Editorial

Lustrous Insights into Cisplatin Accumulation: Copper Transporters

Gary D. Kruh
Medical Science Division, Fox Chase Cancer Center, Philadelphia, Pennsylvania

As a relatively polar molecule, CDDP1 is thought to use specific plasma membrane systems for passage into cells, although entry by passive diffusion is also likely to occur. Alterations in these plasma membrane systems have been considered to be important resistance factors because one of the most consistent features of CDDP-resistant cell lines is decreased intracellular drug levels (1). Whereas the membrane determinants of accumulation have therefore been of keen interest, their molecular identities have gone undefined for many years. An interesting and noteworthy advance in this area has been the recent determination that the same proteins that mediate transport of copper are also capable of transporting CDDP. In this issue of \textit{Clinical Cancer Research} an analysis of the potential for a copper transporter to impact treatment of ovarian cancer patients with platinum-based regimens is reported (2).

Copper is an essential metal that functions as a cofactor for enzymes involved in diverse metabolic pathways, including cytochrome c oxidase (the terminal enzyme of the mitochondrial respiratory chain), superoxide dismutase (an antioxidant that represents \textasciitilde1\% of cellular protein), and dopamine-\textbeta-monooxygenase (catecholamine biosynthesis). Although copper is a required cofactor, it is also highly reactive in the cell and, when present in excess, exerts significant toxicity consequent to the generation of free radicals. Thus, copper is subject to complex homeostatic mechanisms that maintain appropriate intracellular concentrations and restrict its ability to inflict intracellular damage. This process is accomplished by the action of specific copper transporters and chaperones (3, 4). Copper influx into the cell is mediated by Ctr1, a high affinity copper transporter. Specific chaperones, known as COX17, CCS, and HAH1, respectively, then deliver copper from the plasma membrane to the mitochondria, to cytoplasmic superoxide dismutase, and to two copper transporters located in the trans-Golgi apparatus. These two copper transporters, ATP7A and ATP7B, are members of the P-type ATPase family of cation transporters and are the products of the genes affected in two disorders of copper accumulation in humans, Menkes disease and Wilson disease, respectively (5, 6). In the liver, ATP7B transports copper into the trans-Golgi either for incorporation into copper-requiring proteins, or for extrusion into the bile, the latter of which is accomplished by vesicular trafficking from the trans-Golgi to the canalicular (apical) surface of hepatocytes and represents a major route of copper elimination from the body. In most other tissues, copper transport into the trans-Golgi is accomplished by ATP7A. Like ATP7B, ATP7A shuttles between the trans-Golgi and the plasma membrane in a process that mediates copper extrusion from the cell. Trafficking of ATP7A and ATP7B to the plasma membrane is thought to be regulated by intracellular copper levels (7). Copper uptake is also regulated by copper levels, at least as determined for Ctr1p, a yeast homologue of Ctrl, in that both \textit{CTR1} transcription and Ctr1p degradation are regulated by an usual mechanism involving a copper-sensing transcription factor (8, 9).

The first insight into the involvement of copper transporters in the cellular pharmacology of CDDP was provided by Komatsu \textit{et al.} (10), who found that ectopic expression of ATP7B in KB-3-1 cells conferred CDDP resistance associated with decreased accumulation of this agent (Fig. 1). In addition, they reported increased expression of ATP7B in a CDDP-resistant prostate cancer cell line. This study thus indicated that ATP7B had the facility for extruding CDDP from the cell and that the pump could be induced as a resistance factor. The involvement of copper transporters in CDDP resistance was extended to copper uptake systems by Ishida \textit{et al.} (11) who used transposon mutagenesis to identify CDDP resistance factors in yeast and found that inactivation of \textit{CTR1} was able to confer resistance to CDDP. In accord with the notion that Ctr1p is able to mediate uptake of CDDP, Ctr1p-deficient yeast exhibited decreased levels of CDDP bound to DNA and decreased CDDP accumulation. A functional link between CDDP and copper transport in the context of Ctr1p was further elucidated in wild-type yeast by experiments showing that copper and CDDP behaved as mutual competitive inhibitors, as would be expected were the two compounds common substrates for Ctr1p. That is, copper was able to reduce CDDP accumulation and attenuate CDDP toxicity, and conversely, CDDP could reduce copper accumulation. It was also demonstrated that, like copper, CDDP is able to stimulate degradation of Ctr1p. Finally, Ishida \textit{et al.} (11) went on to demonstrate, by analyzing the CDDP sensitivity of embryonic stem cells that are homoyzygous for deletion of \textit{Ctrl}, that mammalian Ctrl is capable of mediating the uptake of CDDP and thereby functioning as a sensitiivity factor for this agent.

