Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells

Laura Rosanò, Roberta Cianfrocca, Francesca Spinella, Valeriana Di Castro, Maria Rita Nicotra¹, Alessandro Lucidi², Gabriella Ferrandina², Pier Giorgio Natali and Anna Bagnato*
Molecular Pathology Laboratory, Regina Elena National Cancer Institute, Rome; ¹Molecular Biology and Pathology Institute, National Research Council, Rome; ²Gynecologic Oncology Unit, Catholic University, Campobasso, Italy.

Running title: Endothelin axis promotes chemoresistance

Translational Relevance: Overcoming chemoresistance is the major challenging in treating epithelial ovarian cancer (EOC). Our study well explains the effect of endothelin (ET-1) axis on the acquisition of chemoresistance and epithelial-mesenchymal transition (EMT) phenotype and provides possible strategies in clinical oncotherapy. In a combined in vitro/in vivo model of EOC cells resistant to taxol and cisplatinum, we revealed that ET-1 triggers major tumorigenic signals, including the activation of the EMT-driver Snail. Endothelin A receptor (ETₐR) blockade by a specific ETₐR antagonist results into reverted EMT, restored drug sensitivity, and inhibited cell invasion. Analysis of human EOC tissues validated the preclinical results revealing that ETₐR is overexpressed in the chemoresistant tumors and is associated with EMT marker expression. In summary, this study unravelling opportunities to interfere with major signals involved in the chemoresistance onset and EMT by manipulating ETₐR-mediated pathways, pinpoints that blockade of ETₐR may provide appropriate choice in clinical EOC treatment.

This work was supported by the Associazione Italiana Ricerca sul Cancro, and Ministero della Salute.

*Correspondence to: Anna Bagnato, Molecular Pathology Laboratory, Regina Elena National Cancer Institute, Via delle Messi d’Oro 156, 00158 Rome, Italy. Phone: +39 06 52662565; Fax: +39 06 52662600; e-mail: bagnato@ifo.it
ABSTRACT

Purpose: Emerging evidence suggests molecular and phenotypic association between chemoresistance and epithelial-mesenchymal transition (EMT) in cancer. Endothelin-1 (ET-1)/endothelin A receptor (ET\(_{AR}\)) axis is implicated in the pathobiology of epithelial ovarian cancer (EOC) by driving tumor-promoting effects, including EMT. Here, we analyzed how ET\(_{AR}\) regulates chemoresistance and EMT in EOC.

Experimental Design: The effects of ET-1 axis on cell proliferation, drug-induced apoptosis, invasiveness and EMT were analyzed in cultured EOC cells sensitive and resistant to cisplatinum and taxol. Tumor growth in response to ET\(_{AR}\) antagonist was examined in EOC xenografts. ET\(_{AR}\) expression was examined in 60 human EOC tumors by immunohistochemistry and correlated with chemoresistance and EMT.

Results: In resistant EOC cells ET-1 and ET\(_{AR}\) are upregulated, paralleled by enhanced MAPK and Akt phosphorylation and cell proliferation. Moreover, in these cells the expression of E-cadherin transcriptional repressors, including Snail, Slug, and Twist, as well as of mesenchymal markers, such as vimentin and N-cadherin, were upregulated and linked with enhanced invasive behaviour. Interestingly, ET\(_{AR}\) blockade with zibotentan, a specific ET\(_{AR}\) antagonist, or its silencing, downregulated Snail activity, restored drug sensitivity to cytotoxic-induced apoptosis, and inhibited the invasiveness of resistant cells. In vivo, zibotentan inhibited tumor growth of sensitive and resistant EOC xenografts, and sensitized to chemotherapy. Analysis of EOC human tissues revealed that ET\(_{AR}\) is overexpressed in resistant tumors and is associated with EMT phenotype.

