Phase I Evaluation of Sequential Topoisomerase Targeting with Irinotecan/Cisplatin Followed by Etoposide in Patients with Advanced Malignancy

Edward J. Licitra, Viral Vyas, Kathy Nelson, Rita Musanti, Stephanie Beers, Cecilia Thomas, Elizabeth Poplin, Sharon Smith, Yong Lin, Larry J. Schaaf, Joseph Aisner, Murugesan Gounder, Rajeev Rajendra, Ahamed Saleem, Deborah Toppmeyer, and Eric H. Rubin

Departments of Medicine and Pharmacology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, New Jersey 08901

ABSTRACT

Purpose: To investigate pharmacologically guided addition of etoposide to a weekly irinotecan/cisplatin chemotherapy.

Patients and Methods: Patients with advanced nonhematologic malignancies were eligible. Treatment consisted of i.v. administration of 50 mg/m² irinotecan and 20 mg/m² cisplatin on days 1, 8, 15, and 22 of a 42-day cycle or on days 1 and 8 of a 21-day cycle. Etoposide was administered in a dose-escalating fashion 2 days after each dose of irinotecan/cisplatin, either i.v. as a single dose or p.o. as two doses administered 12 h apart. Pharmacologic analyses included measurement of plasma concentrations of irinotecan, SN-38, and SN-38 glucuronide, as well as quantitation of topoisomerase protein levels in peripheral blood mononuclear cells (PBMNCs).

Results: A total of 40 patients with a variety of malignancies received 122 cycles of therapy. Dose-limiting toxicities included neutropenia and diarrhea, with the 21-day cycle tolerated better than the 42-day cycle. For the 21-day cycle, the maximum tolerated dose was 75 mg/m² for i.v. etoposide and 85 mg/m² for oral etoposide. Objective responses were observed in four patients with previously treated mesothelioma, gastric, breast, and ovarian cancer, respectively. PBMNC levels of topoisomerase IIα were increased at the time of etoposide administration in two patients, with these patients having the highest SN-38 glucuronide peak-plasma-concentration and area-under-the-curve values among 15 patients with available pharmacokinetic data. One of these patients had a partial response to therapy.

Conclusions: Pharmacologically guided administration of etoposide in combination with irinotecan/cisplatin using a 21-day cycle is associated with acceptable toxicity and significant antitumor activity. The finding that PBMNC topoisomerase IIα protein levels increased after irinotecan/cisplatin treatment in two of six patients supports the continued development of sequential topoisomerase targeting in the treatment of malignancy.

INTRODUCTION

Topoisomerase-targeting drugs are important in the treatment of a wide variety of solid and hematologic malignancies. These drugs function by stabilizing a normally transient reaction intermediate that involves covalent linkage of a topoisomerase (Top) molecule to DNA (1). The resulting structural DNA abnormalities, which include single-strand breaks for Top1-targeting drugs and double-strand breaks for Top2-targeting drugs, ultimately trigger cell death. Recent data also implicate ubiquitin and ubiquitin-like proteins as determinants in cell death induced by topoisomerase-targeting drugs (2–5). There are five human topoisomerase enzymes: three (Top1, Top2α, and Top2β) are known to be effective antitumor drug targets. The anthracyclines and epiptopophyllotoxins are among the commonly used Top2-targeting drugs, whereas the camptothecins are currently the only Top1-targeting drugs approved for clinical use.

Several preclinical studies indicate that resistance to drugs that target Top1 confers hypersensitivity to drugs that target Top2 and vice versa (reviewed in Ref. 6). Previous studies exploring this concept in clinical settings involved either concurrent or sequential administration of Top1- and Top2-targeting drugs. Results from some of these studies indicated that Top2 levels are often transiently elevated in peripheral blood mononuclear cells (PBMNCs) obtained from patients treated with camptothecins (7, 8). Xenograft studies indicate that similar transient Top2 protein increases can occur in tumor tissue (9). Because elevations in Top2 protein levels in tumor cells should confer hypersensitivity to Top2-targeting drugs, yet concurrent Top1- and Top2-targeting can be antagonistic (10), we...
favor a sequential rather than a simultaneous topoisomerase-targeting approach.

