5, 7.1, and 11.6 h, respectively, a large VSS and dose-proportional Cmax, and AUC. In in vitro studies with liver S-9 preparations from different species, the major metabolic product was the sulfoxide metabolite BMS-184980, which was also the major metabolite found in rats, dogs, and monkeys; significant conversion to paclitaxel was observed only in mice.

Single, intermittent every 21-day and weekly for 3 consecutive weeks every 28-day schedules were selected for initial Phase I development. Starting doses for the above schedules were 20 mg/m² and 7 mg/m²/week, respectively, corresponding to one-third of the TDL in dogs.

This paper reports the results of the weekly Phase I study of BMS-184476, carried out jointly at Northern Center for Cancer Treatment, Newcastle Upon Tyne, United Kingdom, and at Oncology Institute of Southern Switzerland, Bellinzona, CH, Switzerland.

PATIENTS AND METHODS

Patients. Patients with advanced nonhematologic malignancies who had progressed on standard therapy or for whom no standard chemotherapy was available were recruited into the study. Before entry each patient underwent assessment with a full history, clinical examination, radiological staging, and laboratory evaluation, informed written consent having been obtained.

Eligibility criteria included histological/cytological confirmation of a nonhematological malignancy; Eastern Cooperative Oncology Group performance status \(\leq 2 \); age \(> 18 \) years; life expectancy \(\geq 3 \) months; and written informed consent. Patients must have adequate bone marrow (ANC \(\geq 2.0 \times 10^9/\text{liter} \), platelet count \(\geq 100 \times 10^9/\text{liter} \), hepatic (total bilirubin \(\leq 1.5 \) mg/dl, liver transaminases \(\leq 2.5 \times \) upper limit of normal), and renal (serum creatinine \(\leq 1.5 \) upper limit of normal) function. At least 4 weeks must have elapsed since prior chemotherapy (6 weeks for nitrosoureas, mitomycin C, or carboplatin), immunotherapy, or wide-field radiotherapy. Fertile patients were requested to use effective methods of contraception. Approval from the relevant local ethical committees was obtained for each center before recruitment into the trial.

Major exclusion criteria included any evidence of severe or uncontrolled medical disorder or an active infection, which would impair the ability to receive study medication, including prior known hypersensitivity to Cremophor EL, pre-existing neurological toxicity (\(\geq \) grade 2 according to the National Cancer Institute CTC Version 2.0), dementia or altered mental status that would prohibit understanding of the informed consent, active brain metastases including evidence of cerebral edema by computed tomography scan or magnetic resonance imaging, or progression from prior imaging study, clinical symptoms of/ from brain metastases, or any requirements for steroids. Pregnant or breastfeeding patients were not recruited.

Study Design. The trial used the modified version 4B of the accelerated titration design to limit the number of patients treated at potentially subtherapeutic doses and, therefore, to reduce the duration of the trial (8). A starting dose of 7 mg/m²/week for 3 consecutive weeks every 28 days was selected.

In the initial accelerated phase, 1 patient per cohort was treated; unless CTC grade 2 toxicity was observed, the dose was doubled between cohorts. The first patient treated at each new dose level had to be on study for at least 28 days before additional patients were entered at that or a higher dose level. On the first instance of grade 2 toxicity 2 additional patients were treated at that dose level. The accelerated phase continued until any 1 patient experienced a DLT any time during treatment or when 2 patients developed any CTC grade 2 or higher toxicity (excluding alopecia) during any course of treatment or in two separate courses of treatment.

In the subsequent standard escalation phase, cohorts of at least 3 patients (6 in case of DLT) were recruited at each dose level with up to 40% dose increments at subsequent levels. Dose escalation was stopped when at least 2 of 6 patients experienced DLT during the first course of treatment; this dose level was defined as the MAD. The dose level immediately below was defined as MTD, and it was planned to expand this level to define its suitability as a recommended Phase II dose.

Intrapatient dose escalation was permitted only for patients experiencing CTC \(< \) grade 2 toxicity on a previous course. Patients experiencing DLT were permitted to continue on treatment after a dose reduction of a single dose step.

Complete blood cell count with differential was done twice a week, whereas blood biochemistry (including liver function tests, creatinine, electrolytes, and glucose) was repeated before each cycle.

Toxicity was evaluated according to the National Cancer Institute CTC (version 2.0). All of the treated patients were evaluable for baseline and toxicity. Response rate is tabulated for all of the response-evaluable patients with measurable disease at baseline.