Conclusions: Our data provide the first evidence that blockade of ET\(_{AR}\)-driven EMT can overcome chemoresistance and inhibit tumor progression, improving the outcome of EOC patients’ treatment.
INTRODUCTION

Ovarian cancer accounts for the highest tumor-related mortality in women with gynaecologic malignancy (1). The identification of the molecular mechanisms underlying chemoresistance is mandatory to achieve advancement in ovarian cancer therapy (2). Accumulating evidences demonstrated that epithelial-mesenchymal transition (EMT), which modulates cancer progression and metastasis, has also been implicated in the onset of drug resistance and tumor relapses, representing an escape mechanism from apoptosis (3). Therefore, the acquisition of mesenchymal phenotypes engenders tumor cells with a multifaceted capacity to proliferate, migrate, and avoid cell death and permanent arrest, as well as protection from extracellular signals and drug effect activities (4). The hallmark of EMT is loss of the epithelial molecule E-cadherin and gain of mesenchymal markers, such as N-cadherin and vimentin. The E-cadherin repressors, Snail and Slug, which interact with E-box elements located within the proximal region of the E-cadherin promoter, and the basic helix-loop-helix transcription factor Twist, are significant inducers of EMT in cancer cells by repressing E-cadherin expression (5). Several clinical studies have shown that increased expression of E-cadherin is associated with improved survival in several tumor types (6, 7), and silencing of E-cadherin transcriptional suppressors can increase cellular sensitivity to genotoxic stress (8). Since EMT development is driven by key modulators that are directly controlled by numerous extracellular signals and pathways (5), it is becoming clear that the blockade of these signalling pathways is critical for reverting EMT and related biological effects including drug sensitivity. Although cancer cells integrate multiple signaling pathways sustaining tumor progression, therapeutic interest in the endothelin-1 (ET-1)/endothelin A receptor (ETAR) axis is supported by its central role in several human cancers (9). This axis is highly expressed in a number of human tumors, including epithelial ovarian carcinoma (EOC), where its overexpression correlates with advanced stages (10). In EOC cells, the autocrine loop mediated by the ET-1/ETAR interaction has been implicated in the sustained activation of several signal transduction pathways,
including MAPK and PI3-K-dependent Akt, thus representing a key driver in promoting cell proliferation, escape from apoptosis, angiogenesis, EMT, invasion, and metastasis (11). Interestingly, in these cells ET-1 acts as a survival factor protecting tumor cells from drug-induced apoptosis via a bcl-2-dependent mechanism that involves the activation of the PI3-K/Akt pathway, suggesting that activated ET₄AR can substantially contribute to chemoresistance in ET₄AR-positive tumors (12). According with in vitro studies, an increase in anti-tumor activity was observed when ET₄AR antagonists, such as zibotentan, were combined with cisplatinum and paclitaxel (13, 14). These data were confirmed by a high-throughput screening analysis of EOC displaying different response to chemotherapy that identified ET₄AR as one of the genes associated with chemoresistance (15). Furthermore, a pathway analysis identified the ET-1 signalling among the canonical pathways associated with platinum resistance (16). All these results suggest that ET₄AR expression may be regarded as potential marker of resistance in EOC. In view of the above, in this study we evaluated whether response to chemotherapeutics in sensitive, and cisplatin- and taxol-resistant EOC cells and in human tissues is associated with the activation of ET-1/ET₄AR signalling, EMT and invasive phenotype and activation of survival signalling pathways. Finally we investigated whether ET₄AR blockade by reverting EMT results into restoration of drug sensitivity, thus offering a potential improvement in ovarian cancer management.
MATERIALS AND METHODS

Cells and Cell Culture Conditions
The human ovarian carcinoma cell line A2780 WT was obtained from European Collection of Cell Cultures. To retain cisplatin (CIS) and paclitaxel (TAX) resistance, 1 mM cisplatin and 60 nM paclitaxel were added to the culture medium A2780 CIS and A2780 TAX, respectively, every two passages (17). The 2008 cell line and its resistant cisplatinum resistant subclone 2008C13 (CIS) were kindly provided by Dr. S.B. Howell, University of San Diego, La Jolla, CA, USA). Further details are described in Suppl. Materials and Methods.

Thymidine Incorporation Assay
Serum-starved A2780 WT and its resistant sublines, or ET,R- or scrambled-siRNA transfected cells, were treated with ET-1 and/or zibotentan and after 24 h, 3[H]-thymidine was used as previously described (13). Responses to all treatments were assayed in sextuplicate, and results were expressed as the means of three separate experiments.

Apoptosis Assay
For detection of early apoptotic events, cells were double stained with FITC-conjugated annexin-V and propidium iodide using the Vybrant apoptosis kit according to the manufacturer’s instructions (Invitrogen). Further details are described in Suppl. Materials and Methods.

