Identification of a Novel HLA-A*0201-restricted, Cytotoxic T Lymphocyte Epitope in a Human Glioma-associated Antigen, Interleukin 13 Receptor α2 Chain

Fumiyoshi Okano, Walter J. Storkus, William H. Chambers, Ian F. Pollack, and Hideho Okada

Departments of Surgery [F. O., W. J. S., H. O.], Pathology [W. H. C.], and Neurological Surgery [I. F. P., H. O.], University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, and Toray Industries, Inc., Chemicals Research Laboratories, Nagoya 455-8502, Japan [F. O.]

ABSTRACT

Purpose: Interleukin 13 receptor α2-chain (IL-13Rα2) has been reported to be abundantly and specifically overexpressed in glioblastoma multiforme. Here we report the identification of a CTL epitope derived from the IL-13Rα2.

Experimental Design: Mature dendritic cells (DCs) were pulsed with each of the synthetic peptides that were designed, based on a binding affinity-based prediction and a proteosomal cleavage site prediction system, and used to stimulate autologous CD8+ T cells from an HLA-A2+ healthy donor. After four to six cycles of restimulation, the immunoreactivity of the T cells was analyzed for specific IFN-γ production and CTL reactivity.

Results: Of the five peptides tested, IL-13Rα345–354 (WLPFGFIL1) induced a CD8+ T-cell line that specifically produced IFN-γ in response to HLA-A2+ T2 cells pulsed with the relevant peptide and lysed these cells. Peptide titration assays demonstrated that half-maximal lysis of IL-13Rα345–354 peptide-reactive CD8+ T cells required peptide loading concentration of ~5 nM. Perhaps most importantly, this CD8+ T-cell line also displayed lytic activity against the HLA-A2+ human glioma cell lines that express IL-13Rα2.

Conclusions: This novel CTL epitope may therefore serve as an attractive component of peptide-based vaccines to treat glioma and as a surrogate marker of T-cell immune responses in patients before and after therapy.

INTRODUCTION

Although cellular mechanisms underlying the “immunologically privileged” status of the CNS and CNS tumors have been increasingly well-characterized during the past decade, it has also been becoming clearer that this “privileged” status is not absolute, and various new approaches of immunotherapy against CNS tumors have been suggested (1). Recent data from us (2, 3) and others (4) demonstrate that vaccinations with cytokine-gene-modified peripheral tumor cells can elicit therapeutic immune responses against intracranial gliomas. On the basis of our preclinical studies using IL-4-transfected glioma cells as vaccines (2, 3), we have begun Phase I clinical trials to test this strategy (5, 6). With regard to the concern of inducing an autoimmune reaction against normal brain components, no evidence of allergic encephalomyelitis was noted clinically or pathologically in 20 patients peripherally immunized with allogeneic glioma cells (7). A more practical limitation on the use of gene-modified whole cell brain tumor vaccines, however, is the considerable ex vivo manipulation of fresh glioma explants that is required to generate clinical grade vaccines. Tumor-specific, antigen-based vaccines, in contrast, would eliminate the potential risk of autoimmune encephalitis and be easily formulated using synthetic peptides and DCs generated from peripheral blood (8). We have reported preclinical efficacy of vaccinations using DCs loaded with synthetic peptides against intracranial tumors (9), and clinical efficacy of vaccinations with CTL epitopes has been demonstrated in other forms of cancers (8, 10). The development of glioma-specific, antigen-based vaccine therapy has awaited identification of glioma-specific, antigen-derived CTL epitopes. It has been well-documented that IL-13Rα2 is a glioma-associated antigen that has a cancer-testes antigen-type expression profile (11, 12). In this study, we assessed whether specific T-cell responses could be induced by IL-13Rα2-derived antigens in HLA-A*0201+ CD8+ T cells. For prediction of HLA-A*0201-restricted epitopes, we used a binding affinity-based prediction, BioInformatics & Molecular Analysis Section, and a proteosomal cleavage site prediction system. Our results indicate that we have isolated a novel HLA-A*0201-restricted CTL epitope in a glioma-associated antigen, IL-13Rα2.

