Sperm DNA Integrity in Men Treated for Childhood Cancer

Patrik Romerius, MD1,2,7, Olof Ståhl MD, PhD2,3,7, Christian Moëll MD, PhD1, Thomas Relander MD, PhD2, Eva Cavallin-Ståhl MD, PhD2, Helen Gustafsson, PhD4, Kerstin Löfvander Thapper, PhD5, Katarina Jepson3, Marcello Spanò PhD6, Thomas Wiebe MD, PhD1, Yvonne Lundberg Giwercman PhD7, Aleksander Giwercman MD, PhD2,7

1. Department of Pediatrics, Lund University, Skåne University Hospital, Lund, Sweden;
2. Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden;
3. Department of Oncology, Skåne University Hospital, Lund, Sweden;
4. Department of Medical Radiation Physics, Skåne University Hospital, Malmö, Sweden;
5. Radiation Physics, Lund University and Skåne University Hospital, Lund, Sweden;
6. Section of Toxicology and Biomedical Sciences, BIOTEC-MED, ENEA Casaccia Research Center, Rome, Italy;
7. Department of Clinical Sciences, Lund University, Malmö, Sweden

Correspondence and reprint request:
Patrik Romerius
Reproductive Medicine Centre
Lund University
Skåne University Hospital, Malmö
Entrance 74
SE 205 02 Malmö, Sweden
Tel no: +46 40 337987; Fax no: +46 40 338266, e-mail: patrik.romerius@med.lu.se

This study was supported by grants from the Swedish Childhood Cancer Society (grant nos. 05/056 and RKT04/001), Swedish Cancer Society (grant no: 4857-B05-03XCC), The Gunnar Nilsson Cancer Foundation, Malmö University Hospital Foundation for Cancer Research, Swedish Governmental Founding for Clinical Research.

Running head: Sperm DNA damage in childhood cancer survivors
Translational Relevance

Childhood cancer *per se* and/or its treatment can influence the reproductive ability by being associated with impairment of sperm production as well as sperm DNA damage. The finding of increased proportion of sperm with DNA strand breaks in childhood cancer survivors not treated with chemo- or radiotherapy, points to genomic instability as being possibly associated with malignancy in early life. The risk of DNA damage seems to increase in those treated by irradiation but not chemotherapy. This is a matter of concern, since sperm DNA breaks may have a negative impact on fertility and through use of powerful assisted reproduction tools can be transmitted to the offspring, possibly resulting in malformations, or diseases later in life.
Abstract

Purpose
It is unknown whether childhood cancer and its treatment are associated with sperm DNA damage, which subsequently affects fertility and might be transmitted to the offspring. The aim of this study was to assess DNA fragmentation index (DFI) as an indicator of sperm DNA integrity in childhood cancer survivors (CCS), treatment regimen taken into account.

Experimental Design:
In 99 CCS and 193 age-matched healthy controls, the DFI was assessed by the use of Sperm Chromatin Structure Assay.

Results
In the whole group of CCS DFI was increased as compared to the controls with borderline statistical significance (mean difference=0.94%; 95%CI: -0.0088; 3.7%). Those treated with radiotherapy only (mean difference=6.0%; 95%CI: 1.6; 10%) or surgery only (mean difference=2.9%; 95%CI: 0.083; 3.7%) had statistically significantly higher DFI than the controls. The odds ratio (OR) for having DFI >20%, which is associated with reduced fertility, was significantly increased in CCS as compared to the control group (OR=2.2, 95%CI: 1.1; 4.4). For the radiotherapy only group the OR was even higher (OR=4.9, 95%CI 1.3; 18). The DFI was not associated to the dose of scattered testicular irradiation or the type of chemotherapy given.

Conclusions
The DFI is increased in CCS, those treated with chemotherapy being the only exception. This sperm DNA impairment may be associated with the disease per se rather than due to the treatment and may have negative consequences in terms of fertility and risk of transmission to the offspring.
Introduction

The survival rate of patients treated for childhood cancers has improved over the last decades due to the use of potent chemotherapy, improved surgical and radiation techniques, as well as diagnostics improvement. Close to 80% of patients survive childhood cancer(1, 2), why future treatment regimens must aim for survival of the highest possible number of patients, combined with the least impairment of their quality of life, including well preserved reproductive function(3).

