Phase I Biodistribution and Pharmacokinetic Study of Lewis Y–Targeting Immunoconjugate CMD-193 in Patients with Advanced Epithelial Cancers

Rebecca A. Herbertson,1 Niall C. Tebbutt,2 Fook-Thean Lee,1 David J. MacFarlane,5 Bridget Chappell,3 Noel Micalllef,2 Sze-Ting Lee,1,3 Timothy Saunders,3 Wendy Hopkins,1 Fiona E. Smyth,1 David K. Wyld,6 John Bellen,5 Daryl S. Sonnichsen,7 Martin W. Brechbiel,8 Carmel Murone,1,4 and Andrew M. Scott1,3

Abstract

Purpose: This phase I study explored the biodistribution and pharmacokinetics of the immunoconjugate CMD-193 (a humanized anti–Lewis Y (Le\(^y\)) antibody conjugated with calicheamicin) in patients with advanced cancers expressing the Le\(^y\) antigen.

Experimental Design: The primary objectives were to determine biodistribution and pharmacokinetics of CMD-193. Secondary objectives included response rates and change in tumor metabolism. Patients with progressive, measurable, and Le\(^y\) positive malignancies were eligible for enrollment in one of two dose cohorts, 1.0 and 2.6 mg/m\(^2\). The first cycle was trace labeled with \(^{111}\)In for biodistribution assessment using \(\gamma\) camera imaging. Subsequent cycles were administered every 3 weeks up to a maximum of six cycles, depending on toxicity and response. Pharmacokinetic analysis was based on radioassay and ELISA.

Results: Nine patients were enrolled in the study. Biodistribution images showed initial blood pool activity, followed by markedly increased hepatic uptake by day 2, and fast blood clearance in all patients. There was low uptake in tumor in all patients. The overall T/\(1/2\) of \(^{111}\)In-CMD-193 was 102.88 ± 35.67 hours, with no statistically significant difference between the two dose levels. One patient had a partial metabolic response on \(^{18}\)F-fluorodeoxyglucose–positron emission tomography (\(^{18}\)F-FDG PET) after four cycles, but no radiological responses were observed. Myelosuppression and effects on liver function were the most significant adverse effects.

Conclusions: CMD-193 shows rapid blood clearance and increased hepatic uptake compared with prior studies of the parental antibody hu3S193. These results highlight the importance of biodistribution and pharmacodynamic assessment in early phase studies of new biologics to assist in clinical development. (Clin Cancer Res 2009;15(21):OF1–7)

The concept of antibody-targeted chemotherapy was successfully translated into the clinic in 2000, when gemtuzumab ozogamicin (Mylotarg, also known as CMA-676) was approved by the Food and Drug Administration for relapsed acute myeloid leukemia (1). This CD33-targeted immunoconjugate of calicheamicin has accelerated the investigation of this therapeutic strategy in solid tumors. CMD-193 is one such calicheamicin immunoconjugate that makes use of the same drug-linker combination as that used in Mylotarg, but the antibody to which it is conjugated targets the Lewis Y (Le\(^{y}\)) antigen. Le\(^{y}\) (CD174) is a difucosylated tetrasaccharide internalized antigen displayed on both glycolipid and glycoprotein backbones of membrane surface molecules, and is involved in cellular motility and adhesion (2). Le\(^{y}\) has restricted normal tissue

Authors' Affiliations: 1Ludwig Institute for Cancer Research, 2Ludwig Institute Oncology Unit, and 3Department of Nuclear Medicine and Centre for PET, Austin Hospital; and 4Department of Anatomical Pathology, Austin Hospital, Melbourne, Australia 5Department of Nuclear Medicine and Queensland PET Service and 6Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia; 7Wyeth Research, Collegeville, Pennsylvania; and 8Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland Received 3/1/09; revised 7/16/09; accepted 7/20/09; published OnlineFirst 10/13/09.

Grant support: Wyeth Pharmaceuticals, Inc. provided financial support and pharmaceutical investigation compound CMD-193 for the study. The Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research supports Martin W. Brechbiel. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Note: Presented in part at American Society of Clinical Oncology 44th Annual Meeting, May 30 to June 3, 2008, Chicago, IL.