DLT were defined as the occurrence of grade 4 neutropenia (lasting \(\geq 5 \) consecutive days or associated with fever \(\geq 38^\circ\text{C} \)); grade 4 thrombocytopenia or a bleeding episode requiring plate-
Phase I Study of Taxane BMS-184476

Blood samples (5 ml) were collected in K3 EDTA at 0, 0.5, 1, the patients on days 1 and 15 of the first cycle of treatment. Concentrations of its potential metabolites were determined in all of

except fatigue or transient arthralgia/myalgia. Failure to recover from treatment-related toxicities to baseline or grade 1 by day 42 was also defined as DLT. Hypersensitivity to BMS-184476 was not considered DLT unless patients had documented nausea and/or vomiting on a previous cycle. Briefly, a 0.05-ml aliquot of the internal standard (BMS-183061) was added to 1 ml of plasma, vortexed, and loaded into unencapped Cyanobond Elut columns (Varian, Harbor City, CA) that had been conditioned previously with 2 × 1 ml of 10% methanol in water and 2 × 1 ml of 5% acetonitrile in water. The analytes and internal standard were eluted with 1 ml of 0.1% formic acid in methanol into tubes. The eluents were evaporated, and the dried residues were reconstituted in 50.5% acetonitrile in water. The reconstituted samples were sonicated for 5 min in a Branson 52 ultrasonic bath (Branson Cleaning Equipment Co., Shelton, CT), transferred to WISP vials, and then placed in a randomized manner in a Waters Model 717 autosampler (Waters Associates, Milford, MA) for analysis using HPLC.

One hundred-μl aliquots from each sample were injected onto the HPLC system, which consisted of a Waters Model 590 solvent pump, a Waters Temperature Control Module, and a Waters 484 Tunable Absorbance Detector. Separation was performed using a Zorbax RX-C18, 5 μm, 4.6 × 250 mm column (Hewlett Packard Co., Wilmington, DE), and a mobile phase consisting of 51.5% acetonitrile in water containing 10 mM ammonium acetate (pH titrated to 5.0 with acetic acid) and 10 mM tetramethylammonium hydroxide (pH titrated to 5.0 with acetic acid) at 4°C. The flow rate was 1.0 ml/min. Peak integration and quantitation from resultant chromatograms were performed using a VG Data Systems Multichrom 2 (Fisons, Cheshire, United Kingdom) data collection and processing system. The retention times for BMS-246178, BMS-246180, paclitaxel internal standard, and BMS-184476 were 6.2, 6.5, 8.0, 12.0, and 20.0 min, respectively. The UV absorbance detector was set at 227 nm with a response time of 1.0 s. The 1-V output of the detector was monitored by the chromatography data system. The lower limit of quantitation of the assay was 10 nmol, BMS-184476 standard curves were linear (R² ≥ 0.999) over the concentration range of 10 to 5000 nm, and the between-run precision and the within-run precision for the BMS-184476 quality control samples were no more than 8 and 4% relative SD with deviations from the nominal concentrations of no more than ±9%. These data indicate that the plasma assay method was precise and accurate, and that BMS-184476 was stable in the plasma samples during shipment and storage.

PK Analysis. The plasma concentration-time data for BMS-184476, and metabolites BMS-246178, BMS-246180, and paclitaxel were analyzed by noncompartmental methods using the program MENU/PKMENU. For BMS-184476, the Cmax and the Tmax were recorded directly from experimental observations. Using no weighting factor, the slope of the terminal phase of the plasma profile, K, was determined by log-linear regression of at least three data points, which yielded a minimum mean square error. The absolute value

let transfusion; ≥grade 3 nausea and/or emesis despite use of maximal antiemetics; ≥grade 3 neurosensory toxicity; ≥grade 2 cardiac, pulmonary, or other neurotoxicity; or any ≥grade 3 nonhematological toxicity except fatigue or transient arthralgia/myalgia. Failure to recover from treatment-related toxicities to baseline or grade 1 by day 42 was also defined as DLT. Hypersensitivity to BMS-184476 was not considered DLT unless patients had documented nausea and/or vomiting on a previous cycle. Briefly, a 0.05-ml aliquot of the internal standard (BMS-183061) was added to 1 ml of plasma, vortexed, and loaded into unencapped Cyanobond Elut columns (Varian, Harbor City, CA) that had been conditioned previously with 2 × 1 ml of 10% methanol in water and 2 × 1 ml of 5% acetonitrile in water. The analytes and internal standard were eluted with 1 ml of 0.1% formic acid in methanol into tubes. The eluents were evaporated, and the dried residues were reconstituted in 50.5% acetonitrile in water. The reconstituted samples were sonicated for 5 min in a Branson 52 ultrasonic bath (Branson Cleaning Equipment Co., Shelton, CT), transferred to WISP vials, and then placed in a randomized manner in a Waters Model 717 autosampler (Waters Associates, Milford, MA) for analysis using HPLC.