Studies investigating the concept of sequential topoisomerase-targeting in cell lines indicate that resistance to this strategy can occur, involving both mutation of Top1 and down-regulation of Top2α (11). However, cells resistant to topoisomerase-targeting drugs were found to be 10-fold hypersensitive to cisplatin (11). This finding provided the rationale for the current trial, involving sequential administration of cisplatin/irinotecan and etoposide using a weekly schedule. A previous study established the feasibility and dosing of weekly cisplatin/irinotecan administration using a 4-weeks-on/2-weeks-off schedule (12). In addition, in our previous study, we analyzed PBMNC topoisomerase protein levels at 15 time points in 11 patients after initiation of daily oral camptothecin (8). Analyses of mean Top2α protein levels among these 11 patients at a given time point indicated that peak increases occurred 2, 3, and 6 days after initiation of therapy. Therefore, based on these pharmacodynamic data, in the current study, we chose to administer etoposide as a single dose 2 days after each cisplatin/irinotecan treatment (denoted as ‘PIE’ therapy). The major purpose of this study was to determine the maximum-tolerated dose of etoposide using this schedule. In addition, because in a previous study, we found that plasma camptothecin concentrations may be an important determinant in changes in PBMNC Top1 protein levels (8), the study included analysis of topoisomerase protein levels in patient PBMNCs in conjunction with analysis of the pharmacokinetics of irinotecan and its metabolites.

PATIENTS AND METHODS

Patient Selection. Eligibility requirements included the following: (a) histologically documented malignancy, which was either metastatic or inoperable and for which there was no standard effective chemotherapy regimen; (b) age >18 years old; (c) an estimated life expectancy of >2 months; (c) Eastern Cooperative Oncology Group performance status 0–2; (e) no prior surgery for >3 weeks; (f) no prior chemotherapy or radiotherapy for >3 weeks (>6 weeks for prior treatment with a nitrosourea-based agent); (g) no prior high-dose (requiring stem cell support) chemotherapy regimens or radiation therapy involving >30% of the bone marrow reserve; (h) appropriate hematopoietic (neutrophil count >1500/μl, platelets >100,000/μl), hepatic (bilirubin/aspartate aminotransferase/alanine aminotransferase <2-fold the upper limit of normal), and renal function (creatinine <1.6 mg/dl and creatinine clearance >50 ml/min); (i) no evidence of uncontrolled serious medical/psychiatric illness; (j) negative pregnancy test for woman of child-bearing potential; and (k) for cohorts receiving oral etoposide, adequate predicted oral absorption (absence of frequent emesis or diarrhea, defined as greater than twice a day). The study was approved by the Robert Wood Johnson Medical School Institutional Review Board. All of the patients were informed of the investigative nature of the study and gave informed consent in accordance with institutional and federal guidelines.

Drug Administration and Dose Escalation. Patients were treated in cohorts of three. On the basis of a previous study (12), the doses of irinotecan and cisplatin were fixed at 50 mg/m² and 20 mg/m², respectively, with these drugs administered i.v. on days 1, 8, 15, and 22 of a 42-day cycle (4 weeks on/2 weeks off). Cisplatin was administered first, followed immediately by irinotecan as a 90-min infusion. All patients received i.v. fluid before the cisplatin infusion, consisting of 500 ml of normal saline containing 2 g of magnesium sulfate and 12.5 mg of mannitol. Etoposide was administered i.v. over 1 h, 2 days after each infusion of irinotecan/cisplatin (days 3, 10, 17, 24), with the etoposide dose escalated in cohorts of three patients. The initial dose of etoposide was 50 mg/m², with dose escalation occurring in 25 mg/m² increments.

In the second and subsequent cohorts, the treatment schedule was modified to a 21-day, 2-weeks-on/1-week-off cycle, with irinotecan/cisplatin given on days 1 and 8 and etoposide on days 3 and 10. Furthermore, the protocol was amended to allow administration of etoposide p.o. as two doses 12 h apart. The initial oral etoposide dose was 50 mg/m² every 12 h, based on a maximum-tolerated dose of 75 mg/m² i.v. etoposide and an expected bioavailability of about 50% (13). Calculated oral etoposide doses were rounded to the nearest 50 mg. A neutrophil count ≥1000/μl was required for initiation of each cycle of therapy and for each weekly treatment.