The abbreviations used are: CNS, central nervous system; IL, interleukin; rhIL, recombinant human IL; IL-13R, IL-13 receptor; PBMC, peripheral blood mononuclear cell; DC, dendritic cell; FBS, fetal bovine serum; RT-PCR, reverse transcription-PCR; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
MATERIALS AND METHODS

Cells and Cell Culture. Healthy volunteers were genetically typed as being HLA-A*0201+ at the Histocompatibility Center in Children’s Hospital (Pittsburgh, PA; University of Pittsburgh). PBMCs from an HLA-A*0201+ healthy donor were isolated using lymphocyte separation medium gradient (Ref. 13; Organon-Teknika, Durham, NC). The HLA-A*0201-transfected, transporter associated with antigen processing-deficient (T × B) cell hybrid T2 cell line (T2.A2; provided by Dr. Janice Blum, Indiana University, Indianapolis, IN) was maintained in RPMI 1640 (Life Technologies, Inc., Grand Island, NY) supplemented with 10% FBS (Life Technologies, Inc.), 100 IU/ml penicillin, 100 µg/ml streptomycin, and 10 mM L-glutamine (all reagents from Life Technologies, Inc.).

The T98G and A172 glioma cell lines were purchased from the American Type Culture Collections (Manassas, VA). The U251 and SNB19 glioma cell lines were kindly provided by Drs. M. R. Jadus (University of California, Irvine, CA) and W. C. Welch (University of Pittsburgh, Pittsburgh, PA; Ref. 14), respectively. These glioma cell lines uniformly express HLA-A*0201 and were cultured in DMEM supplemented with 10% FBS, 100 IU/ml penicillin, 100 µg/ml streptomycin, and 10 mM L-glutamine (all reagents from Life Technologies, Inc.).

Selection and Synthesis of Candidate HLA-A*0201-binding Peptides Derived from IL-13Rα2. The protein sequences of IL-13Rα2 was obtained from GenBank and analyzed for HLA-A*0201 binding motifs using BioInformatics & Molecular Analysis Section and a proteosomal cleavage site prediction system (15), respectively. Peptide sequences that were given high binding scores and predicted proteosomal cleavage sites at the ends of the sequences were chosen. Peptides were synthesized by FMOC chemistry in the University of Pittsburgh Molecular Analysis Section and a proteosomal cleavage site prediction system (15) and (16), respectively. Peptide sequences that were given high binding scores and predicted proteosomal cleavage sites at the ends of the sequences were chosen.

RNA Isolation and RT-PCR Analysis of Expression of IL-13Rα2. For RT-PCR analysis, reverse transcription was performed using total cellular RNA extracted by the guanidinium thiocyanate/cesium chloride method (16) in the presence of oligo dT and SuperScript II reverse transcriptase (Life Technologies, Inc., Gaithersburg, MD) according to the manufacturer’s instructions.

RESULTS AND DISCUSSION

Induction of a T-Cell Line That Specifically Recognized Peptide IL-13Rα2345-354 Presented on HLA-A*0201+. On the basis of the algorithms, we synthesized the following five peptides: FILILVFV (350–358), YLQGWQPLS (50–59), WLPGFQILL (345–354), WQCGNG (111–119), and VIVFVLLL (355–363). DCs derived from a healthy HLA-A*0201+ donor were incubated with each of the five peptides (10 µg/ml) and used to stimulate autologous CD8+ T cells. The individual responder cell populations were then restimulated on a weekly basis with autologous DCs or PBMCs loaded with the corresponding peptide used in the primary stimulation. Among the five peptides tested, four cycles of stimulation with IL-13Rα2345-354 resulted in continuous growth of responder T cells (data not shown). Specific immunoreactivity of the induced T-cell line was first tested with T2.A2 cells loaded with the relevant peptides, irrelevant peptides, or no peptides. As demonstrated in Fig. 1A, the T-cell line produced ~400 pg/ml of IFN-γ in response to T2.A2 cells pulsed with IL-13Rα2345-354, whereas it produced <50 pg/ml in response to T2.A2 cells alone.
or T2.A2 cells pulsed with the irrelevant peptide, IL-13Rα2 355-364, indicating that the response was peptide specific. After two additional cycles of stimulation, the responder cells were tested for cytotoxic activity. As shown in Fig. 1B, the T cells efficiently lysed T2 target cells pulsed with the relevant peptide, whereas only low background lysis was observed in the absence of the peptide. These results demonstrated that the CTL line induced with IL-13Rα2 345-354 recognized the relevant antigen-peptide specifically and was able to lyse cells presenting the peptide. The CTL line was thereby designated as T8.IL-13R.

Subsequently, the minimum stimulatory concentration was determined using the T8.IL-13 CTL line and T2.A2 cells loaded with various concentrations of the IL-13Rα2 345-354 peptide. T2.A2 cells were pulsed with increasing concentrations of the peptide, and the lysis by T8.IL-13R was determined (Fig. 1C). Peptide titration demonstrated that half-maximal lysis by this T-cell line was obtained at IL-13Rα2 345-354 peptide concentrations between 10 and 100 nM. These results indicate that the T8.IL-13R line recognized IL-13Rα2 345-354 with a sensitivity comparable with several known HLA-binding epitopes from nonmutated peptides, such as those derived from melanoma antigens (17, 18).