One hundred-μl aliquots from each sample were injected onto the HPLC system, which consisted of a Waters Model 590 solvent pump, a Waters Temperature Control Module, and a Waters 484 Tunable Absorbance Detector. Separation was performed using a Zorbax RX-C18, 5 μm, 4.6 × 250 mm column (Hewlett Packard Co., Wilmington, DE), and a mobile phase consisting of 51.5% acetonitrile in water containing 10 mM ammonium acetate (pH titrated to 5.0 with acetic acid) and 10 mM tetramethylammonium hydroxide (pH titrated to 5.0 with acetic acid) at 4°C. The flow rate was 1.0 ml/min. Peak integration and quantitation from resultant chromatograms were performed using a VG Data Systems Multichrom 2 (Fisons, Cheshire, United Kingdom) data collection and processing system. The retention times for BMS-246178, BMS-246180, paclitaxel internal standard, and BMS-184476 were 6.2, 6.5, 8.0, 12.0, and 20.0 min, respectively. The UV absorbance detector was set at 227 nm with a response time of 1.0 s. The 1-V output of the detector was monitored by the chromatography data system. The lower limit of quantitation of the assay was 10 nmol, BMS-184476 standard curves were linear (R² ≥ 0.999) over the concentration range of 10 to 5000 nm, and the between-run precision and the within-run precision for the BMS-184476 quality control samples were no more than 8 and 4% relative SD with deviations from the nominal concentrations of no more than ±9%. These data indicate that the plasma assay method was precise and accurate, and that BMS-184476 was stable in the plasma samples during shipment and storage.

PK Analysis. The plasma concentration-time data for BMS-184476, and metabolites BMS-246178, BMS-246180, and paclitaxel were analyzed by noncompartmental methods using the program MENU/PKMENU. For BMS-184476, the Cmax and the Tmax were recorded directly from experimental observations. Using no weighting factor, the slope of the terminal phase of the plasma profile, K, was determined by log-linear regression of at least three data points, which yielded a minimum mean square error. The absolute value
of K was used to estimate the apparent terminal half-life, T-HALF, by T-HALF = ln 2/K.

The AUC was calculated by trapezoidal and log-trapezoidal summations, and extrapolated to infinity for the determination of AUC(INF). Because BMS-184476 was quantifiable for at least 24 h after dosing for a majority of patients at the lower dose levels of 7 and 28 mg/m², the AUC up to 24 h after dosing [AUC(24 h)], was calculated for all of the patients at all of the dose levels. Although quantifiable levels of BMS-184476 over the entire sampling period of 48 h were obtained consistently in all of the patients only at dose levels >40 mg/m², the AUC extrapolated after the last quantifiable time point was >50% in a majority of patients. Similar observations were made for estimates of the area under the first moment curve (AUMC). Therefore, additional parameter estimates were limited to CLT and VSS at the Phase II dose levels of 50 and 60 mg/m², and were calculated using the following equations:

\[CLT = \frac{\text{Dose}}{\text{AUC(INF)}} \]

\[VSS = \left[\frac{\text{[AUMC(INF)/AUC(INF)]}}{\text{T}*2} \right] \ast \text{CLT}, \]

where T* is the infusion time (1h).

For the metabolites, BMS-246178, BMS-246180, and paclitaxel, Cmax and Tmax were determined in the same manner as the parent compound. It should be noted that AUC(24 h) values could not be calculated for the metabolites, because concentrations were not detectable up to the 24 h time point; thus, AUC(0-T) values were determined where T was the last quantifiable time point. In addition, because of the lack of quantifiable metabolite concentrations over the entire sampling interval, T-HALF was not estimated.

The amount of BMS-184476, BMS-246178, BMS-246180, and paclitaxel excreted in the urine during each collection interval was calculated by multiplying the concentration of the intact drug or metabolite in each urine sample by the volume of urine collected over that interval. The total urinary recovery was calculated as the cumulative amount excreted over 24 h, and expressed as a percentage of the administered dose. Because of low and inconsistent urinary concentrations of BMS-184476 and metabolites, renal clearance was not estimated.

RESULTS

Fifty-three patients were recruited into the trial, and a total of 52 were treated; 1 patient with breast carcinoma was treated at a dose of 50 mg/m² on both the three weekly and four weekly schedules. One patient was registered but never treated. Baseline, dosing, and toxicity tables are on all of the treated patients, with the re-enrolled patient represented twice. The characteristics of the 52 patients who received treatment are shown in Table 1. The majority of patients treated were female (64%), reflecting the preponderance of patients with breast carcinoma (34%). Three patients had not received prior chemotherapy, 2 patients with mesothelioma and 1 with a pleural-based tumor. Radiotherapy to drain sites had been given in 2 of these otherwise untreated patients. Thirty-five patients had received two or more prior chemotherapy regimens including taxanes in 3 patients.

A total of 45 patients were treated, and 153 cycles were administered on the 28-day schedule; this represented a median number of cycles of 3, ranging from 1 to 8. Table 2 reports the number of cycles administered per dose level, either as first or subsequent cycles.