(a) DLT was defined as any of the following toxicities occurring during the first cycle of therapy: absolute neutrophil count <500/μl or platelet count <20,000/μl for >7 days; (b) irreversible grade 2 and any grade 3–5 nonhematologic toxicity (except nausea/vomiting in the absence of aggressive antiemetic therapy); (c) two or more consecutive weekly dose holds. If one patient in a cohort experienced a DLT, three additional patients would be enrolled at the same dose level. If none of the subsequent three patients experienced a DLT, then the dose of etoposide was escalated. Maximum-tolerated dose (MTD) was defined as the dose level that preceded a dose level at which two or more patients experienced a DLT.

Clinical Evaluation. Pretreatment evaluation included physical examination, complete blood count (CBC), serum chemistries, electrocardiogram, urinalysis, and chest X-ray. All measurable disease was documented by physical examination and/or any appropriate imaging studies before the initiation of protocol therapy. Additionally, any relevant biochemical tumor markers were obtained before therapy. After treatment, a history and physical examination, CBC, serum chemistries, and urinalysis were performed weekly. (CBCs were performed twice weekly for the first two weeks.) Urine dipsticks were obtained before each cycle of therapy and weekly for the first 3 weeks of therapy. A urinalysis was performed if the urine dipstick was abnormal. Disease measurable by physical examination or on plain radiographs was evaluated after each cycle of therapy. Other imaging procedures required for response determination were obtained after every two cycles of treatment. Toxicity was assessed weekly using NCI Common Toxicity Criteria, version 2.0. Responses were evaluated either by physical examination or by appropriate imaging studies according to WHO criteria (14).

Pharmacokinetics. Heparinized blood samples were obtained immediately before starting the irinotecan infusion on day 1 at 30 min after start of the infusion and at 0, 5, 15, and 30 min and 1, 2, 3, 4, 7, and 24 h after the end of the infusion. Total (lactone + carboxylate) concentrations of irinotecan and SN-38 were measured by HPLC with fluorescence detection as de-
obtained from the densitometer were within the linear range of
Topoisomerase proteins were performed to ensure that the values
Molecular Imager System GS-525. Control studies with purified
sequential on the blots as described previously (8). Immunore-
Top2, Top1, and histone immunoblotting was performed se-
PAGE followed by transfer to nitrocellulose membranes.
amounts of protein from each sample were subjected to SDS-
the simultaneous isolation of RNA, DNA, and protein (8). Equal
containing guanidine isothiocyanate and phenol that allows for
administration of etoposide. The cells were lysed in a buffer
end of infusion. The 48-h sample was taken immediately before
Mononuclear cells were obtained from
C for 15 min.
SN-38G concentration-time curves. The apparent elimination
half-life (t1/2) was determined from linear least-squares regres-
sion of plasma-concentration time points in the terminal log-
linear region of the plasma concentration-time profiles. The areas under the curve (AUC) from time 0 to 24 h after the end
of the infusion (AUC0–24) was calculated using the linear trap-
ezoideal rule (15). Scatter plots and Pearson correlation coeffi-
cients were used to compare irinotecan/metabolite pharmacoki-
etic parameters with neutrophil nadirs.

Analysis of Top1 and Top2 Levels in Peripheral Blood
Cells. Mononuclear cells were obtained from ~10 ml of pe-
ipheral blood by Ficoll gradient centrifugation immediately before
administration of etoposide. The cells were lysed in a buffer
containing guanidine isothiocyanate and phenol that allows for
the simultaneous isolation of RNA, DNA, and protein (8). Equal
amounts of protein from each sample were subjected to SDS-
PAGE followed by transfer to nitrocellulose membranes.
Top2α, Top1, and histone immunoblotting was performed sequen-
tially on the blots as described previously (8). Immunore-
active bands were quantified by densitometry using a Bio-Rad
Molecular Imager System GS-525. Control studies with purified
topoisomerase proteins were performed to ensure that the values
obtained from the densitometer were within the linear range of
quantitation using this assay.