Disclaimers: This was an Investigator-originated study sponsored by the Ludwig Institute for Cancer Research, and performed under the LICR-submitted IND-111-CMD-193 IND 73,831 cross-filed to Wyeth Pharmaceuticals, Inc. IND 69,462.

Requests for reprints: Andrew M. Scott, Ludwig Institute for Cancer Research, Level 6, Harold Stokes Building, Austin Hospital, Studley Road, Heidelberg, VIC, 3084, Australia. Phone: 613-9496-5878; Fax: 613-9496-5892; E-mail: andrew.scott@ludwig.edu.au.

© 2009 American Association for Cancer Research. doi:10.1158/1078-0432.CCR-09-0536

www.aacrjournals.org OF1 Clin Cancer Res 2009;15(21) November 1, 2009
expression, and is overexpressed in the majority of epithelial carcinomas (40–90%) including breast, ovary, pancreas, prostate, colon, and lung cancers (3–11).

The immunoconjugate CMD-193 is composed of G193, a humanized monoclonal antibody based on the anti-Le\(^{+}\) antibody hu3S193 (12), covalently linked to Nα-γ calicheamicin DMH via an acid-labile AcBut linker with retention of Le\(^{+}\) affinity. In prior phase I trials, hu3S193 showed specific targeting of Le\(^{+}\)-expressing tumors, restricted normal tissue distribution, and low immunogenicity (13, 14). Hu3S193 is currently under development in phase II trials as a naked humanized antibody in Le\(^{+}\)-expressing tumors. Dose-dependent regression of Le\(^{+}\)-expressing human carcinoma xenografts by the immunoconjugate CMD-193 has been shown in preclinical studies, highlighting the potential therapeutic potential of CMD-193 in cancer patients (15). Initial clinical development of CMD-193 involved a dose escalation phase I study in patients with Le\(^{+}\)-expressing advanced solid tumors with an expanded preliminary evaluation of efficacy in patients with non-small cell lung carcinoma.

In support of the initial clinical development of CMD-193, we conducted an additional phase I dose escalation study of CMD-193 in patients with advanced solid tumors expressing the Le\(^{+}\) antigen. The primary objectives of this trial were to determine the biodistribution and pharmacokinetics of 111In-CMD-193. The tumor uptake of 111In-CMD-193 was based on qualitative and quantitative assessment of biodistribution images and dosimetry. Secondary objectives were to determine tumor response to CMD-193 through changes in tumor 18F-FDG PET metabolism and measurement by Response Evaluation Criteria in Solid Tumors (RECIST) criteria (16).

Materials and Methods

Patients. Eligible patients were ≥18 y of age, who had histologically confirmed solid malignancies with ≥20% tumor cells displaying Le\(^{+}\) antigen positivity on immunohistochemistry of archived tumor samples (13), and who had progressed following standard therapy. Inclusion criteria included the following: measurable disease, Eastern Cooperative Oncology Group performance status of 0 to 1, and adequate renal, hepatic, and bone marrow function and ability to give informed consent. Exclusion criteria included the following: cancer therapy within 21 d of the first dose of CMD-193, clinically active central nervous system metastases, significant prior allergic reaction to recombinant human or murine proteins, and serious concurrent medical conditions including chronic liver disease.

Trial design. This trial planned to enroll into three dose cohorts: 1.0, 1.7, and 2.6 mg/m\(^2\). These dose levels were selected based on the lowest practical dose able to be trace labeled for biodistribution studies (1.0 mg/m\(^2\)), and the anticipated therapeutic dose based on other calicheamicin conjugates. After a parallel phase I trial determined the maximum tolerated dose of CMD-193 to be 3.6 mg/m\(^2\) and therapeutic dose to be 2.6 mg/m\(^2\), with dose limiting toxicity related to thrombocytopenia and hepatic enzyme changes, a protocol amendment was approved to increase the 1.7 mg/m\(^2\) cohort. Following pretreatment assessments, eligible patients received a single infusion of Indium-111-labeled CMD-193 [111In-CMD-193; 3–7 mCi (120–280 MBq)] at a protein dose level of 1.0 or 2.6 mg/m\(^2\) over 1 h on day 1 of cycle 1. Subsequent cycles of unlabeled CMD-193 were administered at three weekly intervals up to a maximum of six cycles, subject to tolerability and response.