Intrapatient dose escalations were performed in the accelerated phase in 3 patients: the first patient recruited in the study started at 7 mg/m² and then received 14 mg/m², 28 mg/m², and 40 mg/m² on subsequent cycles; the second patient started at 14 mg/m² and then went on to receive 28 mg/m², and the third patient started at 28 mg/m² and then received 40 mg/m². Intrapatient dose escalations were also performed in the standard phase in 4 patients who had not developed toxicity >CTC grade 1; 2 patients started at 28 mg/m² and were escalated to 40 mg/m²; 1 patient started at 40 mg/m² and went on to receive 50 mg/m², whereas 1 patient started at 50 and then received 60 mg/m².

CTC grade 2 toxicity (diarrhea) was first observed at 28 mg/m² and the accelerated phase of the study completed; a total of 6 patients were treated at this dose level overall (Table 2). The standard escalation phase of the study was then started with a 40% increment up to the 40 mg/m² dose level followed by 25% and 20% increments to 50 mg/m² and 60 mg/m², respectively. The latter was defined as MAD because of the occurrence of DLT after the first course day 8 dose in 2 of the first 3 patients treated at 60 mg/m², consisting of febrile grade 4 neutropenia associated with severe stomatitis in one case and with severe diarrhea in the other.

Overall, febrile neutropenia and diarrhea were the main DLTs, first observed at 40 mg/m², mostly occurring after the dose on day 8. To better define the dose recommended for Phase II trials, additional patients were recruited at the two dose levels below the MAD, 50 mg/m² and 40 mg/m². Preliminary analysis of the data while the trial was ongoing suggested that 40 mg/m².
Phase I Study of Taxane BMS-184476

Hematological Toxicity

The main hematologic toxicity observed was neutropenia, which was dose-dependent, selective, with no thrombocytopenia, and with a median nadir ANC of 0.70×10^9/liter (range, $0.12–3.5 \times 10^9$/liter) at the 50 mg/m² dose level on the 28-day schedule (Table 4).

Hematological Toxicity

The main hematologic toxicity observed was neutropenia, which was dose-dependent, selective, with no thrombocytopenia, and with a median nadir ANC of 0.70×10^9/liter (range, $0.12–3.5 \times 10^9$/liter) at the 50 mg/m² dose level on the 28-day schedule (Table 4).

On the original schedule, grade 4 neutropenia was observed in 3% (2 of 66) of the cycles at the 40 mg/m², 32% (20 of 63) at the 50 mg/m², and 100% (3 of 3) at the 60 mg/m² dose levels, whereas it occurred in 55% (18 of 33) of the cycles with the 21-day schedule. Severity of neutropenia and incidence of febrile neutropenia at 50 mg/m² were comparable between patients who were heavily (two or more prior chemotherapy regimens) or only minimally pretreated; however, heavily pretreated patients required more frequent omissions of the dose on day 15 on the every 28-day schedule than those who were minimally pretreated [83% (20 of 24) versus 56% (22 of 39)].

The median time to ANC nadir was ~15 days with a median time to recovery of ~1 week. This time pattern of neutropenia, which was similar with both schedules of treatment, led to the adoption of the more feasible 21-day schedule with BMS-184476 given at 50 mg/m² on days 1 and 8 every 21 days, and this regime was eventually the recommended dose and schedule for Phase II studies.

Two toxic deaths occurred on study. One 68-year-old patient with cancer of the ovary pretreated with three prior chemotherapies died of septic shock while neutropenic 9 days after dosing on day 8 at 40 mg/m²; a second toxic death was observed in a 66-year-old patient with breast cancer pretreated with cyclophosphamide, methotrexate, and 5-fluorouracil; epirubicin; and radiotherapy who died because of cardiac complications of neutropenic sepsis 4 days after day 8 dosing at 50 mg/m² (Table 4). Neither of these patients had consented to PK sampling, so there is no data as to whether they exhibited atypical PK parameters.

Table 2
Number of courses administered by dose level and occurrence of DLT

<table>
<thead>
<tr>
<th>Dose level</th>
<th>First course</th>
<th>Subsequent courses</th>
<th>Total courses</th>
<th>Day 8 omitted</th>
<th>Day 15 omitted</th>
<th>Courses with omissions*</th>
<th>DLT occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 mg/m²</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>14 mg/m²</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td>28 mg/m²</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>1</td>
<td>4</td>
<td>4 (0)</td>
<td>—</td>
</tr>
<tr>
<td>40 mg/m²</td>
<td>17</td>
<td>49</td>
<td>66</td>
<td>8</td>
<td>25</td>
<td>29 (13)</td>
<td>—</td>
</tr>
<tr>
<td>50 mg/m²</td>
<td>18</td>
<td>45</td>
<td>63</td>
<td>12</td>
<td>42</td>
<td>47 (35)</td>
<td>Diarrhea (1)</td>
</tr>
<tr>
<td>60 mg/m²</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3 (3)</td>
<td>Diarrhea (1)</td>
</tr>
<tr>
<td>50 mg/m² (Q3 wks)</td>
<td>8</td>
<td>25</td>
<td>33</td>
<td>2</td>
<td>N/A b</td>
<td>2 (2)f</td>
<td>Diarrhea (2)</td>
</tr>
</tbody>
</table>

* In parentheses, number of courses where day 15 dosing was omitted because of neutropenia.

b N/A, not applicable.

f Day 8 dosing omitted because of neutropenia.