In combination, these surprising findings on ATP7B and Ctrl established that mammalian transporters that mediate influx and efflux of copper are also capable of transporting CDDP. These studies have been extended by reports showing that ATP7B is also able to confer resistance to carboplatin and that human Ctrl is able to mediate the uptake of carboplatin and oxalplatin, in addition to CDDP (12, 13). Although an analysis of the capabilities ATP7A for conferring CDDP resistance in transfected cells has yet to be reported, the high degree of structural similarity between ATP7B and ATP7A (67\%) and the finding that ATP7A is overexpressed in certain CDDP-resistant cell lines suggest that this is likely to be the case (14).

Several studies have now evaluated expression of ATP7B

Received 8/29/03; accepted 9/11/03.

\textbf{Grant support:} NIH Grant CA73728, National Cancer Institute Core Grant CA06927, and an appropriation from the Commonwealth of Pennsylvania to the Fox Chase Cancer Center.

\textbf{Requests for reprints:} Gary D. Kruh, Medical Science Division, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111.

1 The abbreviations used are: CDDP, cisplatin; MRP, multidrug resistance protein.
Insights into Cisplatin Accumulation

Fig. 1 Schematic summary of the molecular determinants of CDDP sensitivity. CDDP enters cells by passive diffusion and by the copper influx transporter Ctrl. CDDP is effluxed by ATP7B and probably by ATP7A (the ability of the latter pump to mediate CDDP transport has yet to be formally demonstrated). CDDP is susceptible to intracellular detoxification by reaction with nucleophiles such as glutathione and metallothioneins (the latter are not shown). CDDP-(GS)₂ complexes are formed spontaneously in the cell and are subject to efflux by MRP2 and probably by MRP6. On the basis of expression studies, it has been suggested that glutathione S-transferase π (GST) may enhance complex formation. CDDP damages DNA by the formation of adducts, principally at the N7 sites of purine bases. The most toxic adducts appear to be intrastrand cross-links. Damaged DNA can be repaired, primarily by the nucleotide excision repair (NER) pathway, or lead to cell death by apoptosis. Mismatch repair (MMR) system competency and tumor suppressors facilitate apoptosis, whereas oncogenes block this process. For simplicity, ATP7A and ATP7B are shown at the plasma membrane but are localized in the trans-Golgi network in cells. By analogy with the mechanism by which ATP7B functions to extrude copper into bile, CDDP extrusion by ATP7B, and possibly by ATP7A, may involve vesicle trafficking to the plasma membrane.

in human cancers. To date, significant levels of expression have been reported for cancers of the esophagus, stomach, breast, ovary, and oral mucosa, suggesting that ATP7B may be a factor that contributes to inherent CDDP chemoresistance (15–20). In addition, the absence of expression in adjacent normal tissues, a finding that is in accord with prior studies showing that ATP7B is largely restricted to liver, suggests that ATP7B is induced in certain cancers and also raises the possibility that cancer cells may have altered copper metabolism and/or requirements. CDDP resistance mechanisms in ovarian cancer have been intensely studied because of the striking inherent sensitivity of this cancer to CDDP-based regimens, and the fact that the majority of patients with advanced disease nevertheless relapse. This situation indicates that CDDP resistance is acquired during treatment. With respect to ovarian cancer, a study in which ATP7B expression was examined in 82 specimens is of interest, in that expression was found in 44% of samples, and high levels correlated with less differentiated cancers and with higher risk of recurrence (17). In addition, within a group of patients with moderately/poorly differentiated specimens, high ATP7B expression levels correlated with decreased survival.

In this issue of *Clinical Cancer Research*, the first description of ATP7A expression in human cancers is reported. Samimi et al. (2) report that ATP7A is widely expressed in human cancers, including breast, stomach, colon, ovary, lung, and prostate. Similar to the case with ATP7B, expression of ATP7A
References

Lustrous Insights into Cisplatin Accumulation: Copper Transporters

Gary D. Kruh