Western Blot Analysis
Cell lysates or conditioned media obtained from cell cultures were subjected to SDS-PAGE and revealed by Western blotting (WB). Further details are described in Suppl. Materials and Methods.
Quantitative Real-time -PCR

Total RNA was isolated using the Trizol (Invitrogen) according to the manufacturer’s protocol. 5 μg of RNA was reversed transcribed using SuperScript® VILO™ cDNA synthesis kit (Invitrogen). Quantitative real-time-PCR was performed by using LightCycler rapid thermal cycler system (Roche Diagnostics) according to the manufacturer’s instructions. The primers sets used and further details were shown in Suppl. Materials and Methods.

RT-PCR

RT-PCR was performed using a Superscript One-Step RT-PCR System (Invitrogen) according to the manufacturer’s instructions. The primers sets used and further details were shown in Suppl. Materials and Methods.

Luciferase Reporter Gene Assay

To measure the transcriptional activity of Snail and E-cadherin promoter, 3x10^5 cells/well were transiently transfected with 0.5 μg of pGL3-SNA (-869/+59), or with 0.5 μg pGL2 Ecad3/luc construct, or with empty control vectors (Promega Milan, Italy). Where indicated, cells were transfected with 100 nM scrambled or ETAR siRNA duplexes against mRNA (SMART pool) or mock siRNA obtained commercially (Dharmacon, Lafayette, CO). Further details were shown in Suppl. Materials and Methods.

Chromatin immunoprecipitation (ChIP) assays

ChIP assays were performed as previously described (18). Details were shown in Suppl. Materials and Methods.
Invasion assay

Cell invasion assays were carried out using modified Boyden chamber. Details were shown in Suppl. Materials and Methods.

Xenografts in Nude Mice

Female athymic (nu+/nu+) mice, 4–6 week of age (Charles River Laboratories Milan, Italy) were treated following the guidelines for animal experimentation of the Italian Ministry of Health. Mice were injected s.c. into one flank with 4 x 10^6 viable A2780 WT, cisplatinum- and taxol-resistant cells. After 7 days, when tumors reached approximately 0.2–0.3 cm in diameter, mice were randomized in groups (n = 10) to receive different treatments. One group was treated i.p. for 21 days with zibotentan (diluted in PBS) at the daily dose of (10 mg/kg/day), one group was treated with paclitaxel (20 mg/kg per dose given i.v. three times a day every 4 days), one group with cisplatinum (5 mg/kg i.p. one time on day 1), one group with combination of zibotentan and cisplatinum or zibotentan and paclitaxel. Control mice were injected i.p. with vehicle. Three different experiments with a total of 30 mice for each group were performed. On day 45 after tumor injection, tumors were removed from control and treated mice and analyzed for WB. Tumor size was measured with caliper and was calculated using the formula \(\pi/6 \times \text{larger diameter} \times [\text{smaller diameter}]^2 \).

Patient population

The study included 60 primary untreated ovarian cancer patients admitted to the Gynecologic Oncology Unit, Catholic University of Campobasso and Rome treated with platinum-based chemotherapy, plus paclitaxel. Further details were shown in Suppl. Materials and Methods.

Immunohistochemistry
Immunohistochemical analysis of ovarian cancers was performed on archival from 60 frozen tumors collected from patient population above described with informed consent, as indicated by Institutional Review Board, and classified according with WHO criteria. Further details were shown in Suppl. Materials and Methods.

Statistical Analysis

Statistical analysis was performed using Student’s t test and Fisher’s exact test as appropriate. The time course of tumor growth was compared across the groups using two-way ANOVA, with group and time as variables. All statistical tests were carried out using SPSS software (SPSS 11, SPSS Inc. Chicago, IL). A two-sided probability value of <0.05 was considered statistically significant.
RESULTS

Expression of ET-1/ET₄R axis and activation of signaling pathways are upregulated in chemoresistant ovarian cancer cells

In order to assess the potential involvement of ET-1 axis in chemoresistance, we used the A2780 (WT) human EOC cell line, the derivative cisplatinum-resistant (A2780 CIS) and taxol-resistant (A2780 TAX) sublines, and the 2008 cell line and its cisplatinum-resistant variant 2008 CIS. The different sensitivity to these drugs was evident after treatment of serum-starved cells with the cytotoxic drugs, cisplatinum and taxol (Suppl. Fig. 1A). In both A2780 and 2008 sensitive cells, cisplatinum or taxol treatment increased the number of early apoptotic cells, while in the resistant sublines the apoptotic pathway was compromised, confirming the acquisition of drug resistance in these cells.

