Differential Thymidylate Synthase Expression in Different Variants of Large-Cell Carcinoma of the Lung

Valentina Monica, Giorgio V. Scagliotti, Paolo Ceppi, Luisella Righi, Alberto Cambieri, Marco Lo Iacono, Silvia Saviozzi, Marco Volante, Silvia Novello, and Mauro Papotti

Abstract

Purpose: In non–small cell lung cancer, higher thymidylate synthase (TS) levels have been reported in squamous cell carcinoma (SCC) compared with adenocarcinoma (ADC). Data on TS expression in large-cell carcinoma (LCC) are scanty.

Experimental Design: TS mRNA and protein levels were analyzed in 42 surgical cases of pulmonary LCC, including 8 large-cell neuroendocrine carcinomas, and were compared with controls represented by ADC (n = 41), SCC (n = 30), and small-cell lung carcinoma (SCLC; n = 33). TS levels were also correlated with the expression of Ki67 and E2F1. Moreover, the reliability of TS expression analysis was assessed in 22 matched cytologic and surgical specimens of non–small cell lung cancer.

Results: TS mRNA levels of LCC were comparable with those of control SCC, but significantly higher than those of ADC (P < 0.001) and lower than SCLC (P < 0.001). A correlation between TS mRNA and protein levels was observed in control ADC and SCC, but not in LCC. Large-cell neuroendocrine carcinomas had the highest TS expression, whereas in non-neuroendocrine LCCs, TS protein levels were significantly higher (P = 0.02) in LCC immunoreactive for p63 and desmocollin3 (markers of squamous differentiation) than those expressing TTF-1 (a marker of ADC). Both E2F1 and Ki67 levels were not correlated with TS in LCCs. Finally, a linear correlation in TS protein levels was observed between matched cytologic and surgical specimens.

Conclusion: The pulmonary LCC immunoprofile may resemble that of SCCs or ADCs. This immunoprofile is associated with differential TS expression levels, which may support a more appropriate therapeutic strategy decision. (Clin Cancer Res 2009;15(24):7547–52)

Under the commonly used term of non–small cell lung cancer (NSCLC), there are three major histologic types according to the current WHO classification for lung tumors: (a) adenocarcinoma (ADC), characterized by glandular differentiation and mucin production; (b) squamous cell carcinoma (SCC), characterized by keratinization and/or intracellular bridges; and (c) large-cell carcinoma (LCC), which accounts for <10% of lung cancers and is represented by poorly differentiated tumors lacking the cytologic and architectural features of the two above histotypes, including variants of neuroendocrine and nonneuroendocrine types (1).

Although histology has not consistently been associated with clinical outcomes in advanced NSCLC (2), it has recently emerged as a potential predictive factor of response to or survival with pemetrexed. In phase III studies on NSCLC, pemetrexed, alone or in combination with cisplatin, showed a statistically superior activity in nonsquamous histotypes (3–5), which was also supported by additional retrospective analyses from phase II data (6, 7). Preliminary molecular evidence indicated that this differential activity may be related to a lower baseline expression of thymidylate synthase (TS), the main molecular target of pemetrexed, in ADC compared with squamous cell (8) and small-cell (9) lung carcinoma. In different tumors (9–12), preclinical data support the hypothesis that overexpression of TS correlates with reduced sensitivity to pemetrexed (13), and high TS expression levels were associated with poor outcome of patients treated with antifolate drugs.

In one of the above-mentioned studies, the combination of cisplatin and pemetrexed showed a clinical efficacy in LCC comparable with that observed in ADC (3), but data on TS gene or protein expression in LCC of the lung are extremely limited to tiny case series.

Human Cancer Biology

Received 6/26/09; revised 9/8/09; accepted 9/16/09; published OnlineFirst 12/8/09.

Note: V. Monica is part of the Ph.D. program in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Grant support: Regione Piemonte (Turin) research grants 20889 DD12/08 dated 18.06.2008 (G.V. Scagliotti) and 38097 (DD 466/08) dated 27.11.2008 (M. Papotti).