Radiolabeling of CMD-193. The immunoconjugate CMD-193 (Wyeth Pharmaceuticals, Inc.) was labeled with 111In (MDS Nordion) via the bifunctional metal ion chelate CHX-A\(^{–}\)-diethylenetriaminopentaacetic acid according to methods described previously (12, 17).

Assessments. Biodistribution evaluation was done by whole body \(\gamma\) camera scans on day 1, day 2, day 3 or 4, day 5 or 6, and day 7 or 8 following 111In-CMD-193 infusion. Pharmacokinetic sampling of 111In-CMD-193 was done during cycle 1 on day 1 (preinfusion, 1 and 4 h postinfusion commencement), day 3, day 8, and day 15. Changes in tumor metabolism were evaluated using 18F-FDG-PET, which was done at screening, between days 15 and 21 of cycles 2 and 4, and at study completion. Antitumor response was assessed using RECIST criteria (16), with computed tomography (CT) scans performed at screening, between days 15 and 21 of cycles 2 and 4, and at study completion. Safety evaluation was done weekly throughout the trial with all adverse events documented and graded according to National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0. Causality was determined as “related to study drug” if the event was deemed definitely, probably, or possibly related to the administration of CMD-193 by the investigator.

Biodistribution and whole body clearance. Whole body planar \(\gamma\) camera images were acquired on a dual-headed \(\gamma\) camera (Picker International and Phillips Medical Systems). Single photon emission CT (SPECT) images of a region of the body with known tumor were also obtained on at least one occasion during this period. Biodistribution analysis was done by examination of whole body and SPECT images by experienced nuclear medicine physicians. Comparison to prior studies of parental antibody hu3S193 was also done (13). Whole body and organ clearance of 111In-CMD-193 was calculated from quantitative whole body conjugate view \(\gamma\) camera images obtained at the multiple time points postinfusion using a well-validated method (13, 18, 19).

Pharmacokinetics. Serum obtained from patients following infusion of 111In-CMD-193 was aliquoted and counted in a \(\gamma\) scintillation counter (Packard Instruments). The results were expressed as % injected dose per liter (%ID/L) and µg/mL. Estimates were determined for the following parameters: \(\frac{C}{\gamma}\) and \(\frac{V}{\gamma}\) (half-lives of the initial and terminal phases of disposition); \(V_1\), volume of central compartment; \(C_{\text{max}}\), maximum serum concentration; \(AUC\), area under the serum concentration curve extrapolated to infinite time; and CI, total serum clearance. A two-compartment i.v. bolus model with microscopic parameters, no lag time, and first-order elimination (WNL Model 8) was fitted to individual serum 111In-CMD-193 data for each subject using nonlinear, least squares with WinNonLin version 5.2 (Pharsight Corp).

\(^{9}\) C. Zacharchuk and D.S. Sonnichsen, unpublished data.
Table 1. Patient characteristics at study entry and study outcomes