The T8.IL-13R Line Specifically Lysed HLA-A*0201+ Glioma Cells That Express IL-13Rα2. More importantly, we examined whether T8.IL-13R cells were able to recognize and lyse HLA-A*0201+ human glioma cells that endogenously expressed and presented IL-13Rα2-derived epitopes. Human glioma cell lines U251, SNB19, and T98G were determined to express HLA-A*0201 by a flow cytometric analysis, but human glioma cell line A172 did not express HLA-A*0201 (data not shown). Fig. 2 demonstrates the expression of IL-13Rα2 in these glioma cell lines as determined by semiquantitative RT-PCR. The U251, SNB19, and A172 cell lines expressed a high level message for IL-13Rα2, whereas the T98G cell line expressed a low level of message, and the IL-13Rα2-specific message was completely absent in PBMCs.

The lytic ability of T8.IL-13R against the HLA-A*0201+ IL-13Rα2+ glioma cells was examined using 4-h 51Cr-release assays. As illustrated in Fig. 3, the U251 and SNB19 cell lines were highly susceptible to lysis by the CTL line, whereas lower, but significant, lysis was also observed using T98G cells. On the other hand, the HLA-A*0201+ IL-13Rα2+ glioma cell line, A172, was not susceptible to lysis by the CTL line, suggesting that the CTL reaction is HLA-A*0201 restricted. To determine the specificity of the lytic activity, cold target competition experiments were performed by the addition of nonradiolabeled
T2.A2 cells pulsed with IL-13Ra2\textsubscript{345–354} peptide in the 4-h 51Cr-release assay. The lytic activity of the CTL line against these glioma cell lines was almost completely inhibited by the addition of the cold target, demonstrating that the lytic ability was specific for the epitope IL-13Ra2\textsubscript{345–354}.

These data indicated that the CTL line raised against IL-13Ra2\textsubscript{345–354} peptide was specific for the epitope IL-13Ra2\textsubscript{345–354}, suggesting that the IL-13Ra2\textsubscript{345–354} peptide might be useful for inducing antiglioma immunoreactivity.

Although information based on RT-PCR is only semiquantitative, U251 and SNB19 cells appeared to express a higher level of message for IL-13Ra2. Accordingly, flow cytometric analyses by Bernard et al. (19) have demonstrated high-level expression of IL-13Ra2 protein on the surface of U251 and SNB19 cells, whereas in the same study, T98G cells did not express a detectable level of IL-13Ra2. In another study (19), low levels of expression of IL-13Ra2 on T98G cells was described. In our study, susceptibility of U251, SNB19, and T98G cells against the T8.IL13R CTLs appears to be correlated with the expression level of IL-13Ra2; however, other factors, such as expression level of functional HLA-A*0201, must also be taken into consideration.

Future Applications of the Novel Epitope IL-13Ra2\textsubscript{345–354}

IL-13Ra2 has been reported by a significant proportion of malignant gliomas (11), and approximately 40–50% of Caucasians and Asians express the HLA-A*0201 allele (20). This novel CTL epitope may therefore serve as an attractive component of peptide-based vaccines to treat glioma and as a surrogate marker of T-cell immune responses in patients before and after therapy.

We also recognize that identification and subsequent implementation of one T-cell epitope as a therapeutic target may not be sufficient to improve the dismal prognosis of patients with malignant gliomas because of the marked heterogeneity of the disease. However, our efficient algorithms used for epitope prediction and in vitro analysis may soon lead to the identification of additional T-cell epitopes for glioma-derived antigens.

ACKNOWLEDGMENTS

We thank Drs. Martin R. Jadus (University of California, Irvine, CA) and William C. Welch (University of Pittsburgh, Pittsburgh, PA) for generously providing us with U251 and SNB19 cell lines, respectively. We also thank Drs. Andrea Gambotto and Paul Robbins for helpful discussions.

REFERENCES

Article on Interleukin 13 Receptor α2 Chain

In the article on interleukin 13 receptor α2 chain in the September 2002 issue of *Clinical Cancer Research*, the amino acid positions for the IL-13α2 peptide were incorrectly stated. The actual positions are 345–353.

Identification of a Novel HLA-A*0201-restricted, Cytotoxic T Lymphocyte Epitope in a Human Glioma-associated Antigen, Interleukin 13 Receptor α2 Chain

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/8/9/2851

Cited articles
This article cites 18 articles, 3 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/8/9/2851.full#ref-list-1

Citing articles
This article has been cited by 16 HighWire-hosted articles. Access the articles at:
http://clincancerres.aacrjournals.org/content/8/9/2851.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.