Requests for reprints: Giorgio Scagliotti, Division of Thoracic Oncology, Department of Clinical and Biological Sciences, University of Turin at San Luigi Hospital, Orbassano (Turin), Italy. Phone: 39-011-9026414; Fax: 39-011-9038616; E-mail: giorgio.scagliotti@unito.it.

© 2009 American Association for Cancer Research.

Published OnlineFirst December 8, 2009; DOI: 10.1158/1078-0432.CCR-09-1641

Published Online First on December 8, 2009 as 10.1158/1078-0432.CCR-09-1641
Translational Relevance

Baseline thymidylate synthase (TS), one of the main targets of pemetrexed, is higher in squamous cell carcinoma than in adenocarcinoma of the lung, and this differential expression has been related to the higher clinical efficacy of this agent in nonsquamous non–small cell lung cancer (NSCLC). In 42 consecutive surgical cases of large-cell carcinoma (LCC), a differential TS expression according to the different immunophenotypes was observed, with the highest median mRNA TS value in neuroendocrine LCC and in nonneuroendocrine LCC cases expressing the squamous cell carcinoma lineage markers p63/DSC3, whereas a lower median mRNA TS value was detected in nonneuroendocrine LCC positive for the adenocarcinoma lineage marker TTF-1 (P < 0.0008).

A statistically significant association between TS immunoreactivity in cytologic preoperative samples, diagnosed as generic NSCLC not otherwise specified, and the corresponding histologic surgical specimens were detected. The present study confirms the relevance of TS assessment as a supportive tool to determine an appropriate therapeutic strategy in NSCLC.

Most of the non-neuroendocrine LCCs (non-NE LCC) may well represent extremely dedifferentiated cases of ADC or SCC, and immunohistochemical markers of ADC (e.g., TTF-1) or squamous (e.g., p63, desmocollin-3) lineages trace residual glandular or squamous phenotypes in the majority of LCCs (14, 15). Therefore, a differential TS expression may be hypothesized in these subgroups of LCC.

This study aimed to assess TS transcript and protein expression levels in LCC, analyzing the differential expression of TS within the LCC variants compared with the ADC, SCC, and small-cell lung carcinoma (SCLC) control groups. We also investigated the correlation between TS levels and both Ki67 proliferation index and the expression levels of E2F1, a transcription factor that regulates TS in the S-phase of the cell cycle. Finally, because of a growing proportion of preoperative diagnoses of NSCLC “not otherwise specified” (NOS), generally due to the limited number of viable cells in cytologic or biopsy specimens, TS protein expression levels were quantified in preoperative NSCLC-NOS samples and compared with those of the corresponding surgical specimens to define the potential clinical usefulness of TS immunohistochemical determination in small samples of inoperable cases.

Materials and Methods

Patients and samples

LCC cases. Forty-two consecutive surgical cases of LCC (~5% of the total surgical cases), all having annotate clinical information and sufficient amount of tissue available for histologic review, immunohistochemistry, and molecular analyses, were retrospectively collected from the pathology files of the University of Turin at San Luigi Hospital, from May 2000 to February 2008. These included 8 large-cell neuroendocrine carcinomas (LCNEC) and 34 non-NE LCCs, classified as clear cell variant (n = 9), basaloid variant (n = 3), and NOS type (ICD-O: 8012/3; n = 22). Twenty-six of the non-NE LCC cases were also included in a previous study on LCC immunophenotyping (15).

Control groups. Control cases of ADC (n = 41) and SCC (n = 33), consecutively selected from the same surgical database in a period of 6 mo, were assessed for TS expression. Conversely, all SCLC control cases were represented by consecutive cases of bronchial biopsies. In addition, 22 preoperative cytologic specimens diagnosed as NSCLC-NOS (16 bronchial washings and 6 trans-thoracic fine-needle aspiration biopsies) and their corresponding surgical specimens were collected. All histologic materials were deidentified and cases were anonymized by a pathology staff member not involved in the study. Clinical data were compared and analyzed through coded data only.