The ET-1 axis is expressed in ovarian cancer cells acting as survival factor against chemotherapeutic drug treatment (12), suggesting that ET-1/ET₄R axis would be upregulated in cisplatinum and taxol-resistant cells. As shown in fig 1A, B, and C and Suppl. Fig 2A, the cisplatinum- and taxol-resistant cells significantly expressed ET₄R at higher levels compared to sensitive cells, and the concentrations of ET-1 released by resistant cells increased of about 8-fold compared to parental cells. All these data show that ET-1 axis is upregulated in EOC resistant cells correlating with the reduced sensitivity of these sublines to cytotoxic drugs.

We next determined the signalling pathways activated by ET-1/ET₄R axis to modulate cell survival. ET-1 activated both MAPK and Akt in sensitive A2780 cells, but a significant higher activation was observed in the resistant sublines that was inhibited when the cells were pretreated with the specific ET₄R antagonist zibotentan (Fig. 1D). Accordingly, ET-1 promoted A2780 cell proliferation, which was significantly inhibited in zibotentan-treated cells. To further verify the role of ET₄R in regulating cell proliferation, we knock-down ET₄R with siRNA and we found that also in ET₄R-
silenced cells the ET-1-induced cell proliferation was inhibited (Fig. 1E). Specificity of siRNA oligos was confirmed by Western Blotting analysis, which showed a 90% knockdown of ET_{AR} (Suppl. Fig. 2B). These results suggest that in chemoresistant cells the higher activation of ET-1 axis lead to enhanced MAPK and Akt signalling pathways, which promote cell survival and proliferation.

Chemoresistant cells display molecular changes consistent with ET-1-driven EMT and invasiveness

Given the ability of ET-1 to promote EMT machinery in ovarian tumor cells and the association between chemoresistance and acquisition of EMT phenotype in different tumor cells (11, 19-21), we analyzed whether the chemoresistance in A2780 and 2008 cells was associated with molecular changes consistent with EMT and whether the ET_{AR} pathway is involved in this process. To this end we examined the expression of E-cadherin and its transcriptional repressors, Snail, Slug and Twist, and other mesenchymal markers, such as vimentin and N-cadherin. Enhanced mRNA expression levels for Snail, Slug, Twist, vimentin and N-cadherin were observed in resistant sublines compared with parental cells, associated with a concomitant decrease in E-cadherin expression at level of mRNA and protein (Fig. 2A and C). Moreover, ET-1 enhanced the expression of Snail and Twist in both sensitive and resistant cells and the treatment with zibotentan inhibited the ET-1-induced effects, restoring E-cadherin expression (Fig. 2B and 2C). Remarkably, ET_{AR} blockade, by both zibotentan or its silencing, reverted the ET-1-induced suppression of E-cadherin promoter activity and in resistant cells prevented that induced at higher level by endogenous ET-1/ET_{AR} axis (Fig. 2D), suggesting that the transcriptional regulation of E-cadherin may be important to ET_{AR}-driven EMT and acquisition of chemoresistance. In agreement with above results, ET-1 induced significant induction of Snail promoter activity in parental cells, reaching about 4-fold increase in resistant cells, which was significantly inhibited by zibotentan (Fig. 2E),
indicating that ET-1/ET$_{A}$R controls the transcriptional repression of E-cadherin through Snail in chemoresistant cells. Furthermore, we examined how Snail binds to the E-cadherin gene promoter. As shown in Fig 2F, the E-cadherin promoter sequences were detected bound to Snail upon treatment with ET-1 in a time-dependent manner. The association of Snail with E-cadherin promoter began 5 min after ET-1 exposure and declined rapidly in sensitive A2780 cells. Interestingly, in resistant cells the recruitment, starting after 5 min, was long-lasting with a maximum after 30 min, and persisting for 60 min, suggesting that the ET-1-dependent and sustained binding of Snail in the E-cadherin promoter might account for the EMT and chemoresistant phenotype of these cells.