Irradiation and chemotherapy can have a persistent deleterious effect on reproductive function in both humans(4, 5) and animal models(6). The negative effects include impaired spermatogenesis, resulting in azoospermia or oligozoospermia(7-9). Increased number of both autosomal and sex chromosome aberrations in sperm samples after irradiation and chemotherapy have been reported in humans, but data suggest that these changes are transient(10-14). Less is known regarding more subtle sperm DNA damage such as strand breaks. To our knowledge, the largest study focusing on sperm DNA integrity in CCS was based on 23 subjects only(9). In this study, using the terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL), no increase in the proportion of sperms with DNA damage was seen in comparison to healthy controls. However, due to the limited number of subjects included, no definitive conclusions could be drawn.

Sperm DNA impairment may have implications on the fertility(15) and/or be transmitted to the offspring. The probability of achieving pregnancy in vivo is decreased when the DNA fragmentation index (DFI), as assessed by means of Sperm chromatin structure assay (SCSA), is >20% and is close to zero if the DFI is >30%(16-18). Use of assisted reproduction, such as intracytoplasmic sperm injection (ICSI), which seems to be the most efficient fertilization method if DFI is high(16), can bypass the natural selection mechanisms and potentially increase the risk of transmitting cancer or therapy related sperm DNA damage to the offspring. The mutagenic effects of both radiotherapy and chemotherapy are well known from...
animal studies(19-22). Previous human studies indicated no increased risk of adverse pregnancy outcomes for the partners of male childhood cancer survivors (CCS)(23-25). However, in two recent studies on children to men treated for cancer, an increase in malformation rate was seen(26, 27).

Apart from the negative impact of the treatment on sperm DNA, the disease per se might be associated with genomic instability(28-32) and therefore, even with sperm DNA defects, a hypothesis which is supported by reports connecting congenital anomalies to childhood malignancies.

In view of the above mentioned findings on a possible link between childhood cancer and its treatment and sperm DNA defects, the aim of our study was to elucidate whether the disease per se and/or different modalities had an impact on sperm DFI in a group of men treated for childhood cancer.
Subjects and Methods

Subjects

This study was based on a cohort of consecutive CCS in the Region of Southern Sweden and reported to the Swedish Tumor Registry in the period 1970-2002. The inclusion criteria were: 1) male gender, 2) diagnosed before 18 years of age, 3) still alive in September 2004, 4) no active oncological treatment for the last four years, 5) between 18 and 45 years of age at the start of the study in 2004.

Written invitation was sent to 407 CCS. Among them, 140 declined to take part in the study, 106 did not reply, despite being sent a reminder, and 161 gave their consent. Ten men were excluded, one as he previously had undergone vasectomy, and nine since their disease was considered non malignant (e.g carcinoid in the appendix or spinal hemangioma). Thus, a total of 151 men (38% of eligible subjects) were included.

Median age (range) at diagnosis was 10 (0.1-17) years and 30 (20-46) years at the time of examination. Background characteristics for the participants were collected from their medical records. The distribution of diagnoses for the 151 participants is presented in Figure 1, along with corresponding numbers for the whole of Sweden (2003-NORDCAN1).

To determine whether the cohort of participants was representative for the whole group of CCS, the data on fertility of the participants and non-participants was extracted from the Swedish Multi-Generation Register. This register has information on the number of children for each index person. For those alive after 1990, the Register is virtually complete with respect to parents as well as offspring. Non-biological relations are flagged in the register.

The distribution of men having 0, 1, 2 or 2+ children was 71%; 12%; 15%; and 3.1% among the participants and 73%; 9.5%; 13%, and 5.1% among the non-participants, respectively.

Through a questionnaire we collected information regarding smoking habits and alcohol consumption.

1 http://www-dep.iarc.fr/nordcan.htm
The study was approved by the Ethics Committee at Lund University and all subjects provided written informed consent.

Cancer therapy groups

The subjects were allocated to four groups according to the type of treatment received, a) surgery only b) radiotherapy only; c) chemotherapy only; and d) radio- and chemotherapy combined.