Microdissection, RNA isolation, and retrotranscription

One 10-μm-thick section was used for RNA extraction. The section was serial to three previous sections, 4-μm thick, from the same formalin-fixed paraffin-embedded tumor block that were used for H&E staining to select appropriate neoplastic areas, and for TS and Ki67 immunohistochemistry, respectively. The 10-μm-thick section was dried at 56°C overnight, deparaffinized, and stained with Nuclear Fast Red solution (Sigma-Aldrich), then rehydrated through graded alcohols and dissected using a scalpel.

RNA isolation and retrotranscription were done as previously reported (8).

Quantitative real-time PCR

Quantitative PCR was done on an ABI PRISM 7900HT Sequence Detection System (Applied Biosystems) in a 384-well plate. All quantitative PCR mixtures contained 1 μL of cDNA template (~20 ng of retrotranscribed total RNA) diluted in 9 μL of distilled-stereile water, 1,200 nmol/L of each primer, 200 nmol/L of internal probe, and TaqMan Gene Expression Master Mix (Applied Biosystems) to a final volume of 20 μL. The sequences of primers and probes for TS and the β-actin reference gene were as follows: TS forward 5′-GCCCTCTGGTGCCTTT-3′, TS reverse 5′-GATGTGGCCAACTGATCATGGT-3′, TS probe (FAM)-5′-AACATCGCCACGTCAGCCCTG-3′ (TAMRA); E2F1 forward 5′-CTCAAGGCGCTGACTCCTT-3′, E2F1 reverse 5′-ACATCATGGCCGCTGTGGT-3′, E2F1 probe (FAM)-5′-CGAACAGTTTCTGATTCCTAAGAAGCA-3′ (TAMRA); β-actin forward 5′-TGAGGCGCGCGTCTACGAGG-3′, β-actin reverse 5′-TCCITTAATGCTACGCGCGCTG-3′, β-actin probe (FAM)-5′-ACCACCAAGCCCCGGCCG-3′ (TAMRA). Cycling conditions were 50°C for 2 min, 95°C for 10 min followed by 46 cycles at 95°C for 15 s, and 60°C for 1 min. Baseline and threshold for cycle threshold (Ct) calculation were set manually with ABI Prism SDS 2.1 software. A mixture containing Human Total RNA (Stratagene) was used as control calibrator on each plate. The fold change in gene expression levels was evaluated using the 2^ΔΔCt method (16).

Immunohistochemistry

Serial 5-μm-thick sections were collected on charged slides; after paraffin removal, rehydration through graded alcohols, and endogenous peroxidase activity quenching, the sections were treated in a pressure cooker for 5 min at 125°C, followed by a quick 10-s step at 90°C using EDTA buffer (pH 8.0). The slides were then incubated for 40 min at room temperature with primary mouse anti-TS antibody (clone 106, dilution 1:100; Zymed) or anti-Ki67 (clone MIB-1, dilution 1:150; Dako). The immune reaction was revealed by the En Vision Mouse system (Dako), using 3,3′-diaminobenzidine (Dako) as chromogen.

To overcome heterogeneity of TS expression within individual tumors, the entire tissue section was evaluated to assess TS immunostaining, the percentage of tumor cells positive was scored semiquantitatively as follows: “low” if TS-positive cells were <10%, “moderate” if TS-positive cells were between 11% and 39%, and “high” if TS-positive cells were >40%. The reactivity pattern was mainly nuclear, but occasional cytoplasmatic staining was also considered positive (8, 17). The Ki67 index was determined by counting positive nuclei in 1,000 cells, randomly selected in areas of highest labeling density and expressed as percentage of proliferating cells.
In non-NE LCCs, TTF-1 (dilution 1:75; NeoMarkers, LabVision) desmocollin-3 (DSC-3; dilution 1:30, PROGEN Biotechnik), and p63 (dilution 1:100; NeoMarkers) immunostainings were done in all newly collected cases, using the same antibodies and procedures described for the 26 previously reported LCC cases (15).

Statistical analysis
To test the significant association between gene expression (continuous variable) and clinicopathologic features (dichotomous variables), Kruskal-Wallis and Mann-Whitney U tests were used. The correlation between two continuous variables was estimated using Spearman’s test. Correlation between TS protein expression subgroups (low, moderate, and high scores) and clinicopathologic variables were analyzed by the χ² test. Comparisons between TS expression levels and the phenotypic profiles of individual LCC cases were done both using the marker expression data on TTF-1, p63, and DSC-3 already reported in a previous study (15) and carrying out the same immunoprofiling in the additional LCC cases enrolled in this study. Statistical analysis was done with Statistica 7.0 software with a level of significance of \(P = 0.05 \); graph design was done excluding outlier values.