RESULTS
Patient Characteristics and Cohorts. Twenty-three
male and 17 female patients were enrolled in this study (Table
1). All but one patient had received previous chemotherapy,
radiotherapy, or both (Table 1). Several patients had non-small
lung cancer, with the other patients having a variety of different
malignancies (Table 1). These 40 patients received 122 cycles of
PIE therapy in seven different cohorts. The initial cohort of
patients were treated using a 4-weeks-on/2-weeks-off schedule,
involving administration of 20 mg/m² cisplatin and 50 mg/m²
irinotecan on days 1, 8, 15, and 22, with 50 mg/m² etoposide
given i.v. on days 3, 10, 17, and 24. Because of the occurrence
of DLT and frequently missed doses during the first cycle of
therapy in this initial cohort, drug administration was modified
to a 2-weeks-on/1-week-off schedule in the second cohort. Sub-
sequent cohorts were treated using this schedule, with dose
escalation of i.v. etoposide. To enhance patient convenience,
when an MTD was defined for i.v. etoposide, additional cohorts
of patients were enrolled to define an MTD for oral adminis-
tration of etoposide.

Toxicity. Among the initial three patients enrolled in the
first cohort, none completed a first cycle of therapy. One patient
required palliative radiation therapy for pain control and in the
two others, doses were held because of neutropenia during week
4. A fourth patient experienced dose-limiting (grade 4) diarrhea
at the end of the second week of treatment (day 14). Profound
neutropenia also occurred at this time, and the patient died on
day 15 despite aggressive use of i.v. antibiotics and antidiarrhea
therapy. This patient had bladder cancer and had previously
received several cycles of a combination of gemcitabine, car-
boplatin, and paclitaxel. Among three subsequent patients
received several cycles of a combination of gemcitabine, car-
boplatin, and paclitaxel. Among three subsequent patients
received several cycles of a combination of gemcitabine, car-
boplatin, and paclitaxel. Among three subsequent patients
received several cycles of a combination of gemcitabine, car-
boplatin, and paclitaxel. Among three subsequent patients
treated at this dose level, two received all planned doses of
therapy during the first cycle, but treatment was held on week
two in one patient because of grade 2 diarrhea. An additional
three patients were enrolled at this dose level to better charac-
terize the toxicity rate. Two of these last three patients received
all planned first cycle doses, with treatment held on week 4 in
the third patient because of grade 2 diarrhea. Thus, excluding
the patient who did not complete a first cycle because of the
need for radiation therapy, only four of nine patients in this
cohort were able to complete a full cycle of therapy, and one
patient died as a result of toxicity. Therefore, this dose/schedule
was considered intolerable, and we decided to modify the treat-
ment to a 2-weeks-on/1-week-off schedule.

The 2-weeks-on/1-week-off schedule was associated with
a lower toxicity rate, enabling escalation of etoposide from 50
mg/m² to 75 mg/m² (Tables 2 and 3). One patient treated at the
75 mg/m² dose level had doses held on days 8 and 22 because
of grade 3 neutropenia. This occurrence was defined as a DLT
by the protocol and resulted in enrollment of six patients at this
dose level. None of the other five patients experienced cycle-1
dose holds or DLTs. Escalation of the etoposide dose to 100

\begin{table}
\centering
\begin{tabular}{|c|c|}
\hline
Characteristic & Number of patients \\
\hline
Male & 23 \\
Female & 17 \\
Median age in years (range), 58.5 (31–78) & \\
Previous Therapies & \\
0 & 1 \\
1 & 17 \\
2 & 15 \\
3 & 4 \\
3+ & 2 \\
Previous radiation therapy & 21 \\
ECOGa Performance Status & \\
0 & 16 \\
1 & 21 \\
2 & 3 \\
Tumor Histology & \\
NSCLC & 10 \\
Bladder & 5 \\
Sarcoma & 5 \\
Breast & 3 \\
Mesothelioma & 2 \\
Ovarian & 2 \\
Pancreatic & 2 \\
Gastric & 2 \\
Renal & 2 \\
Other & 7 \\
\hline
\end{tabular}
\caption{Patient characteristics.}
\label{table1}
\end{table}

aECOG, Eastern Cooperative Oncology Group; NSCLC, non-
small cell lung cancer.
mg/m² was associated with both hematologic and nonhemato-
logic DLTs (febrile, prolonged grade 4 neutropenia, and grade 3
diarrhea, respectively) in the first patient enrolled in this cohort.
Because of the severity of the toxicity experienced by this
patient and the occurrence of missed doses during cycles 1 and
2 because of neutropenia at the previous dose level, additional
patients were not enrolled at the 100 mg/m² etoposide dose
level, and 75 mg/m² was defined as the MTD.