Controls

The control group comprised 193 Norwegian men from the general population, recruited for a study of seasonal variation in semen quality, which was not found among these men living north and south of the Arctic Circle(33). These men were not selected due to proven fertility or infertility, therefore representing semen quality in men in general. This group was similar in age and ethnicity compared to the study population. Median age (range) for the controls was 28 (19-40) years.

Sample collection

The men were asked to deliver a semen sample by masturbation after an abstinence period of two to three days. The sample was analyzed within one hour after ejaculation and semen quality was assessed as recommended by WHO(34).

Sixteen CCS were unable to provide an ejaculate. Of the remaining samples, 31 samples showed azoospermia, three samples contained too few sperms and two samples had insufficient amount of semen for analysis. An aliquot of 200 μL was frozen and kept at -80°C for subsequent analysis of sperm DNA integrity by SCSA for the 99 samples from the CCS and all the controls.
Sperm Chromatin Structure Assay

The details of this method have previously been described(35). Briefly, the SCSA is based on the phenomenon that DNA with strand breaks has a tendency to denature when exposed to an acid-detergent, whereas normal DNA remains stable. The SCSA measures the in situ ability of sperm DNA to denaturize using a metachromatic dye, acridine orange (AO), which differentially stains double- and single-stranded nucleic acids. Upon blue-light excitation, AO molecules intercalated into the intact (double stranded) DNA emit green fluorescence, whereas AO bound to denatured (single stranded) DNA emits red fluorescence. The extent of DNA denaturing ability is expressed as the DFI, which is the ratio of red to total (red plus green) fluorescence intensity. DFI hereby expresses the proportion of cells containing denatured DNA(17).

Five thousand cells were analyzed by FACSort (Becton Dickinson, San Jose, CA, USA). DFI was calculated using the List View software (Phoenix Flow Systems, San Diego, CA, USA). An intra-laboratory coefficient of variation of 4.5% was found after repeated measurements of the same reference sample.

Gonadal radiation dose

The dose outside the radiotherapy target area, called peripheral dose (PD) was calculated. The PD was used to estimate the scattered dose to the testes. The program Peridose, which distinguishes between orthogonal and tangential beams and accounts for the use of wedges and shielding blocks was used(36). The separate contribution of leakage radiation and collimator scatter to the total peripheral dose was also calculated(37).

The model was verified using diode measurements of the dose outside the primary beam, and compared to a simple model in a solid water phantom. The correspondence between the calculation and the measurement was within ±10%.
The treatment techniques for the CCS in our study have mainly been rectangular, perpendicularly incident beams with none or small shielding blocks. An exception is the large, irregular mantle field.

The data used for the calculations for each patient were collected from their medical charts, regarding photon energy, beam sizes, beam arrangement, dose to d\textsubscript{max}, and target dose. For the estimation of the PD to the gonads, the distance between the lower level of the beam edge and the gonads was estimated for each treatment beam. This information was collected from the localization and verification films of each patient.

The scattered dose to the testes was only calculated for those patients who received irradiation only (n=12), since it was not possible to discriminate between the effects of radio and chemotherapy on sperm DFI in cases where both was given.

Statistical analysis

The group descriptive values were expressed as medians (range) and means [standard deviation (SD)].

In relation to their smoking habits the participants were allocated to three groups: 1) non-smokers, 2) 1-10 cigarettes/day and 3) ≥11 cigarettes/day. For alcohol consumption three groups were defined: 1) 0-99 grams of alcohol per week, 2) 100-199 grams of alcohol per week and ≥200 grams of alcohol per week (Table 1).

Primarily, we compared all the CCS with the controls. A univariate linear model was used for comparison of sperm concentration, as well as for DFI, between CCS and controls, using age, smoking, and alcohol consumption as confounders.

The results are given as mean difference, with 95% confidence interval (CI) of the difference. P<0.05 was considered statistically significant.