<table>
<thead>
<tr>
<th>Pt ID</th>
<th>Age (y)</th>
<th>ECOG</th>
<th>Primary diagnosis</th>
<th>Sites of metastatic disease at study entry</th>
<th>Tumor Leu antigen positivity</th>
<th>Dose cohort</th>
<th>No. of cycles</th>
<th>FDG-PET response (EOS)</th>
<th>CT response (EOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>53/F</td>
<td>1</td>
<td>Colon carcinoma</td>
<td>Lymph nodes, liver</td>
<td>20-50%</td>
<td>1</td>
<td>2</td>
<td>PMD</td>
<td>PD</td>
</tr>
<tr>
<td>102</td>
<td>49/F</td>
<td>0</td>
<td>Colon carcinoma</td>
<td>Retro-pancreatic mass</td>
<td>>75%</td>
<td>1</td>
<td>6</td>
<td>SMID</td>
<td>PD</td>
</tr>
<tr>
<td>103</td>
<td>71/M</td>
<td>0</td>
<td>Colon carcinoma</td>
<td>Liver</td>
<td>51-75%</td>
<td>1</td>
<td>4</td>
<td>PMR</td>
<td>SD</td>
</tr>
<tr>
<td>104</td>
<td>58/M</td>
<td>0</td>
<td>Gastric carcinoma</td>
<td>Liver</td>
<td>20-50%</td>
<td>1</td>
<td>3</td>
<td>SMID</td>
<td>SD</td>
</tr>
<tr>
<td>105</td>
<td>53/M</td>
<td>0</td>
<td>Colon carcinoma</td>
<td>Lymph nodes liver, lung, presacrum</td>
<td>20-50%</td>
<td>1</td>
<td>2</td>
<td>PMD</td>
<td>PD</td>
</tr>
<tr>
<td>106</td>
<td>46/M</td>
<td>0</td>
<td>Gastro-esophageal junction carcinoma</td>
<td>Lymph nodes, liver</td>
<td>51-75%</td>
<td>1</td>
<td>2</td>
<td>PMD</td>
<td>PD</td>
</tr>
<tr>
<td>107</td>
<td>77/M</td>
<td>1</td>
<td>Bronchoalveolar carcinoma</td>
<td>Lung</td>
<td>20-50%</td>
<td>2</td>
<td>1</td>
<td>PMD</td>
<td>SD</td>
</tr>
<tr>
<td>108</td>
<td>69/F</td>
<td>0</td>
<td>Gastrointestinal adenocarcinoma</td>
<td>Lymph nodes, liver, lung</td>
<td>20-50%</td>
<td>2</td>
<td>5</td>
<td>SMID</td>
<td>SD</td>
</tr>
<tr>
<td>161</td>
<td>46/F</td>
<td>1</td>
<td>Pulmonary adenocarcinoma</td>
<td>Lymph nodes liver, bone</td>
<td>20-50%</td>
<td>2</td>
<td>2*</td>
<td>N/A</td>
<td>PD*</td>
</tr>
</tbody>
</table>

Abbreviations: ECOG, Eastern Cooperative Oncology Group; PS, performance status; EOS, end of study assessment; N/A, not assessed.
*Withdraw prematurely cycle 2 day 9. Response assessed clinically, as patient died of progressive disease before repeat CT scan.

Results

Patient characteristics. Nine patients were eligible and enrolled (six patients, 1.0 mg/m² cohort; three patients, 2.6 mg/m² cohort). Baseline patient demographics and disease characteristics are shown in Table 1. All patients had metastatic disease at study entry and many patients had been extensively pretreated, having received one to five lines of prior chemotherapy, monoclonal antibody, or biological agent. Only one patient (patient 102) received all six cycles of CMD-193. Four patients were withdrawn due to progressive disease after two cycles of treatment (patients 101, 105, 106, and 161), and four patients were withdrawn because of toxicity (patients 103, 104, 107, and 108).

Biodistribution. Evaluation of γ camera imaging following infusion of 111In-CMD-93 showed rapid clearing of blood pool activity, followed by markedly increased hepatic uptake by day 2, persisting to day 8 (Fig. 1). This pattern was observed for all patients in both dose levels. No significant uptake of 111In-CMD-193 in tumor was visualized in target lesions for all patients.

Whole body clearance was (mean ± SD) 47.82 ± 3.24 hours, and there was no statistically significant difference between dose levels (P = 0.74). Quantitative analysis confirmed the high levels of hepatic uptake of 111In-CMD-193 apparent visually on biodistribution images. Compared with the parental hu3S193 antibody, hepatic uptake was significantly higher at 24 hours (time of maximal hepatic uptake; Table 2). Tumor uptake was also significantly lower for CMD-193 compared with hu3S193 (Table 2).

Pharmacokinetics and HAHA. CMD-193 displayed a fast clearance from blood, consistent with the biodistribution findings (Table 3). Selected serum samples from patients were analyzed by fast protein liquid chromatography for immune complex or metabolite formation, and no complexes or metabolites or free 111In-chelate was observed up to 72 hours post-infusion (data not shown). No significant differences were found for T½α, T½β, clearance, or V1 between the two dose levels. The results for CMD-193 were significantly different compared with the parental antibody hu3S193 (13), with T½β for CMD-193 102.88 ± 35.67 hours versus 189.63 ± 62.17 hours for hu3S193 (P < 0.001) and CL for CMD-193 113.22 ± 56.58 mL/h versus 22.09 ± 9.87 mL/h for hu3S193, P < 0.001. No HAHA was detected in any patient. Free calicheamicin levels were at or below the limit of assay quantitation in all patients.