Table 3
DI achieved in minimally versus heavily pretreated patients

<table>
<thead>
<tr>
<th>Dose level</th>
<th>Mean dose (mg/m²/week) ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 mg/m²</td>
</tr>
<tr>
<td>Minimally pretreated</td>
<td>25.8 ± 4.5</td>
</tr>
<tr>
<td>Heavily pretreated</td>
<td>23.9 ± 5.6</td>
</tr>
</tbody>
</table>

Nonhematological Toxicity

Diarrhea was the other major toxicity: first observed at 40 mg/m² and present in 60% (38 of 63) of cycles at 50 mg/m² of the 28-day schedule, it was of grade 3 in only 8% of these cycles. With the 21-day schedule, diarrhea was reported in 39% (13 of 33) of the cycles and was of grade 3 in 3% (Table 5). Diarrhea appeared mainly after dosing on day 8, was preceded by abdominal cramps when severe, and was generally controlled with high-dose loperamide. It contributed to the DLT in 4 patients (Table 2).

Overall, treatment given on the 21-day schedule was better tolerated than when given on the 28-day schedule. At the recommended Phase II dose of 50 mg/m² on days 1 and 8 every 21 days, nausea and vomiting, cumulative fatigue, and loss of appetite occurred in 39, 39, and 36% of the cycles, respectively. Nausea and vomiting, and fatigue were of grade 3 in 6 and 15% of the cycles, respectively. Alopecia was also frequent (18 of 28
patients) but was total only after repeated administrations at doses ≥50 mg/m² in ~20% of patients. Mucositis was not observed in the 21-day regimen (Table 5). A hypersensitivity reaction was reported in 1 patient, who developed grade 1 skin erythema during the first 2 injections; she was then premedicated with cimetidine and continued study treatment. Peripheral neuropathy was mainly of sensory type and was cumulative; it was of grade 1 and 2 in all but 2 of the cases, and was reported in 42% of cycles of the 50 mg/m², 21-day schedule. One patient treated at 40 mg/m² had a grade 3 paresthesia during the third course, which decreased to grade 1 after reducing the dose to 28 mg/m² from cycle 4 for the three following courses. A second patient treated at 50 mg/m² in the 28-day schedule suffered from grade 3 peripheral neuropathy for a few days. This patient had pre-existing grade 1 peripheral neuropathy at baseline as a result of prior cisplatin treatment.

Antitumor Activity

Only 14 patients (26%) had nonmeasurable disease at baseline. Assessment of antitumor activity was possible in 37 of 39 patients with measurable disease; follow-up measurements were not available in 2 patients. Eight (22%) patients treated at either 40 mg/m² or 50 mg/m² (on both schedules) achieved a confirmed objective response (Table 6). These responses were reported in patients with breast, NSCLC, carcinoma of unknown primary, and a tumor of pleural origin. Overall, among 8 evaluable patients with breast cancer, all of them not previously treated with taxanes, 3 achieved a partial response and 3 had stable disease. Among 12 patients with NSCLC, partial responses and stable disease were reported in 3 patients each; these patients were again taxane naive. Stable disease was reported in 2 of 5 patients with colon cancer and in the only patient with gastric cancer entered in the study. The mean duration of stable disease was 53 days (range, 29–79 days). One patient with ovarian cancer, who had responded on two separate occasions to repeated courses of paclitaxel and carboplatin, most recently 6 months before entering the study, achieved a complete radiological remission with normalization of CA-125 after 7 cycles of BMS-184476. The previous treatment with paclitaxel and carboplatin had been associated with severe peripheral neuropathy, which recurred while on BMS-184476 but only of grade 2 and appearing after 7 cycles.

PKs

PK Evaluation. The mean plasma concentration-time data for BMS-184476 in subjects after a 1-h i.v. infusion of 7, 28, 40, 50, and 60 mg/m² on days 1 and 15 are depicted in Fig. 2, and PK parameter values obtained on day 1 are summarized in Table 7. Similar parameter values were obtained on day 15 (data not shown). Within the 28–60 mg/m² dose range, Cmax and AUC(24 h) values on day 1 increased in ratios that were similar to the dose increment. Cmax and AUC(24 h) values...
obtained on day 15 increased in a dose-related manner. On the basis of data obtained at dose levels of 50 and 60 mg/m² on days 1 and 15, mean terminal T-HALF values ranged from 33.5 to 38.9 h. CLT and VSS values obtained at the 50 and 60 mg/m² dose levels (day 1) appeared to be similar. The mean percentage of the administered dose values were independent of dose and ranged from 0.39 to 0.80% over the dose range of 7–60 mg/m² on days 1 and 15.