Subsequently, DFI in each of the four groups defined according to the type of treatment was compared to that in the controls. Since the group that had received radiotherapy only, was
relatively small and contained outliers as considers DFI values, both a parametric test
(univariable linear model with age, smoking, and alcohol consumption as confounders), and a
non parametric test (Mann-Whitney U–test) were applied for statistical analysis.
Furthermore, using binary logistic regression, the controls were compared to the whole CCS
group, as well as to the four therapy groups regarding the odds ratio (OR) for having a DFI
$>$20%, a level recently shown to be associated with impairment of fertility both in assisted
reproduction(16) and in natural conception(38).
Subsequently we divided the CCS who had received chemotherapy only into three groups
according to the known gonadotoxic effect of the drugs(39): 1) treatment with any kind of
alkylating agent/cisplatin, regardless of additional therapy, 2) no treatment with alkylating
agents, but with vinca alkaloids, regardless of additional therapy and 3) cytotoxic drugs other
than alkylating agents or vinca alkaloids. The OR for having DFI $>$20% was also calculated
for these subgroups.
Finally, Spearman’s rho was used to correlate DFI to the calculated gonadal radiation dose for
the CCS who received irradiation only.
Statistical analysis was performed using the SPSS 17.0 software (SPSS, Chicago, IL, USA).
Results

Childhood cancer survivors vs. controls

The samples from the CCS showed significantly lower sperm concentrations than the controls (mean difference= 14 x10^6/mL; 95%CI 0.61;27 x10^6/mL, p=0.04, Table 2). The DFI for the CCS was higher than in the control group; this difference being close to statistically significant (mean difference=1.8%; 95%CI: -0.0088;3.7%, p=0.051, Table 3). The risk of having DFI >20% was significantly increased in CCS compared with the control group (OR=2.2: 95%CI: 1.1;4.4, p=0.032).

The impact of different treatment modalities

Surgery only

The group of CCS which was treated with surgery only had no significant difference in sperm concentration compared with the control group. However, this group had significantly higher DFI than the controls (mean difference=2.9%; 95%CI: 0.083;3.7%, p=0.044, Table 3). The OR for having DFI >20% was 2.7 (95%CI 1.1;6.4, p=0.03).

Radiotherapy only

The CCS who had received radiotherapy only, did not differ significantly from the controls in terms of sperm concentration. The DFI for these men was significantly higher than for the controls (mean difference=6.0%; 95%CI: 1.6;10%, p=0.008, Table 3). The difference was also significant when analyzed by the non-parametric test, which is not sensitive to inclusion of outliers. The OR for having DFI >20% was 4.9 (95%CI 1.3;18, p=0.017). There was no statistically significant difference in DFI between the radiotherapy only group and the surgery only group. Furthermore, there was no statistically significant correlation between the calculated testicular radiation dose and DFI (rho=0.55; p=0.064). The patient characteristics
for this group regarding the diagnoses, radiation doses and fields, as well as sperm parameters are given in Table 4.

Chemotherapy only

Compared with controls, CCS who had received chemotherapy only, had significantly lower sperm concentrations (mean difference=31 x10⁶/mL; 95%CI 12;50 x10⁶/mL, p=0.002, Table 2). No significant difference in DFI was seen between this group and the controls (mean difference= 0.97%; 95%CI -1.8;3.7%, p=0.48).

None of the three groups, defined according to the gonadotoxicity of the chemotherapy given showed significantly increased risk for having DFI >20%, as compared to the controls, regardless if they had received chemotherapy only or if additional radiotherapy had been given.

Radio- and chemotherapy combined

Sperm concentration was significantly decreased (mean difference=23 x10⁶/mL; 95%CI 4.4;41 x10⁶/mL, p=0.015, Table 2) whereas there was no significant difference in DFI between the group that had received chemotherapy in combination with radiotherapy and the control group (mean difference= 0.79%; 95%CI -1.8;3.4%, p=0.55). Furthermore, the OR for having DFI >20% was not significantly increased in this group.
Discussion

In this study on sperm DNA integrity in 99 CCS, we found increased DFI in all patient
categories, except those treated with cytotoxic drugs. Looking at the two groups with
impairment of sperm DNA integrity, we found that the increase in DFI was somewhat more
pronounced in the CCS who received irradiation only compared with those who were treated
with surgery only, but this difference did not reach the level of statistical significance. The
same was true for the association between the scattered irradiation dose and the DFI, which
was only borderline significant, possible due to the limited number of subjects included.
These results show that childhood cancer per se is associated with increased level of sperm
DNA damage. Furthermore, our results might indicate that the level of DFI might be
additionally increased by irradiation and reduced by cytotoxic treatment.