Response assessment. Metabolic response by FDG-PET and antitumor response according to RECIST criteria results are shown in Table 1. Response could not be formally measured in patient 161, who died of rapid progressive disease following early study withdrawal during cycle 2. Patient 103 showed a partial metabolic response (PMR), with a 41.7% reduction in SUVmax (prestudy, 10.8; restaging, 6.3) after four cycles of CMD-193 (Fig. 2). This was despite no change in CT dimensions of the target lesion. Stable metabolic disease (SMD) was observed in three patients and four had progressive metabolic disease (PMD) at
end of study assessment. Patient 108 showed SMD, but had a 25% reduction in SUV_{max} (prestudy, 4.4; restaging, 3.3) after five cycles of treatment. Of the four patients with PMD, three were in dose cohort 1 and one was in dose cohort 2. Assessment of antitumor response by CT scanning showed four patients with stable disease (SD) and four with progressive disease (PD) at final staging.

Adverse events. CMD-193 at doses of 1.0 and 2.6 mg/m2 was reasonably well tolerated, and no difference in toxicity was observed between patients in the two dose levels (Table 4).

Four patients, two from each dose cohort, were withdrawn because of toxicity. The main adverse events with some relationship to CMD-193 were asymptomatic myelosuppression, particularly thrombocytopenia (12 grade 1-2 events, 2 grade 3 events, and 1 grade 4 event), and abnormal liver function (5 grade 3 events). All other related adverse events, including fatigue, lethargy, anorexia, and nausea, were mild (grade 1-2). There were no infusion-related reactions. There were no serious adverse events related to study drug, and no serious or severe

Table 2. Peak tumor uptake and liver uptake of CMD-193 compared with parental antibody hu3S193

<table>
<thead>
<tr>
<th>hu3S193</th>
<th>Mean ± SD</th>
<th>Range</th>
<th>CMD193</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak tumor uptake ($\mu g/gm$)</td>
<td>2.9 ± 1.7</td>
<td>1.2-6.3</td>
<td>0.15 ± 0.03*</td>
<td>0.11-0.19</td>
<td></td>
</tr>
<tr>
<td>Liver %ID 24 p.i.</td>
<td>7.3 ± 1.5</td>
<td>4.5-9.5</td>
<td>33 ± 6.0†</td>
<td>26.9-42.0</td>
<td></td>
</tr>
</tbody>
</table>

*Peak tumor uptake hu3S193 vs CMD-193, $P = 0.0016$.
†Maximal liver uptake hu3S193 vs CMD-193, $P < 0.0001$.

Fig. 1. Representative biodistribution pattern of 111In-CMD-193. Anterior whole body γ camera images in patient 106 (1.0 mg/m2 dose cohort) following infusion are shown for day 1 (A), day 3 (B), and day 8 (C). Following infusion of 111In-CMD-193, there was initial blood pooling, followed by markedly increased hepatic uptake by day 2 that persisted to day 8. No tumor uptake was apparent in the whole body γ camera images (arrow) or SPECT (D). E, corresponding CT scan shows the large hepatic metastasis, also evident in F, coregistered SPECT/CT scan.
unexpected toxicities were observed. Toxicity was consistent with that found in the parallel phase I trial of CMD-193.9

Discussion

This study showed lack of targeting of CMD-193 to known sites of metastatic disease, and marked hepatic uptake and rapid clearance from blood, consistent with the observed short $T_{1/2}$ and fast serum clearance. There were no documented objective responses seen in size of tumor, but one patient did display a PMR according to 18F-FDG-PET analysis. These bioimaging and pharmacokinetic results highlight the importance of detailed investigation of the properties of antibodies and immunoconjugates in early phase I trials, and can provide critical information impacting on subsequent clinical development.

