Oncolytic Viral Therapy for Human Pancreatic Cancer Cells by Reovirus

Tsuyoshi Etoh,1 Yoshihisa Himeno, Toshifumi Matsumoto, Masanori Aramaki, Katsunori Kawano, Akira Nishizono, and Seigo Kitano

Departments of Surgery I [T. E., Y. H., T. M., M. A., K. K., S. K.] and Microbiology [A. N.], Faculty of Medicine, Oita Medical University, Oita, Japan

ABSTRACT

Purpose: Pancreatic cancer has a poor prognosis and few effective therapies are available. The oncolytic effect of reovirus has been observed in cancer cells with an activated Ras signaling pathway, and pancreatic cancer may be a candidate target for reovirus because K-ras mutation is frequently found in pancreatic cancer.

Experimental Design: In this study, we examined the feasibility of using reovirus (serotype 3) as an antihuman pancreatic cancer agent.

Results: Reovirus was able to infect five human pancreatic cancer cell lines (Panc1, MIApaca-2, PK1, PK9, and BxPC3) in vitro. We also confirmed that the Ras activity in these cancer cell lines was elevated compared with that in the normal cell line and that susceptibility to reovirus was associated with the Ras activity of these cells. In a unilateral murine xenograft model using Panc1 and BxPC3 cell lines, each tumor growth was suppressed by intratumoral injection of reovirus. Furthermore, local injection of reovirus also had systemic antitumor effects in a bilateral xenograft model using Panc1 cell line. Immunohistochemical examination revealed that reovirus replication was observed within the tumor but not in surrounding normal tissue.

Conclusions: These results suggest that reovirus can be considered for a novel therapy against pancreatic cancer.

INTRODUCTION

Human reovirus is a unique oncolytic, nonenveloped virus containing 10 segments of double-stranded RNA as its genome. Reoviruses are common isolates of the respiratory and gastrointestinal tract of humans, but in general, reoviral infections are frequently found in pancreatic cancer.

The idea of using viruses as oncolytic agents might be an attractive tool for pancreatic cancer therapy. Clinical applications of oncolytic cancer therapy require tumor-specific delivery and minimal side effects (13). The aim of this study is to investigate the oncolytic effect of reovirus in vitro and to examine the relationship between this susceptibility and an activated Ras signaling pathway. In addition, we assess whether reovirus is able to effect regression of xenograft tumors in immune-incompetent animal models.

MATERIALS AND METHODS

Cell Lines and Virus. Five cancer cell lines, Panc1, MIApaca-2, PK1, PK9, and BxPC3, provided from the Japanese Cancer Research Bank (Tokyo, Japan) were used in this study. Four cell lines (Panc1, MIApaca-2, PK1, and PK9) were cultured in RPMI 1640 containing 10% FBS2 and antibiotics, and MIApaca-2 was cultured in DMEM containing 10% FBS and antibiotics. NIH3T3 was cultured in DMEM containing 10% FCS and antibiotics as the normal cell line. Reovirus serotype 3 was kindly provided by Dr. Kensuke Hirasawa (University of Calgary). Reovirus serotype 3 was purified according to the protocol of Smith et al. (14) with exception that 2-mercaptoeth-
Reovirus is a novel oncolytic agent for cancer therapy based on targeting the activated Ras signaling pathway (18). Roughly 50% of all cancers have an activated ras signaling pathway because of activating mutations in the ras gene itself and genes upstream or downstream of ras (1). K-ras mutation is
the most common genetic abnormality identified in pancreatic cancer. Here, we have evaluated whether the oncolytic potency of reovirus in pancreatic cancer cells depends on increased Ras activity in these cells. With regard to the status of ras mutations in the pancreatic cancer cell lines used in this study, Panc1, PK9, and MIApaca-2 are known to have K-ras mutations (19). In contrast, BxPC3 is known to have a normal ras proto-oncogene (20). In our study, the antitumor effect of reovirus was seen not only in the four pancreatic cancer cell lines with K-ras mutation but also in BxPC3 cancer cells without K-ras mutation in vitro. Furthermore, both Panc1 and BxPC3 xenografts were successfully treated with reovirus injection in vivo. Lytic potency seen in BxPC3 without K-ras mutation may be explained by the presence of signaling leading to activation of pathways downstream of Ras (either through Ras or independent of Ras). Of these signaling molecules, epidermal growth factor receptor is overexpressed in pancreatic cancer tissue compared with normal pancreatic tissue (21, 22) and Src protein, a nonreceptor tyrosine kinase, which leads to ras activation is activated in pancreatic cancer (23). In addition, extracellular signal-regulated kinase phosphorlylation has been demonstrated in BxPC3 as well as in the other cancer cell lines with K-ras mutation (24, 25). These results may support that the activity of Ras was elevated in all cancer cell lines examined in this study. It is suggested that increased Ras activity may play an important role in the cytotoxicity of reovirus against pancreatic cancer cells.
In this study, we confirmed that all five pancreatic cancer cell lines examined were infectable by reovirus. There is the possibility that reovirus susceptibility in cell lines may be an artifact of extended propagation in culture. To elucidate the change of nature as cancer cells or reovirus susceptibility induced by immortalization of cells, we have to examine the capacity of reovirus to replicate in primary human pancreatic cancer tissue \textit{ex vivo} in the future. Furthermore, we need to evaluate the effect of reovirus against large series of clinical samples for clinical setting.