Results

Patients’ characteristics. The LCC group included 33 males and 9 females, with a median age of 65 years (range, 45-80 years). Most tumors were stage I (n = 33), whereas the remaining cases were stage II and III (5 and 4, respectively). The control group of ADC and SCC included 54 males and 17 females with a median age of 70 years (range, 43-84 years). The tumors were grade 1 (n = 11), grade 2 (n = 30), or grade 3 (n = 30), and the tumor stage was I (n = 24), II (n = 24), or III (n = 16). In the SCLC control group, the median age of the 24 male and 9 female patients was 65 years (range, 48-79 years). Finally, the separate group of 22 patients (20 males and 2 females), on whom a cytology-histology TS correlation study was done, had a median age of 64 years (range, 48-83 years) and a final histologic diagnosis of ADC (n = 13), SCC (n = 4), and LCC (n = 5).

TS expression levels in LCCs and control groups. The 42 LCCs showed a median TS mRNA level of 0.40 (range, 0.04-2.56). These figures were comparable with those of the control group of SCC (median level, 0.33; range, 0.09-2.56), and SCC (median level, 0.33; range, 0.09-2.56), a statistically significant difference (\(P = 0.005 \)) but not of poorly differentiated control ADC (0.13; range, 0.03-0.66; \(P = 0.02 \)); and the SCC (0.26; range, 0.02-1.36; \(P = 0.04 \)). Conversely, no significant differences were found between E2F1 mRNA expression in non-NE LCC and either the ADC (0.13; range, 0.03-0.66; \(P = 0.19 \)) or the SCC (0.26; range, 0.05-1.25; \(P = 0.4 \)) control group.

In comparing E2F1 and TS mRNA expression levels, a significant linear correlation was found in ADC only (\(R = 0.49 \) and \(P = 0.004 \)), whereas both SCC and non-NE LCC cases failed to show any linear correlation. Similarly, comparing Ki67 proliferation index and TS absolute percentage value of protein expression, a significant linear correlation was observed in ADC (\(R = 0.53 \) and \(P = 0.007 \)), but not in the SCC and non-NE LCC groups.

Correlation between TS protein expression in preoperative and postoperative specimens. In comparing the immunohistochemical expression of TS in 22 NSCLC cytologic samples with those of the corresponding resected specimens, a significant correlation was observed (\(R = 0.89 \); \(P < 0.001 \)). The percentage of TS expression in tumor cell nuclei ranged from 0 to 60 in cytologic samples and from 0 to 80 in matched surgical specimens. A representative case is shown in Fig. 2.

Discussion

This study showed that in a LCC series, considered as a single group of tumors, the median TS gene expression levels were comparable with those observed in SCC (\(P = 0.24 \)), higher than the median value in ADC (\(P < 0.001 \)) and significantly lower.
than those reported in SCLC ($P < 0.001$). A significant correlation was found between TS immunohistochemical and quantitative PCR detection methods, suggesting the reliability of either technique for TS analysis in lung cancer specimens. These results are in agreement with previous reports (8, 18, 19) and may further provide a molecular explanation for the documented superior efficacy of pemetrexed in nonsquamous compared with squamous tumors (3, 6, 20).

The observed TS expression levels in LCC and SCC apparently challenge the clinical findings reported in a phase III study showing comparable activity of pemetrexed plus cisplatin in ADC and LCC (3). However, when mRNA and protein TS expression levels were separately considered in the different LCC subtypes, LCNEC had significantly higher mRNA and protein amounts than the non-NE LCC subtypes, with average values more closely related to SCLC than to SCC. This finding is not totally unexpected because both LCNEC and SCLC share extremely poorly differentiated features, a neuroendocrine phenotype, as well as a similar clinical behavior. When LCNEC were excluded, a correlation between TS expression and the tumor phenotype was found in the non-NE LCC subtypes. LCCs are poorly differentiated carcinomas lacking morphologic evidence of squamous or glandular differentiation, although the possibility of their further subtyping was previously documented using immunohistochemical differentiation lineage markers, such as TTF-1 and DSC-3, which in the vast majority of cases seemed to be mutually exclusive (15). Interestingly, in the present series, DSC-3–positive non-NE LCC had significantly higher TS protein expression levels that those that were TTF-1 positive.