Next, i.v. etoposide was replaced with oral etoposide to
facilitate patient convenience. A tolerable oral etoposide dose
was estimated to be 150 mg/m², based on an MTD of 75 mg/m²
for i.v. etoposide and a reported bioavailability of near 50% for
oral etoposide (13). However, two of six patients who received
150 mg/m² etoposide p.o. experienced DLTs (prolonged grade 4
neutropenia and grade 3 diarrhea, respectively), which resulted
in de-escalation of oral etoposide to 110 mg/m². At this dose
level, three of five patients experienced DLTs (all grade 3
diarrhea), which resulted in further de-escalation of etoposide to
85 mg/m². Because there were no DLTs among six patients who
were treated with this dose, 85 mg/m² was defined as the MTD
for oral etoposide combined with irinotecan/cisplatin using a
2-weeks-on/1-week-off schedule.

Antitumor Activity. A partial response occurred in a
54-year-old male patient with gastric cancer and extensive he-
patoc metastases. This patient was treated previously with 5-
fluorouracil/leucovorin/etoposide. After four cycles of PIE ther-
apy administered using the 2-weeks-on/1-week-off schedule
(etoposide dose 50 mg/m²), there was a 65% reduction in
measurable disease and normalization of carcinoembryonic an-
tigen from 18.9 to 2.0 ng/ml. This patient remained on the
protocol for 36 weeks until his disease progressed.

Three other patients had detectable decreases in measure-
able or evaluable disease that did not meet criteria for partial
response. The etoposide dose was 50 mg/m² in each of these
patients. In a patient with mesothelioma, who had received
docetaxel and doxorubicin/LY335979 (a P-glycoprotein inhibi-
tor) previously, there was a 36% reduction in measurable dis-
ease after two cycles of therapy using the 4-weeks-on/2-weeks-
off schedule. Treatment continued for 32 weeks before disease
progression. A 34% reduction in measurable disease occurred in
a patient with ovarian cancer who was treated previously with a
combination of paclitaxel and carboplatin. This patient received
one cycle of PIE therapy using the 4-weeks-on/2-weeks-off
schedule, with subsequent cycles administered using the
2-weeks-on/1-week-off schedule. There was also a reduction in
serum CA-125 in this patient from 44.8 to 11.6 units/ml after
two cycles of therapy. This patient remained on study for 24
weeks until disease progression. There was a significant im-
provement in nonmeasurable pulmonary infiltrates in a patient
with breast cancer who was treated previously with a combina-

Table 2 Severe hematologic toxicities

<table>
<thead>
<tr>
<th>Etoposide (mg/m²)</th>
<th>Cohort</th>
<th>Number of Patients</th>
<th>Number of Cycles</th>
<th>Neutropenia Grade 3 or 4 < 7 Days</th>
<th>Neutropenia Grade 3 or 4 with Fever</th>
<th>Neutropenia Grade 4 > 7 Days</th>
<th>Thrombocytopenia Grade 3</th>
<th>Thrombocytopenia Grade 4</th>
<th>Anemia Grade 3</th>
<th>Anemia Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1A⁴</td>
<td>10</td>
<td>16</td>
<td>5/11⁵</td>
<td>0/0</td>
<td>0/1</td>
<td>0/2</td>
<td>0/0</td>
<td>0/1</td>
<td>0/0</td>
</tr>
<tr>
<td>50</td>
<td>1B</td>
<td>3</td>
<td>20</td>
<td>1/2</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>75</td>
<td>2</td>
<td>6</td>
<td>27</td>
<td>1/7</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0/0</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>150 (oral)</td>
<td>4</td>
<td>7</td>
<td>23</td>
<td>2/5</td>
<td>1/1</td>
<td>1/1</td>
<td>1/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>110 (oral)</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>2/3</td>
<td>1/1</td>
<td>1/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>85 (oral)</td>
<td>6</td>
<td>6</td>
<td>26</td>
<td>0/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

⁴ Patients in cohort 1A were treated with a 4-weeks-on/2-weeks-off schedule, whereas patients in cohort 1B and the other cohorts were treated with a 2-weeks-on/1-week-off schedule.
⁵ Numbers indicate occurrences in first cycle/occurrences in any cycle.