The biodistribution, clearance, and pharmacokinetic properties of CMD-193 were found to be significantly different to the parental antibody hu3S193. Phase I studies of 111In-hu3S193 have shown prominent specific uptake in tumor, a lack of consistent normal tissue/organ uptake, and a long half-life in blood (13, 14). This is in contrast to the fast clearance from blood, rapid uptake in liver parenchyma, and lack of tumor uptake of 111In-CMD-193 observed in this study. Importantly, one patient (patient 103) participated in both clinical studies, allowing direct comparison of biodistribution, clearance, and hepatic uptake between CMD-193 and hu3S193 in the same patient (Fig. 3). The whole body clearance and terminal half-life of 111In-CMD-193 were also faster than that observed with other humanized IgG1 antibodies (19, 22). Interestingly, this difference in serum clearance of a toxin-conjugate, compared with the parental antibody (hu3S193), has also been recently reported for the Herceptin-maytansinoid conjugate T-DM1, which had a $T_{1/2}$ of 2.1 to 3.7 days (compared with Herceptin $T_{1/2}$ of >10 days), although biodistribution data were not reported for this conjugate (23, 24).

The rapid clearance of CMD-193 from blood, and the liver uptake observed, was not predicted by preclinical studies. The marked difference in biodistribution of CMD-193 compared with parental antibody hu3S193 cannot be explained by antibody specificity, as retention of Le$^+$ binding by CMD-193 was confirmed before infusion. The lack of CMD-193 complexes or metabolites in blood (measured by fast protein liquid chromatography), absence of HAHA, and the lack of prominent spleen or bone marrow uptake on imaging, excludes CMD-193 complexes or free 111In-contributing to the increased liver uptake. It is possible that a physicochemical change induced by conjugation of the antibody with calicheamicin may have led to the altered biodistribution observed in this study. Size and charge are known to influence the uptake of circulating macromolecules by hepatic cells, possibly by influencing electrostatic attraction and hydrophobic interactions or specific receptor-mediated interactions with scavenger receptors, which remove acidic macromolecules (24–26). Despite the low uptake of CMD-193 in tumor, the observation of a PMR in one patient highlights the potent biological effect of calicheamicin, even at low tumor concentrations.

Table 3. 111In-CMD-193 serum pharmacokinetic analysis results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>CMD-193 All ($n=9$)</th>
<th>1 mg/m² CMD-193 ($n=6$)</th>
<th>2.6 mg/m² CMD-193 ($n=3$)</th>
<th>t test (comparing two dose levels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{1/2\alpha}$</td>
<td>Hour</td>
<td>4.76 ± 2.15</td>
<td>5.47 ± 1.99</td>
<td>3.32 ± 2.00</td>
<td>0.17</td>
</tr>
<tr>
<td>$T_{1/2\beta}$</td>
<td>Hour</td>
<td>102.88 ± 35.67</td>
<td>104.42 ± 37.94</td>
<td>99.79 ± 38.32</td>
<td>0.87</td>
</tr>
<tr>
<td>V1</td>
<td>mL/ h</td>
<td>4,071.22 ± 731.41</td>
<td>4,366.18 ± 586.87</td>
<td>3,481.31 ± 704.13</td>
<td>0.08</td>
</tr>
<tr>
<td>CL</td>
<td>mL/h</td>
<td>130.04 ± 61.25</td>
<td>79.56 ± 29.67</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td>μg·h/mL</td>
<td>16.37 ± 6.13</td>
<td>56.45 ± 17.05</td>
<td>Not done</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. PMR to CMD-193: assessment by 18F-FDG-PET. According to RECIST criteria, patient 103 had stable disease following four cycles of CMD-193 at a dose of 1.0 mg/m², with a large liver lesion (arrow) remaining similar in size on CT. The patient did however show a PMR in this lesion, with a 41.7% reduction in SUV$_{max}$ observed on 18F-FDG-PET. Prestudy and post-CMD-193 cycle 4 imaging is shown: A and D, CT image; B and E, 18F-FDG-PET; C and F, fused PET/CT images.
To our knowledge, CMB-401 (hCTM01-calicheamicin) is the only calicheamicin immunoconjugate to have reached phase II trials in solid tumors. This combined N-acetyl/analogue of calicheamicin with a polymorphic epithelial mucin targeting humanized antibody hCTM01 using an amide-based linkage. An initial phase I study in patients with epithelial ovarian cancer, which included a predose of unconjugated antibody to minimize uptake in normal tissues and complex formation with circulating antigen, found it to be tolerable and defined the maximum tolerated dose (27). A subsequent phase II trial in 21 patients with recurrent ovarian cancer failed to show clinical efficacy (28). In this case, a lack of efficacy (and suspension of development) was attributed to instability of the amide linker, although free calicheamicin and measurement