To assess whether the acquisition of EMT phenotype correlates with functional changes in resistant cells, we evaluated the expression of several matrix-metalloproteases (MMPs) and the invasive potential of EOC cells. As shown in Fig. 3A and B, a significant upregulation and activity of MMP-2 and -9 was observed in resistant cells, confirming the association between invasive phenotype and chemoresistant properties of these cells. As demonstrated by invasion assay, the A2780 WT cells showed a significant increase in the number of invading cells after treatment with ET-1 that was inhibited by zibotentan (Suppl. Fig. 3). The invasive capability of chemoresistant sublines was greater, with a ~2-fold increase in the number of invading cells compared with sensitive cells that was blocked by pre-treatment with zibotentan (Fig. 3C), demonstrating that ET$_A$R blockade is associated with a reverted EMT phenotype and reduced invasiveness in chemoresistant cells.

ET$_A$R antagonist sensitizes chemoresistant ovarian cancer cells to drug-induced apoptosis

To determine whether the ET$_A$R blockade might sensitize A2780 and 2008 cells to cisplatinum-induced apoptosis, we evaluated the drug-induced apoptosis in resistant cells pretreated with zibotentan. As shown in Fig. 4, treatment of serum-starved A2780 WT cells with zibotentan increased the number of early apoptotic cells, to an extent similar to that obtained by cisplatinum,
confirming that endogenous ET-1 induces survival signalling through the ET_AR (12). Interestingly, the co-administration of zibotentan significantly potentiated (p<0.005 and p<0.002 compared with single agent treatment in A2780 and 2008 cells, respectively) the cytotoxic drug-induced apoptotic cell death in sensitive cells. Most importantly, the addition of zibotentan plus cisplatinum to both cisplatinum-resistant cells enhanced their susceptibility to chemotherapy (p<0.001 in A2780 and 2008 cells). Similar results were obtained in A2780 taxol-resistant cells (data not shown). This suggests that a combination therapy may be effective at inducing apoptotic death, overcoming resistance in EOC cells.

Antitumor effects of zibotentan in chemoresistant EOC xenografts are associated with reduction of EMT marker expression.

We next determined whether ET_AR blockade resulted in the inhibition of ET-1-induced EMT effectors and tumor growth by treating mice bearing A2780 WT, cisplatinum- and taxol-resistant tumors with zibotentan. This treatment was generally well tolerated with no detectable signs of acute or delayed toxicity, and produced a 55% inhibition of tumor growth on day 41 after tumor injection in A2780 WT bearing mice (p≤0.005; Fig. 5A). A similar growth inhibitory effect was observed when zibotentan was used in both taxol- (58%) and cisplatinum (54%) resistant ovarian carcinoma xenografts, causing significant inhibition in tumor growth at the end of the 4 week treatment period in all mice (p<0.002 for A2780 CIS and p<0.005 for A2780 TAX; Fig. 5B). Most importantly, a further significant growth inhibitory effect was observed when zibotentan was used in combination with cisplatinum (71%) or in combination with paclitaxel (81%), in resistant EOC xenografts. Remarkably, a marked increase of E-cadherin expression in zibotentan-treated mice, especially in xenografts from resistant cells, which was paralleled to the reduction of N-cadherin expression (Fig. 5C). These results indicate a specific therapeutic window in which blockade of ET_AR with zibotentan, in combination with chemotherapeutic drugs, controlling the EMT and
aggressive phenotype of chemoresistant cells, is therapeutic effective in resistant EOC cells, increasing sensitivity to the chemotherapy.