The geometric mean PK parameter values for the metabolites BMS-246178, BMS-246180, and paclitaxel obtained on day 1 are summarized in Table 7. The values obtained on day 15 were not statistically different (data not shown). Plasma concentrations of all of the metabolites were low and quantifiable for only about 2–6 h after a 1-h i.v. infusion of BMS-184476. Plasma concentrations of the metabolites peaked at the end of infusion of BMS-184476 and declined rapidly. The cumulative exposures to the metabolites constituted 10% of the AUC(24 h) of BMS-184476 at the various dose levels. There were increases in exposures (Cmax and AUC) with increasing dose. Urinary recoveries of the metabolites were low.

DISCUSSION

BMS-184476, the 7-methylthiomethyl derivative of paclitaxel formed through the conversion of the 7-hydroxy group, was brought into clinical development because, in comparison with the parent compound, it had shown similar in vitro potency and in vivo antitumor activity (7, 10) with a different toxicity profile. In animal studies DLT was gastrointestinal and myelosuppression with less peripheral neuropathy than paclitaxel. However, the most promising feature was the higher solubility of the analogue in aqueous cosolvents, which made it suitable for an improved formulation with reduced content of Cremophor EL, thereby eliminating the need for premedication.

Two Phase I studies, one performed in the United States with a single dose given every 21 days and the other in Europe using a weekly schedule every 21–28 days, have been carried out concomitantly, and have provided comparable results in terms of safety and PKs. Data from the single intermittent 21-day schedule has recently been described elsewhere (9, 11), and preliminary results of the European study have been reported previously (12, 13).

Two distinctive features of the design of the European weekly study, which is subject of the present report, are worth commenting on. The first one is the successful implementation

Table 6 Antitumor activity

<table>
<thead>
<tr>
<th>Dose level (mg/m²)</th>
<th>Tumor type</th>
<th>No. of evaluable patients</th>
<th>No. of responders</th>
<th>Previous treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Breast</td>
<td>3</td>
<td>1 PR</td>
<td>Dox* × 4, CMF × 6</td>
</tr>
<tr>
<td>40</td>
<td>Primary unknown</td>
<td>1</td>
<td>1 PR</td>
<td>MIC × 4, ECarboF × 2</td>
</tr>
<tr>
<td>50</td>
<td>Breast</td>
<td>4</td>
<td>1 PR</td>
<td>Dox × 4, CMF × 6</td>
</tr>
<tr>
<td></td>
<td>NSCLC</td>
<td>2</td>
<td>1 PR</td>
<td>MIC × 3, MVP × 3</td>
</tr>
<tr>
<td></td>
<td>Pleura</td>
<td>1</td>
<td>1 PR</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Ovary</td>
<td>1</td>
<td>Unconfirmed CR*</td>
<td>Carbo/paclitaxel × 6 twice</td>
</tr>
<tr>
<td></td>
<td>NSCLC</td>
<td>3</td>
<td>1 PR</td>
<td>Carbo/VBL × 2, gemcitabine × 2, PNU159548 × 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gem/Cis × 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gem/Carbo × 1</td>
</tr>
</tbody>
</table>

* Dox, doxorubicin; CMF, cyclophosphamide, methotrexate, 5fluorouracil; MIC, mitomycin C, ifosfamide, cisplatin; ECarboF, epirubicin, carboplatin, 5fluorouracil; MVP, mitomycin C, vinblastine, cisplatin; Carbo, carboplatin; Gem, gemcitabine; Cis, cisplatin; and VBL, vinblastine.

* Confirmatory computed tomography scan not repeated later.
of version 4B of the accelerated titration design by Simon et al., (8). The accelerated phase covered 3 dose levels, from 7 mg/m2 to 28 mg/m2, with only 1 patient per dose level; the standard phase was started at the 40 mg/m2 dose level, whereas expanded accrual at 28 mg/m2 was still ongoing. While the safety of 40 mg/m2 was investigated, eligible but heavily pretreated patients were initially recruited at 28 mg/m2 with the possibility in part, accounts for the high level of antitumor activity on the study to be treated at levels within the therapeutic range. The observation that ANC nadir occurred at the time of the third weekly dosing on day 15, and that, in case of treatment omission, ANC recovered to baseline the following week, suggested that shortening the duration of treatment from 3 to 2 consecutive weekly administrations followed by 1 week of rest might improve the feasibility of the regimen. This new schedule was then evaluated on a limited number of patients at the MTD of 50 mg/m2 on the 28-day schedule.