Overall, in ADC and SCC, a direct correlation was seen between median TS expression and tumor differentiation grade. The median mRNA TS expression level in non-NE LCC was comparable with the value observed in poorly differentiated ADC and SCC.

TS transcription is regulated by several factors, including E2F1, a transcription factor belonging to the E2F gene family (21), which plays a central role during transition from G1 to...
expression of TS and E2F1 in the non-NE LCC group only could high proliferation of LCC (24). The observed differential ex-

growth arrest contributing to the undifferentiated status and

S phase of cell cycle. In vitro studies have shown that E2F1 over-

expression increases both TS mRNA and protein (22). In our

study, E2F1 and TS mRNA expression levels correlated only in

ADC, whereas no correlation was observed in SCC and LCC, showing in the latter series lower E2F1 levels compared with

TS levels.

In LCC, increased expression of genes implicated in cell cycle

regulation, such as E2F3, PCNA, and CDK4 (23), may prevent
growth arrest contributing to the undifferentiated status and high proliferation of LCC (24). The observed differential expres-

sion of TS and E2F1 in the non-NE LCC group only could be related to the activation of an alternative TS transcription

pathway, such as the p16INK4-CDK4 pathway as preliminarily suggested in cell line studies (25).

The need to define a specific histotype for a decision-making process collides with the growing percentage of patients given a
generic diagnosis of NSCLC-NOS, especially in extremely scanty biopsies or cytology samples. TS protein expression was tested

in 22 cases having a preoperative cytologic diagnosis of NSCLC-

NOS and in the corresponding histologic samples obtained at

the time of subsequent surgical resection: a highly significant level of correlation of TS protein expression in matched speci-
mens was observed. These data show that when sample cellu-

larity is sufficient, immunohistochemistry may be a reliable
tool to assess TS expression levels. These immunohistochemical findings related to TS as well as those for TTF-1 and DSC-3 ex-

pression will potentially contribute to a better definition of the role of pemetrexed-based therapies in NSCLC-NOS.

In conclusion, this study confirms that TS is differentially ex-

pressed in NSCLC histotypes and, for the first time, shows a dif-

ferent TS mRNA expression in LCC subgroups. Specifically,

LCNEC contained the highest TS levels, approaching those ob-

served in the SCLC control group, whereas non-NE LCC cases

did not have a differential expression, based on their phenotypes:

those expressing the ADC lineage marker TTF-1 had the lowest

TS levels within this group, whereas cases expressing the SCC

lineage markers p63 or DSC3 had the highest ones.

Because only baseline TS expression and preliminary, non-

conclusive data on the predictive value for response and surviv-

al of TS expression in different NSCLC histotypes are available,

these results are hypothesis generating and need a prospective

validation, in a large cohort of LCC cases, at the biological and

clinical levels through serial assessment of TS levels before and
during pemetrexed therapy.

Figure 2: A strong TS immunoreactivity was observed in a lung cancer
cytologically reported as NSCLC-NOS in a bronchoalveolar washing. The
corresponding surgical specimen (inset) showed a poorly differentiated
squamous carcinoma having diffuse TS expression (×200).

References

Disclosure of Potential Conflicts of Interest

G.V. Scaglotti declares honoraria from Eli Lilly, Astra Zeneca, Sanofi-Aventis, GlaxoSmithKline, Roche, Millenium. The other authors have no conflict of interest to declare.
Clinical Cancer Research

Differential Thymidylate Synthase Expression in Different Variants of Large-Cell Carcinoma of the Lung

Valentina Monica, Giorgio V. Scagliotti, Paolo Ceppi, et al.

Clin Cancer Res Published OnlineFirst December 8, 2009.

Updated version Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-09-1641

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.