ET₄R is overexpressed in resistant human ovarian tumors

Finally we analyzed the importance of ET₄R as potential marker of resistance in human EOC tissues from patients treated with platinum-based chemotherapy, plus paclitaxel. Clinicopathological characteristics of the overall series are summarized in Table 1. Forty-seven cases (78.3%) were stage III-IV disease, and serous histotype was documented in the vast majority (n = 44, 73.3%) of cases. Optimal cytoreduction (residual tumor ≤1 cm) was achieved in 32 (53.3%) patients. Thirty-one (51.7%) cases were defined as platinum resistant, while 29 patients (48.3%) were platinum sensitive. Patients optimally cytoreduced at first surgery were more likely to be platinum sensitive compared to patients judged as unresectable (62.5% vs 32.1%, p value=0.017). Patients with no ascites were more frequently platinum sensitive than patients with ascites at primary laparotomy (66.7% vs 33.3%, p value=0.018). We analysed the ET₄R levels by immunohistochemistry in these human ovarian cancer specimens encompassing platinum sensitivity and platinum resistance. Overall, ET₄R was significantly upregulated in 66% (p< 0.017) of resistant ovarian cancers compared to sensitive tumors (Table 1 and Fig 5D). Consistent with our observations in EOC cell cultures and xenografts, overexpression of ET₄R in platinum-resistant human ovarian cancer tissues was associated with the downregulation of E-cadherin (p<0.002) and with enhanced expression of mesenchymal N-cadherin (p<0.07; Fig. 5D). These results are consistent with our previous findings in primary ovarian tumor tissues (10), indicating the biological relevance of ET₄R in the regulation of EMT in the tumor context.
DISCUSSION

Development of drug resistance remains the major therapeutic barrier in EOC. Consequently an in-depth understanding of the mechanisms underlying the development of chemoresistance is of utmost importance for improving the therapeutic regimens (2, 21). Since ET-1/ET₄R axis is critically involved in EOC growth and progression, in the present study we investigated the pathobiological role of ET-1 and ET₄R in developing drug resistance. Our results provide evidence that ET-1/ET₄R overexpression, by regulating EMT and invasive behaviour, endows EOC cells with an increased survival capacity and resistance to two presently employed chemotherapeutic agents, such as cisplatinum and taxol. The blockade of ET₄R by zibotentan reverted EMT, restored drug sensitivity, and inhibited invasiveness and growth of ovarian tumor xenografts. Finally, through the analysis of primary advanced EOC patients, we reported that the overexpression of ET₄R correlates with clinical chemoresistance and EMT phenotype.

Drug resistance is a multifactorial phenomenon involving interrelated and/or independent pathways (22). The overall apoptotic balance within a given cell population relies on a number of signalling pathways differentially regulated between chemosensitive and chemoresistant cancer cells. In this context, it has been demonstrated that ET-1 acts as an antiapoptotic factor, modulating cell survival pathways through a PI3-K-mediated Akt activation, which is considered to be a molecular “crutch” to escape cell death (12). The onset of chemoresistance of EOC cells can also be related to the overexpression of the ET-1/ET₄R signalling pathway that, in turn, may control the apoptotic response in resistant cells through the activation of survival pathways, such as MAPK or the PI3K/AKT signalling. It is becoming clear that EMT may reflect an ultimate adaptation of cancer cells to survive to cytotoxic drug activity, thus being responsible for chemosensitivity and that EMT inducing transcription factors such as Snail, Slug, and Twist which confer resistance to cell death (3, 23-29). In human EOC, changes in the expression of Snail, Slug, and Twist, play an important role in ovarian tumorigenesis and progression, and are significantly higher in advanced stages and
metastatic lesions (30-33). Moreover, it was reported that cellular morphology, motility, and molecular changes consistent with EMT, including enhanced Snail and Twist expression, were related to paclitaxel-resistance in EOC cells (34, 35). Recent work has suggested that may be a link between the cancer stem cell (CSC) phenotype and that induced by the process of EMT (36). The CSC isolated from EOC samples express markers associated with stem cells and EMT, including Snail and Slug, suggesting that EOC cells, by going through an EMT, acquire stemness characteristics qualifying them to acquire chemoresistance by overcoming p53-mediated apoptosis (16, 37-41). In this context, recent data suggest that also Twist1 may be an important regulator of “stemness” in EOC cells (42), indicating that the initiation of the EMT programme may be critical for the acquisition of stem cell-like characteristics resulting in chemoresistance (43). In this regard, a recent pathway analysis revealed ET-1 signaling among the canonical pathways significantly (p<0.02) associated with resistance to platinum-based chemotherapy, whose several are linked to EMT and stemness reinforcing the relationship of both processes with therapy resistance (16).