Table 3 Severe nonhematologic toxicities

<table>
<thead>
<tr>
<th>Etoposide (mg/m²)</th>
<th>Cohort</th>
<th>Number of Patients</th>
<th>Number of Cycles</th>
<th>Nausea Grade 3</th>
<th>Nausea Grade 4</th>
<th>Vomiting Grade 3</th>
<th>Vomiting Grade 4</th>
<th>Diarrhea Grade 3</th>
<th>Diarrhea Grade 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1A⁴</td>
<td>10</td>
<td>16</td>
<td>0/0⁶</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>50</td>
<td>1B</td>
<td>3</td>
<td>20</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>75</td>
<td>2</td>
<td>6</td>
<td>27</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>150 (oral)</td>
<td>4</td>
<td>7</td>
<td>23</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>110 (oral)</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>85 (oral)</td>
<td>6</td>
<td>6</td>
<td>26</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

⁴ Patients in cohort 1A were treated with a 4-weeks-on/2-weeks-off schedule, whereas patients in cohort 1B and the other cohorts were treated with a 2-weeks-on/1-week-off schedule.
⁶ Numbers indicate occurrences in first cycle/occurrences in any cycle.

* Bold indicates that this toxicity was a dose limiting toxicity.
tion of cyclophosphamide, methotrexate, and 5-fluorouracil, as well as paclitaxel and doxorubicin. This patient had undergone wedge resection of a pulmonary metastasis in the past. Her serum carcinoembryonic antigen level also decreased from 75.5 to 24.5 ng/ml after two cycles of therapy administered using the 4-weeks-on/2-weeks-off schedule. Therapy was discontinued in this patient after an additional two cycles because of prolonged neutropenia.

In addition to these responses, prolonged stable disease occurred in a patient with non-small cell lung cancer (who received 8 cycles), a patient with sarcoma (who received 8 cycles), and a patient with mesothelioma (who received 11 cycles). With the exception of the patient with mesothelioma, these patients had received at least one prior chemotherapy regimen.

Pharmacokinetics/Pharmacodynamics. Increases in PBMNC Top2α levels were observed in a previous study involving oral camptothecin administered daily for 14 days, with the increases typically occurring on day 3 (8). These increases in Top2α were often accompanied by decreases in Top1 PBMNC protein levels (8). Similar assays were performed in the current study. Although decreases in Top1 PBMNC protein levels after the irinotecan infusion were observed in a few patients (Fig. 1), Top1 protein degradation was present in many samples and precluded a more comprehensive assessment. By contrast, serial Top2α PBMNC levels were quantifiable in six patients. At the time of the first dose of etoposide, Top2α levels were increased significantly relative to baseline in two of the six patients (Fig. 1 and 2). Both patients received 50 mg/m² etoposide i.v. One patient had gastric cancer and had a partial response to treatment that lasted for eight cycles. The other patient had colon cancer and had disease progression after the second cycle of therapy.

Plasma concentrations of irinotecan, SN-38, and glucuronidated SN-38 (SN-38G) were measured in 15 patients, including the six patients for whom PBMNC Top2α data were available. The pharmacokinetic parameters obtained from this analysis (Table 4) were similar to those reported previously in a trial involving weekly administration of irinotecan/cisplatin (12). Furthermore, similar to this previous trial, there was no detectable relationship between neutrophil nadirs and any of the irinotecan/metabolite pharmacokinetic parameters. In addition, irinotecan and SN-38 Cmax and AUC values in the two patients with increases in Top2α PBMNC levels were similar to values observed in patients in whom Top2α levels did not change after the irinotecan infusion (Tables 4 and 5). However, the two patients with increases in Top2α PBMNC protein levels had the highest SN-38 glucuronide Cmax and AUC values among the 15 patients with available pharmacokinetic data (Table 5).

DISCUSSION

Top1-targeting is a relatively new anticancer strategy, and there is considerable interest in combining Top1-targeting drugs such as the camptothecins with other anticancer therapies. Combinations that have received notable attention include irinotecan with 5-fluorouracil in the treatment of patients with colon cancer (16) and irinotecan with cisplatin in the treatment of patients with small cell lung cancer (17). Combinations of camptothecins with Top2-targeting drugs have also been pursued (8, 18–23) and are based on strong supportive preclinical data indicating that simultaneous or sequential topoisomerase-targeting yields additive or synergistic cytotoxicity (9, 24, 25). However, in none of these clinical trials was the timing of etoposide administration based on studies of Top2 protein modulation in patient tissues. By contrast, the administration of etoposide in this study was based on previous data indicating that peak PBMNC Top2α protein levels usually occurred 2 to 3 days after initiation of daily oral camptothecin (8).