Overall, the main DLTs of BMS-184476 were diarrhea and selective, short-lasting neutropenia, usually appearing between days 8 and 15, associated with very few neutropenia-related complications. Similar toxicities were observed on the alternative Phase I trial of BMS-184476, where treatment was given once every 21 days (9, 11). In this study the median time to neutrophil nadir was 11 days (range, 8–15). On the multiple dosing schedule the nadir was somewhat later and more profound at a comparable dose of BMS-184476 (Table 4).

An alternative protocol design could have included the necessity to omit doses because of neutropenia as part of the DLT definition. However, we feel that this would not have altered the dose escalation pattern, because on the 4-weekly

Table 7 Geometric mean (%CV) pharmacokinetic parameter values for BMS-184476 and its metabolites after administration of a 60-min i.v. infusion of BMS-184476

<table>
<thead>
<tr>
<th>Parameter</th>
<th>7 mg/m²</th>
<th>28 mg/m²</th>
<th>40 mg/m²</th>
<th>50 mg/m²</th>
<th>60 mg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax, nM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMS-184476</td>
<td>200</td>
<td>710 (2.1)</td>
<td>1076 (19.9)</td>
<td>1563 (18.0)</td>
<td>1854 (49.1)</td>
</tr>
<tr>
<td>BMS-246178</td>
<td>ND</td>
<td>16.4 (31.5)</td>
<td>27.6 (52.3)</td>
<td>32.7 (33.4)</td>
<td>59.6 (27.9)</td>
</tr>
<tr>
<td>BMS-246180</td>
<td>ND</td>
<td>13.4 (24.4)</td>
<td>18.3 (43.5)</td>
<td>23.9 (49.8)</td>
<td>34.4 (58.5)</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>ND</td>
<td>ND</td>
<td>18.9 (41.6)</td>
<td>18.3 (25.1)</td>
<td>17.4 (31.4)</td>
</tr>
<tr>
<td>Tmax, h (range)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMS-184476</td>
<td>1</td>
<td>1 (0.5, 1)</td>
<td>1 (0.5, 1)</td>
<td>1 (0.5, 1)</td>
<td>0.75 (0.5, 1)</td>
</tr>
<tr>
<td>BMS-246178</td>
<td>ND</td>
<td>1.38 (1, 1.5)</td>
<td>1 (1, 1.25)</td>
<td>1 (1, 1.25)</td>
<td>1.25 (1.25, 1.25)</td>
</tr>
<tr>
<td>BMS-246180</td>
<td>ND</td>
<td>1 (1, 1.25)</td>
<td>1 (1, 1.25)</td>
<td>1 (1, 1.25)</td>
<td>1.25 (1.25, 1.25)</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>ND</td>
<td>ND</td>
<td>1 (1.25, 2)</td>
<td>1.25 (1.25, 1.5)</td>
<td>1.5 (1.5, 1.5)</td>
</tr>
<tr>
<td>AUC (24 h)², nMh</td>
<td>625</td>
<td>1722 (10.7)</td>
<td>2063 (19.6)</td>
<td>2760 (10.9)</td>
<td>3712 (31.2)</td>
</tr>
<tr>
<td>BMS-184476</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>4634 (14.9)</td>
</tr>
<tr>
<td>T-HALF, h</td>
<td>16.9 (55.7)</td>
<td>17.1 (44.4)</td>
<td>34.4 (16.4)</td>
<td>33.5 (14.5)</td>
<td></td>
</tr>
<tr>
<td>BMS-184476</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>199 (27.8)</td>
</tr>
<tr>
<td>VSS, liter/m²²</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>172 (12.1)</td>
</tr>
<tr>
<td>%UR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMS-184476</td>
<td>0.62 (0.21)</td>
<td>0.78 (0.24)</td>
<td>0.61 (0.20)</td>
<td>0.39 (0.01)</td>
<td></td>
</tr>
<tr>
<td>BMS-246178</td>
<td>0.08 (0.03)</td>
<td>0.08 (0.03)</td>
<td>0.06 (0.02)</td>
<td>0.09 (0.01)</td>
<td></td>
</tr>
<tr>
<td>BMS-246180</td>
<td>0.06 (0.01)</td>
<td>0.12 (0.21)</td>
<td>0.05 (0.02)</td>
<td>0.06 (0.02)</td>
<td></td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>0.20 (0.09)</td>
<td>0.14 (0.05)</td>
<td>0.12 (0.01)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a ND, not determined as sample collection was incomplete or all of the concentrations were < LLQ.

b AUC(T) for metabolites where T represents the last detectable timepoint.
schedule the first course on which a dose was omitted was the second or subsequent cycle of treatment in a substantial proportion of cases (2 of 5 patients at 40 mg/m² and 6 of 15 patients at 50 mg/m²), and dose-defining DLT was applied to the first course only.