The present study reveals the molecular mechanisms of resistance activated by ET-1/ET\(_{A}\)R axis through EMT transcriptional programs. Thus, the transcriptional activation of Snail, by its recruitment on E-cadherin promoter, is essential in ET\(_{A}\)R-mediated E-cadherin repression in resistant EOC cells. The upregulation of EMT transcription factors in chemoresistant cells is associated with enhanced MMP activity and invasiveness, suggesting that these factors might control acquisition of EMT in cancer cells to induce motility in response to adverse environmental changes facilitating cancer progression and therapeutic resistance (44, 45). Under this scenario EMT initiating signals would be an ideal target as they are the seeds for metastasis and recurrence. Of clinical relevance, knock-down of ET\(_{A}\)R levels by siRNA, or blockade by zibotentan, reverted EMT phenotype, inhibited invasive behaviour, and increased susceptibility to chemotherapeutic agents, suggesting that ET\(_{A}\)R-mediated EMT signalling can represent a “salvage pathway” occurring during chemoresistance development. The significant association between ET\(_{A}\)R
overexpression and the resistant phenotype, identified for the first time ET \(_{AR}\) as predictor of chemoresistance in human EOC tissues and its relationship with EMT marker expression in the resistant tumor context.

In summary, our study provides evidence that targeting ET \(_{AR}\) with zibotentan, in combination with chemotherapy can sensitize tumor to chemotherapeutics by preventing EMT-associated escape signalling thus offering a rationale for the clinical evaluation of this target-based drug as modulator of both chemoresistance and tumor progression.
ACKNOWLEDGEMENTS

We thank A. Lupo, and V. Caprara for their contributions to in vitro and in vivo studies, R. Fraioli for the FACS analysis, and M.V. Sarcone for secretarial assistance.
REFERENCES

FIGURE LEGENDS

Figure 1. ET-1 and ET\textsubscript{A}R expression is upregulated in chemoresistant ovarian cancer cells, associated with enhanced MAPK and Akt activation and cell proliferation. A. Expression of ET-1, ET\textsubscript{A}R and ET\textsubscript{B}R mRNA in sensitive and resistant A2780 and 2008 cells measured by real-time PCR. Values are presented as mean of three measurements ± SD. *, p<0.005 compared to WT cells. B. A2780 and 2008 cell lysates analyzed by WB using anti-ET\textsubscript{A}R and anti-ET\textsubscript{B}R. β-actin was used as loading control. C. ET-1 secretion evaluated by ELISA in conditioned media of sensitive and resistant A2780 and 2008 cells. *, p<0.05 compared to WT cells. D. Lysates of A2780 cells treated with ET-1 (100 nM) and/or zibotentan (1 μM) was analyzed by WB using anti-pMAPK, anti-MAPK, anti-pAKT and anti-AKT. E. Cell proliferation analyzed by [3H]-Thymidine incorporation in A2780 cells treated for 24 h with ET-1 (100 nM) and/or zibotentan (1 μM), or transfected with ET\textsubscript{A}R siRNA. Columns, averages of sextuplicate determination of three separate experiments; Bars, ±SD; *, p<0.0001 compared to control; **, p<0.005 compared to ET-1.

Figure 2. ET\textsubscript{A}R-driven EMT process is upregulated in chemoresistant cells

A. E-cadherin, Snail, Slug, Twist, vimentin, and N-cadherin expression in sensitive and resistant A2780 and 2008 cells evaluated by real-time PCR. Values are presented as mean of three measurements ± SD. *, p<0.002 compared to WT cells. B. Snail and Twist expression in sensitive and resistant A2780 and 2008 cells treated with ET-1 and/or zibotentan evaluated by real-time PCR. Values are presented as mean of three measurements ± SD. *, p<0.02 compared to control cells; **, p<0.005 compared to ET-1-treated cells. C. Lysates of A2780 cells treated with ET-1 and/or zibotentan was analyzed by WB using anti-E-cadherin and anti-Hsp70 as loading control. D. E-cadherin transcriptional activity in A2780 cells stimulated with ET-1 and/or zibotentan for 24 hr or co-transfected with ET\textsubscript{A}R siRNA, Bars ±S.D. *, p<0.001 compared to control; **, p<0.05 compared
to ET-1. **Snail promoter activity in A2780 cells treated with ET-1 and/or zibotentan for 24 hr. **, p<0.02 compared to control cells; ***, p<0.005 compared to ET-1-treated cells. **ChIP analysis performed in A2780 cells treated with ET-1 for different times. Chromatin was incubated either without antibody (NoAb) or with an anti-Snail and analyzed by PCR analysis by using specific primers for E-cadherin promoter.