In the only previous study on sperm DNA integrity in CCS, no increased sperm DNA damage
was observed(9). The discrepancy between the two studies might be explained by differences
in the methods to detect sperm DNA damage. Another reason could be the significantly
higher power of the present investigation, which comprises four times as many subjects as the
first study.

The increased DFI in the group which received neither radio- nor chemotherapy might imply
that childhood cancer patients do have some kind of genomic instability. Defects in the DNA
repair mechanisms have been shown to be associated with the risk of childhood cancer(40)
and these mechanisms could also be responsible for the increased proportion of sperm DNA
breaks in CCS. Results from some epidemiological studies also seem to support this
hypothesis. For example, in a recent register study an increased risk of congenital
malformations was found in the offspring of cancer survivors, even in those treated with
surgery only(27). Another study pointing in this direction is the report on increased risk of
cancer in fathers to children born with cleft lip/palate. The study did not include parental
cancer diagnosed until after their index children were born and was, therefore, not confounded by treatment for cancer rather suggesting a common genetic association(41).

In contrast to the finding of increased DFI in CCS treated with irradiation or surgery only, patients treated with chemotherapy only or with radio- and chemotherapy did not differ from controls in terms of sperm DNA integrity. The observation of sperm DFI lowering effect of chemotherapy, is in line with previous observations of lower DFI and improved chromatin packaging in men given cytotoxic drugs for testicular germ cell cancer(42, 43). The biological mechanism behind this association is not known. However, one could speculate whether cytotoxic compounds might increase apoptosis and, thereby, elimination of germ cells with increased levels of DNA strand breaks.

Apart from the biological aspects of our findings, discussed above, the results of this study also have some clinical implications. Although it seems reassuring that the mean DFI, as seen in the whole group of CCS, was only slightly elevated compared with the controls (14% and 11%, respectively), the OR for having DFI >20%, previously shown to be associated with decreased fertility in vivo(16) was 2.2 in cancer survivors as compared to controls. Since the increase in DFI was most pronounced in those groups not having decreased sperm counts due to the cancer treatment given, an impairment of sperm DNA integrity may contribute to fertility problems in those CCS in whom the standard sperm parameters are not significantly affected.

Although the study includes almost 100 CCS, the heterogeneity of diagnoses and the treatments given, along with the considerable variation in age at diagnosis, does not allow a more refined analysis regarding the impact of specific treatment modalities and/or age at puberty, on sperm DNA integrity. Even when dividing the material into main therapeutic groups – surgery, irradiation and chemotherapy the cohorts were still relatively small, implying the risk of type II error for some of the comparisons performed in this study. This might also be the reason why we did not find a statistically significantly higher DFI in those
men treated with irradiation only as compared with CCS who received neither chemo- nor radiotherapy.

Another weak point of our current study was that only 38% of the eligible patients accepted to take part. Nevertheless, from a fertility point of view, the participants were representative for the whole group of CCS survivors and the distribution of diagnoses among the participants was similar to the cancer incidence in Sweden. Therefore, we do not believe that our results are due to selection bias. In conclusion, we found that the proportion of DNA strand breaks in spermatozoa from men treated for childhood cancer was significantly increased in men who had not received chemotherapy. From the clinical point of view the study shows that impairment of DNA integrity may contribute to infertility problems in CCS. Furthermore, our data might indicate childhood cancer is associated with genomic instability and the consequences of possible transmission of sperm DNA damage to the offspring need to be considered.
Acknowledgements

We would like to thank Mrs Monica Nilsson for assisting in recruitment of the patients as well as the whole laboratory staff at the Reproductive Medicine Centre, Malmö University Hospital for performing the semen analyses.

Conflict of interest statement

None of the authors have any financial or personal relationships with people or organizations that could inappropriately influence the work.
Legends to figures

Figure 1. Distribution of diagnoses for childhood cancer survivors included in the current study (n=151) and the incidence frequency for males less than 19 years of age in Sweden in 2003.