<table>
<thead>
<tr>
<th>System organ class</th>
<th>Adverse event</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood and lymphatic system disorders</td>
<td>Anemia</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Leucopenia</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Lymphopenia</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Neutropenia</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Thrombocytopenia</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>Abdominal bloating</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Epigastric discomfort</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Gastroesophageal reflux</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Nausea</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Vomiting</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>Flu-like symptoms</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Flushing</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fatigue</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Lethargy</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Hepatobiliary disorders</td>
<td>Hyperbilirubinaemia</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Investigations</td>
<td>ALP increased</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ALT increased</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Amylase increased</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>AST increased</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GGT increased</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Lipase increased</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Weight loss</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Metabolism and nutrition disorders</td>
<td>Anorexia</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Epistaxis</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>Bruising</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Rash erythematous</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>68</td>
<td>28</td>
<td>8</td>
<td>1</td>
<td>105</td>
</tr>
</tbody>
</table>

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase.
of serum complex formation results were not published. Bio-
distribution and pharmacokinetic assessment of CMB-401 in
patients were also not done in this trial, and hence, it is not
possible to draw direct comparisons with CMD-193 other
than the common toxicity profile relating to calicheamicin
(29, 30).

CMD-193 showed a similar toxicity profile to Mylotarg and
CMB-401, with predominant hepatic and hematological toxici-
ty. Hepatic toxicity seen in some patients following administra-
tion of CMD-193 may be explained by hepatic uptake and
metabolism of the Nac-γ calicheamicin DMH, as LeY is not ex-
pressed by liver cells (4). With Mylotarg however, hepatotoxic-
ity can be explained partly by sinusoidal obstruction syndrome,
the mechanism of which probably involves targeting of CD33+ cells in the sinusoids of the liver (30). Although liver toxicity
was also documented in phase I study of CMB-401 (but interest-
ingly not mentioned in phase II trial), in this case, it was at-
tributed to expression of target antigen in liver bile duct cells,
rather than to uptake of calicheamicin metabolites by hepato-
cytes (27, 28). Myelosuppression following CMD-193 may be
explained by the myelosuppressive effects of a small amount of free calicheamicin.

In summary, the detailed biodistribution and pharmacoki-
netic assessment performed in this trial was able to identify an unexpected in vivo fate for the novel LeY-targeting immunocono-
gulate CMD-193 in patients with advanced LeY-positive epithelial cancers. Although CMD-193 was generally tolerable, and hints of biological activity were shown, the marked hepatic uptake, low tumor uptake, and rapid blood clearance observed was in con-
trast to the parental antibody hu3S193. On the basis of clinical
trial data and the biodistribution results shown in this study, the clinical development of CMD-193 has not been continued.
These results highlight the importance of detailed biodistribution
and pharmacodynamic assessment in early phase studies of new biologics to inform and guide clinical development.

Disclosure of Potential Conflicts of Interest
D.S. Sonnichsen, employment, Wyeth Research. Funding for this study
was provided by Wyeth Research.