The systemic exposure to BMS-184476, after a 1-h i.v. infusion of 7, 28, 40, 50, and 60 mg/m² doses appeared to increase in a ratio that was similar to the dose increment. Plasma concentrations were quantifiable up to 24 h in a majority of patients at the lower dose levels of 7 and 28 mg/m², whereas quantification up to 48 h was consistently obtained at doses ≥40 mg/m². These observations were consistent with the dose-related increases in Cmax and AUC(24 h). Overall, the PKs of BMS-184476 at the clinically relevant doses of 50 and 60 mg/m² appeared to be independent of dose. In addition, the PK parameter values obtained for BMS-184476 and its metabolites were not statistically different on days 1 and 15, indicative of time-independent PKs of BMS-184476 after weekly dosing. The VSS values were greater than total body water (42 liters) suggesting extravascular distribution and tissue binding of BMS-184476 in cancer patients. Overall, the dose- and time-independent PKs of BMS-184476 should result in predictable dose-toxicity and dose-efficacy relationships in the therapeutic dose range. The concentrations of the circulating metabolites were low compared with the concentrations of the parent drug, and the cumulative percentage of dose excreted in the urine as metabolites accounted for <1% of the administered dose. It was interesting to note that the systemic exposure to paclitaxel appeared to be at the lowest extent (compared with BMS-246178 and BMS-246180) thereby indicating negligible contribution of paclitaxel to the activity and toxicity attributed to BMS-184476.

Renal elimination of BMS-184476 and its metabolites were low suggesting extensive biliary excretion. The dose-independent PKs of BMS-184476 suggest lack of saturation of metabolic and biliary elimination pathways in the therapeutic dose range.

Objective responses were reported at both the 40 and 50 mg/m² dose levels in patients with breast cancer (pretreated with anthracyclines but not taxanes) and NSCLC (pretreated with platinum containing combinations but not taxanes). These very preliminary results of activity suggest that doses of 40 and 50 mg/m² could have the same therapeutic potential and could be selected for Phase II studies with BMS-184476 given either as a single agent or in combination, as a salvage or as first-line therapy of paclitaxel-sensitive tumor types.

In the single-dose every 21-day schedule, the MTD, which is also the recommended dose for Phase II, was 60 mg/m² given every 21 days, corresponding to a DI of 20 mg/m²/wk. This is a lower DI than that achieved with the schedule reported in this paper (Table 3). The evaluation of a continuous weekly schedule is currently ongoing at 35 mg/m², and the first available data suggest that a higher DI and an improved tolerability can be achieved with this schedule.

The selection of one schedule for Phase II development is still empirical, and should be also based on patient characteristics (with/without prior treatment) and tumor type, as well as on study design and the treatment regimen being used (single agent or combination). The lack of significant neurotoxicity prompts the development of combinations with platinum compounds (14), whereas the evaluation of combinations with anthracyclines is supported by the potential of reduced cardiotoxicity because of a lower content of Cremophor EL and by data from myocardial cell studies showing that BMS 184476 causes no increase in the production of cardiotoxic doxorubicin metabolites, unlike paclitaxel or docetaxel (15). The higher incidence of mucositis observed with the single intermittent dosing, and the similar time to nadir for ANC of BMS-184476 and anthracyclines would need to be taken into consideration when designing Phase I combination studies. It is possible that the reduced amount of Cremophor EL used might decrease PK interactions with other agents. The evaluation of these aspects and of their possible implications in taxane-related toxicities is of high priority for a rational development of this derivative of paclitaxel.

The conclusion from this study of a weekly regimen of BMS-184476 is that treatment at 50 mg/m² on days 1 and 8 given every 21 days is associated with better tolerability, as compared with 50 or 40 mg/m² given on days 1, 8, and 15 every 28 days, with comparable mean DI (± SD; 50 mg/m² on a 28-day schedule: 28.6 ± 6.6; 50 mg/m² on a 21-day: 28.6 ± 3.7; and 40 mg/m² on a 28-day: 24.9 ± 5.0). Preliminary antitumor activity has also been seen with both schedules.

ACKNOWLEDGMENTS

We thank Sabine Van den Bosch, Fiona Chapman, Dorothy Simmons, Marilyn Pilkinson, and Madeleine Proctor, Research Nurses, for their help with the study and caring for the patients. Specialist registrars Andrew Hughes, Ashraf Azzabi, and Martin Highley assisted with the clinical workload, and data management was done by Kevin Fishwick and Tatiana Terrot. We also thank Daryl Sonnichsen, Roberta Tubertini, Carolanne Tarby, Glenn Duncan, and Jeffrey Meeker for their assistance on the analysis of the PK data.

REFERENCES

Phase I and Pharmacokinetic Study of the New Taxane Analog BMS-184476 Given Weekly in Patients with Advanced Malignancies

Ruth Plummer, Michele Ghielmini, Paula Calvert, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/8/9/2788

Cited articles
This article cites 14 articles, 5 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/8/9/2788.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/8/9/2788.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.