Figure 2: Sperm DNA fragmentation index (DFI) in childhood cancer survivors depending on the treatment given. The circles show the mean and the bars show 95% confidence interval of the mean.

CT- chemotherapy; RT – Radiotherapy.
Table 1. Background characteristics for the non-azoospermic childhood cancer survivors and the controls.

<table>
<thead>
<tr>
<th></th>
<th>Childhood cancer survivors</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=99</td>
<td>N=193</td>
</tr>
<tr>
<td>Age at diagnosis (years)</td>
<td>Mean (SD) 9.4 (5.7)</td>
<td>N.a.</td>
</tr>
<tr>
<td></td>
<td>Median (range) 9.0 (0.13-17)</td>
<td>N.a.</td>
</tr>
<tr>
<td>Age at examination (years)</td>
<td>Mean (SD) 30 (6.9)</td>
<td>29 (5.2)</td>
</tr>
<tr>
<td></td>
<td>Median (range) 30 (20-46)</td>
<td>28 (19-40)</td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smokers (%)</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>Weekly alcohol consumption</td>
<td>0-99 g/week (%) 61</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>100-199 g/week (%) 33</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>≥ 200 g/week (%) 6.1</td>
<td>21</td>
</tr>
</tbody>
</table>

SD = standard deviation
Table 2. Sperm concentration for controls and for childhood cancer survivors in relation to treatment modalities.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Median Sperm concentration x 10^6/mL (range)</th>
<th>Mean Sperm concentration x 10^6/mL (SD)</th>
<th>Mean difference* x 10^6/mL</th>
<th>95%CI* x 10^6/mL</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>193</td>
<td>59 (2.0-270)</td>
<td>67 (48)</td>
<td>Reference group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Childhood cancer survivors (all)</td>
<td>99</td>
<td>34 (0.5-296)</td>
<td>58 (65)</td>
<td>-14</td>
<td>-27;-0.61</td>
<td>0.04</td>
</tr>
<tr>
<td>CT-, RT-</td>
<td>30</td>
<td>36 (4.0-296)</td>
<td>76 (81)</td>
<td>-0.057</td>
<td>-21;21</td>
<td>1.0</td>
</tr>
<tr>
<td>CT-, RT+</td>
<td>12</td>
<td>64 (7.0-283)</td>
<td>91 (86)</td>
<td>9.8</td>
<td>-21;40</td>
<td>0.53</td>
</tr>
<tr>
<td>CT+, RT-</td>
<td>26</td>
<td>27 (3.0-183)</td>
<td>35 (36)</td>
<td>-31</td>
<td>-50;-12</td>
<td>0.002</td>
</tr>
<tr>
<td>CT+, RT+</td>
<td>31</td>
<td>34 (0.5-223)</td>
<td>46 (50)</td>
<td>-23</td>
<td>-41;-4.4</td>
<td>0.015</td>
</tr>
</tbody>
</table>

CI=Confidence Interval, CT= Chemotherapy, RT= Radiotherapy
* = adjusted for age, smoking and alcohol consumption
Table 3. DNA fragmentation index for controls and for childhood cancer survivors in relation to treatment modalities.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Median DFI % (range)</th>
<th>Mean DFI* % (SD)</th>
<th>Mean Difference* %</th>
<th>95%CI* (%)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>193</td>
<td>9.2 (2.0-49)</td>
<td>11 (7.5)</td>
<td>Reference group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Childhood cancer survivors (all)</td>
<td>99</td>
<td>10 (3.0-50)</td>
<td>13 (7.5)</td>
<td>1.8</td>
<td>-0.008;3.7</td>
<td>0.051</td>
</tr>
<tr>
<td>CT-, RT-</td>
<td>30</td>
<td>13 (3.0-45)</td>
<td>14 (7.4)</td>
<td>2.9</td>
<td>0.083;5.8</td>
<td>0.044</td>
</tr>
<tr>
<td>CT-, RT+</td>
<td>12</td>
<td>15 (5.0-50)</td>
<td>17 (7.5)</td>
<td>6.0</td>
<td>1.6;10</td>
<td>0.008</td>
</tr>
<tr>
<td>CT+, RT-</td>
<td>26</td>
<td>10 (3.0-27)</td>
<td>12 (6.6)</td>
<td>0.97</td>
<td>-1.8;3.7</td>
<td>0.48</td>
</tr>
<tr>
<td>CT+, RT+</td>
<td>31</td>
<td>10 (3.0-34)</td>
<td>12 (6.9)</td>
<td>0.79</td>
<td>-1.8;3.4</td>
<td>0.55</td>
</tr>
</tbody>
</table>