References
7:1430–6.
expression of the blood group-related Lewis Y
lection of tumor antigens as targets for immune
attack using immunohistochemistry: II. Blood
group-related antigens. Int J Cancer 1997;73:
50–6.
ificity analysis of blood group Lewis-y (Le(y))
5. Yin BW, Fustin CL, Kitamura K, et al. Serologi-
cal and immunchemical analysis of Lewis y
(Ley) blood group antigen expression in epide-
6. Myers RB, Srivastava S, Grizzle WE. Lewis Y
antigen as detected by the monoclonal anti-
7. Leoni F, Colnaghi M, Canevari S, et al. Glycol-
pids carrying Ley are preferentially expressed on
small-cell lung cancer cells as detected by the monoclonal antibody MuLc1. Int J Cancer 1992;
51:225–231.
8. Baldus SE, Monig SP, Zirbes TK, et al. Lewis(y)
antigen (CD174) and apoptosis in gastric and co-
loreal carcinomas: correlations with clinical and
prognostic parameters. Histol Histopathol 2006;
lated type-2 chain polyaclosamine antigens in
Immunohistologic expression of blood-group
antigens in normal human gastrointestinal tract
and colonic carcinoma. Int J Cancer 1986;37:
667–76.
11. Sakamoto J, Furukawa K, Cordon-Cardo C,
et al. Expression of Lewisa, Lewisb, X, and Y
blood group antigens in human colonic tumors
and normal tissue and in human tumor-derived
12. Scott AM, Geleck D, Rubira M, et al. Construc-
tion, production, and characterization of human-
ized anti-Lewis Y monoclonal antibody 3S193 for
targeted immunotherapy of solid tumors. Can-
biodistribution and pharmacokinetic trial of hu-
manized monoclonal antibody Hu3S193 in pa-
itients with advanced epithelial cancers that
express the Lewis-Y antigen. Clin Cancer Res
Lewis Y (LeY) in small cell lung cancer (SCLC)
with a humanized monoclonal antibody,
Antibody-targeted chemotherapy with the cali-
cheamicin conjugate hu3S193-N-acetyl y cali-
cheamicin dimethyl hydrazide targets Lewisy
and eliminates Lewisy-positive human carcino-
ma cells and xenografts. Clin Cancer Res 2004;
10:4538–49.
New guidelines to evaluate the response to
treatment in solid tumors. European Organiza-
tion for Research and Treatment of Cancer,
National Cancer Institute of the United States,
National Cancer Institute of Canada. J Natl
targeting, biodistribution, and lack of immuno-
genicity of chimeric anti-GD3 monoclonal anti-
bodies: results of a phase I trial. J Clin Oncol
18. Liu A, Williams LE, Raubitschek AA. A CT as-
stressed method for absolute quantitation of inter-
of humanized monoclonal antibody A33 in pa-
itients with colorectal carcinoma: biodistribution,
pharmacokinetics, and quantitative tumor up-
20. Young H, Baum R, Cremerius U, et al. Mea-
surement of clinical and subclinical Tumor re-
sponse using [18F]-fluorodeoxyglucose and position
emission tomography: review and 1999 EORTC
recommendations. Eur J Cancer 1999;
35:1773–82.
recommendations for the use of 18F-
FDG PET as an indicator of therapeutic response
in patients in National Cancer Institute Trials.
clinical trial with monoclonal antibody ch806 tar-
geted human transitional state and mutant epidermal
growth factor receptors. Proc Natl Acad Sci
USA 2007;104:4071–76.
study of weekly dosing of trastuzumab-DM1
(T-DM1) in patients with advanced Her2+
breast cancer [abstract 1029]. J Clin Oncol
2008:26(May suppl; abstr 1029).
24. Terspa V, van Amersfoort ES, van Vezen AG,
et al. Hepatic and extrahepatic scavenger recep-
tors: function in relation to disease. Arterioscler
25. Koostira T, Duursma AM, Bouma JM, et al. Ef-
fect of size and charge on endocytosis of lyso-
zyme derivatives by sinusoidal rat liver cells
macromolecules in rat in vivo and in the perfused liver. Pharm Res 1991;8:437–44.
27. Gillespie AM, Broadhead TJ, Chan SY, et al. Phase I
open study of the effects of ascending doses of the cytotoxic immunoconjugate CMB-
401 (HcTM01-calicheamicin) in patients with epi-
CMB-401 (HcTM01-calicheamicin) in patients with
platinum-sensitive recurrent epithelial ovarian
carcinoma. Cancer Immunol Immunother 2003;
Final report of the efficacy and safety of gemtu-
zumab ozogamicin (Mylotarg) in patients with
CD33-positive acute myeloid leukemia in first re-
obstructive syndrome (SOS): an overview from
the research on adverse drug events and re-
ports (RADAR) project. Leuk Res 2007;31:
599–604.
Phase I Biodistribution and Pharmacokinetic Study of Lewis Y–Targeting Immunoconjugate CMD-193 in Patients with Advanced Epithelial Cancers

Clin Cancer Res Published OnlineFirst October 13, 2009.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-09-0536

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.