Although this trial included concurrent administration of cisplatin with irinotecan, Top2α PBMNC levels were increased...
at the time of the first etoposide dose in two of six evaluable patients. The finding that these two patients had the highest SN-38 glucuronide C_{max} and AUC values among evaluated patients is intriguing. Glucuronidation of SN-38 is involved in hepatic clearance of this compound (26), and is implicated in cellular resistance (27). It is possible that metabolism of camptothecins, including glucuronidation, is important in the modulation of tissue Top2α protein levels by these drugs. However, it is not yet clear whether treatment with camptothecins increases Top2 protein levels in tumor tissues and whether the timing of these increases would be similar to that observed in PBMNCs. In one study of patients with nonhematologic malignancies, a slight increase in tumor Top2α protein levels was observed in only one of six patients (7 days after topotecan administration; see Ref. 22). Nevertheless, these kinds of studies are hampered by difficulties in obtaining sequential tumor biopsies from patients with nonhematologic malignancies. By contrast, studies of circulating blasts in nine leukemia patients treated with topotecan indicated transient increases in blast cell Top2α protein levels in most of the patients (28). Furthermore, results from a recent study indicated that patients with a ≥40% increase in leukemic blast Top2α protein levels on day 4 were more likely to respond to treatment consisting of topotecan administration on days 1–3, followed by a combination of etoposide/mitoxantrone on days 4, 5, 9, and 10 (29).

The results of the current trial indicate that the addition of etoposide on day 3 to a weekly irinotecan/cisplatin schedule is tolerable, with the MTD of etoposide 75 mg/m² for i.v. administration and 85 mg/m² for oral administration. The finding that the MTD of oral etoposide is 85 mg/m² is somewhat surprising, given a predicted bioavailability of ~50% for oral administration of this drug (13). It is possible that oral administration of etoposide results in greater intestinal tissue concentrations of this drug, which augment the intestinal toxicities of irinotecan. Another possibility is that irinotecan-induced alterations in the intestinal mucosa result in increased etoposide absorption.

With regard to antitumor activity, it is not clear from this trial that a strategy of sequential topoisomerase-targeting combined with cisplatin is effective in overcoming resistance to camptothecins such as irinotecan. Nevertheless, several previously treated patients experienced objective responses or prolonged disease stabilization while receiving PIE therapy. In addition, the best response observed in the trial occurred in one of the two patients with increased Top2α PBMNC levels at the time of the first administration of etoposide, which is consistent with the idea that camptothecin-induced increases in Top2 protein expression will augment responses to Top2-targeting drugs. Phase II clinical trials are in progress to evaluate the PIE regimen in the treatment of patients with gastric and small cell lung cancer. Additional studies are necessary to evaluate mechan-isms of resistance to camptothecins and whether sequential topoisomerase-targeting strategies are capable of overcoming this resistance. We are currently conducting a study of sequential topoisomerase-targeting in patients with leukemia, in which Top2 protein levels and activity will be quantified in blasts obtained from patients receiving 1-β-D-arabinofuranosylcytosine/topotecan induction therapy. The timing of peak Top2 alterations will be evaluated to determine an optimal time for administration of etoposide. In addition, we are evaluating possible mechanisms of resistance to topotecan, including analyses of intracellular topotecan accumulation, BCRP expression, topoisomerase I mutations, and topoisomerase I ubiquitination and degradation.

REFERENCES

Phase I Evaluation of Sequential Topoisomerase Targeting with Irinotecan/Cisplatin Followed by Etoposide in Patients with Advanced Malignancy

Updated version
Access the most recent version of this article at:
http://clincancerres.aacrjournals.org/content/9/5/1673

Cited articles
This article cites 27 articles, 17 of which you can access for free at:
http://clincancerres.aacrjournals.org/content/9/5/1673.full.html#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
/content/9/5/1673.full.html#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.