With regard to systemic effect of reovirus, we investigated whether reovirus locally injected was able to affect remote tumor sites. As a result, reovirus could have significant systemic antitumor activity. It could be considered that there are two mechanisms why reovirus locally injected was able to affect distant tumor sites. First, the virus could be directly cytolytic to the tumor cells thereby contributing to tumor remission. Norman \textit{et al.} (7) reported that reoviral protein was detected in contralateral tumors by immunohistochemical staining, indicating the tumor regression was attributable to viral replication within tumor xenografts. We have also confirmed that reoviral protein...
was detected in the contralateral tumor by immunohistochemistry. Second, the presence of the virus might induce specific or nonspecific immune responses that lyse tumor cells. Especially, a role of NK cells seems to be important for direct or indirect antitumor responses. Recently, it has been reported that NK cells are highly cytotoxic against ErbB2-expressing cancer cells without affecting normal human cells (26). Furthermore, it has been reported that replication-deficient adenovirus vectors inhibit regional lymph node metastasis independent of a therapeutic transgene, an effect that is mediated, at least, in part, by IFN-γ and NK cells (27). Of these mechanisms, we consider the former is convincing because the tumor regression induced by reovirus replication has been demonstrated in our bilateral xenograft model.

Our result shows that reovirus has the potential to specifically destroy pancreatic cancer cells. In our xenograft model, there were no side effects in treated mice, and the high dose administration was acceptable and effective. Coffey et al. (6) has reported that the immunodeficiency of the SCID mice accounts for the high mortality rate of these mice upon exposure to reovirus. This indicates the possibility of occurrence of toxicity against normal tissue. The presence of a competent immune system may influence the toxicity (28). For clinical trials, it will be necessary to clarify these issues using immune competent animal models in the near future.

Most patients with pancreatic cancer die from liver metastasis and peritoneal dissemination despite multimodality therapy, including surgery, chemotherapy, and radiation therapy. Therefore, novel therapies that can target these resistant tumors are needed. In this study, we suggest that reovirus has several favorable characteristics as a potential cancer therapy for pancreatic cancer: antitumoral activity and selectivity may depend on an activated Ras signaling pathway. For the purpose of treatment for liver metastasis or peritoneal dissemination of this disease, the route of systemic delivery is important to regress these tumors (29–31). I.v. delivery or i.p. delivery may allow reovirus to reach inaccessible tumors and to treat undetectable micrometastasis. However, it might also affect the therapy’s effectiveness and toxicity. Therefore, additional studies are necessary for before clinical trials. If these approaches are successful, oncolytic viral therapy using reovirus may become a novel therapeutic platform for pancreatic cancer treatment.

ACKNOWLEDGMENTS

We thank Dr. Kensuke Hirasawa (Cancer Biology Research Group and Department of Microbiology and Infection Disease, University of Calgary Health Science Center, Calgary, Alberta, Canada) for supplying reovirus and antireovirus antibody. We also thank Dr. Graham F. Barnard (Division of Digestive Disease and Nutrition, University of Massachusetts Medical School, Worcester, MA) for his support.

REFERENCES

22. Korc, M., Chandrasekar, B., Yamanaka, Y., Friess, H., Buchier, M., and Beger, H. G. Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases

Oncolytic Viral Therapy for Human Pancreatic Cancer Cells by Reovirus
Tsuyoshi Etoh, Yoshihisa Himeno, Toshifumi Matsumoto, et al.

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/9/3/1218

Cited articles
This article cites 30 articles, 7 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/9/3/1218.full.html#ref-list-1

Citing articles
This article has been cited by 5 HighWire-hosted articles. Access the articles at:
/content/9/3/1218.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.