DFI= DNA fragmentation index, CI=Confidence Interval, CT= Chemotherapy, RT= Radiotherapy
* = adjusted for age, smoking and alcohol consumption.
Table 4. Details regarding diagnosis, radiation treatment and sperm parameters for the twelve childhood cancer survivors treated with radiotherapy but not chemotherapy.

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Age at diagnosis (years)</th>
<th>Age at examination (years)</th>
<th>PTV-1</th>
<th>Radiation dose to PTV-1 (Gy)</th>
<th>PTV-2</th>
<th>Radiation dose to PTV-2 (Gy)</th>
<th>Sperm Conc (x10⁶/mL)</th>
<th>Sperm DFI (%)</th>
<th>Dose to testicles (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teratoma</td>
<td>15</td>
<td>38</td>
<td>Pineal Gland</td>
<td>48</td>
<td>32</td>
<td>37</td>
<td>50</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Ependymoma</td>
<td>9.2</td>
<td>35</td>
<td>Spine (L5-S1)</td>
<td>55</td>
<td>30</td>
<td>19</td>
<td>28</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td>0.13</td>
<td>31</td>
<td>Right side of neck</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>7.2</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>Pinealocytoma</td>
<td>14</td>
<td>38</td>
<td>Pineal Gland</td>
<td>50</td>
<td>35</td>
<td>63</td>
<td>26</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Glioma (relapse)</td>
<td>16</td>
<td>34</td>
<td>Brain stem</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>86</td>
<td>17</td>
<td>0.02</td>
</tr>
<tr>
<td>Germinoma</td>
<td>15</td>
<td>33</td>
<td>Pineal Gland</td>
<td>55</td>
<td>35</td>
<td>9.9</td>
<td>16</td>
<td>0.2</td>
<td>0.015</td>
</tr>
<tr>
<td>Germinoma</td>
<td>18</td>
<td>30</td>
<td>Pineal Gland</td>
<td>45</td>
<td>30</td>
<td>190</td>
<td>15</td>
<td>0.2</td>
<td>0.02</td>
</tr>
<tr>
<td>Hodgkin's lymphoma</td>
<td>6.8</td>
<td>40</td>
<td>Left side of neck</td>
<td>40</td>
<td>Upper Mantle</td>
<td>40</td>
<td>65</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>2.1</td>
<td>36</td>
<td>Brain stem</td>
<td>35</td>
<td>-</td>
<td>-</td>
<td>63</td>
<td>8.1</td>
<td>0.03</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>13</td>
<td>46</td>
<td>Left frontal lobe</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>8.0</td>
<td>0</td>
</tr>
<tr>
<td>Malignant melanoma</td>
<td>17</td>
<td>21</td>
<td>Left eye</td>
<td>100 (locally)</td>
<td>-</td>
<td>-</td>
<td>78</td>
<td>7.0</td>
<td>0</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>13</td>
<td>31</td>
<td>Right temporal lobe</td>
<td>58</td>
<td>Cerebrum</td>
<td>40</td>
<td>280</td>
<td>5.0</td>
<td>0</td>
</tr>
</tbody>
</table>

PTV(44) = planning target volume, PTV-1 = (boost volume) contains the demonstrated tumour and its local estimated subclinical extension, PTV-2 = PTV-1 and estimated subclinical extensions at a distance, DFI = DNA fragmentation index.
References

27. Ståhl O. Cancer and male reproductive function - the effect on sperm DNA integrity and on birth outcomes in the offspring [thesis]. Malmö: Lund University; 2008.
Sperm DNA Integrity in Men Treated for Childhood Cancer
Patrik Romerius, Olof Ståhl, Christian Moëll, et al.

Clin Cancer Res Published OnlineFirst June 2, 2010.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-10-0140

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.