Figure 3. ETAR-mediated MMP activity and cell invasion is upregulated in chemoresistant cells. A. RT-PCR analysis of MMP-2, -9, and GAPDH expression in sensitive and resistant A2780 cells. B. Conditioned media from A2780 cells analyzed for MMP-2 (latent form, 72 kDa; active form, 66 kDa) and for MMP-9 (latent form, 92 kDa; active form, 86 kDa) by WB. Hsp70 was used as loading control. C. Invasion assay of A2780 WT, CIS- and TAX-resistant cells exposed to zibotentan. ***, p<0.02 compared to untreated cells; ***, p<0.002 compared to control of A2780 WT cells.

Figure 4. ETAR blockade sensitizes chemoresistant cells to drug-induced apoptosis. Sensitive and cisplatinum-resistant A2780 and 2008 cells were maintained for 48 h in absence or presence of cisplatinum and/or zibotentan. Apoptosis was measured by Annexin V and PI staining and expressed as % of apoptotic cells.

Figure 5. Antitumor effects of zibotentan in A2780 sensitive and resistant xenografts is associated with reverted EMT phenotype. A2780 WT (A), CIS and TAX (B) cells were injected into nude mice. After 7 days, the mice were treated as indicated for 21 days. Each experiment was performed three times with a total of 30 mice per group. The comparison of the time course of tumor growth curves by two-way ANOVA with group-by-time interaction for tumor growth was statistically significant in both sensitive and resistant A2780 xenografts. Data points, averages;
Bars, ± SD. C. E-cadherin and N-cadherin expression in tumors from A2780 xenografts treated as described in A and B. β-actin was used as loading control. D. The expression patterns of ETAR and EMT markers in the 60 platinum sensitive and resistant human ovarian cancer samples were determined by IHC. Representative immunohistochemical staining in sensitive and resistant human primary ovarian carcinoma samples for ET-1, ETAR, E-Cadherin and N-cadherin expression (original magnification, X200).
Table 1. Clinico-pathological characteristics and platinum sensitivity in the current series of patient population

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>No. of pts</th>
<th>Platinum resistant No. (%)</th>
<th>Platinum sensitive No. (%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cases</td>
<td>60</td>
<td>31 (51.7)</td>
<td>29 (48.3)</td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65</td>
<td>45</td>
<td>24 (53.3)</td>
<td>21 (46.7)</td>
<td>n.s</td>
</tr>
<tr>
<td>>65</td>
<td>15</td>
<td>7 (46.7)</td>
<td>8 (53.3)</td>
<td></td>
</tr>
<tr>
<td>FIGO Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>13</td>
<td>3 (23.1)</td>
<td>10 (76.9)</td>
<td>0.028</td>
</tr>
<tr>
<td>III-IV</td>
<td>47</td>
<td>28 (59.6)</td>
<td>19 (40.4)</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1-2</td>
<td>17</td>
<td>9 (52.9)</td>
<td>8 (47.1)</td>
<td>n.s</td>
</tr>
<tr>
<td>G3</td>
<td>35</td>
<td>18 (51.4)</td>
<td>17 (48.6)</td>
<td></td>
</tr>
<tr>
<td>n.a.</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Histotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serous</td>
<td>44</td>
<td>24 (54.5)</td>
<td>20 (45.5)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>16</td>
<td>7 (51.4)</td>
<td>9 (56.2)</td>
<td>n.s</td>
</tr>
<tr>
<td>Residual tumor at 1st surgery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1 cm</td>
<td>32</td>
<td>12 (37.5)</td>
<td>20 (62.5)</td>
<td>0.017</td>
</tr>
<tr>
<td>exploratory laparotomy</td>
<td>28</td>
<td>19 (67.8)</td>
<td>9 (32.1)</td>
<td></td>
</tr>
<tr>
<td>Ascites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>27</td>
<td>9 (33.3)</td>
<td>18 (66.7)</td>
<td>0.018</td>
</tr>
<tr>
<td>Yes</td>
<td>33</td>
<td>22 (66.7)</td>
<td>11 (33.3)</td>
<td></td>
</tr>
<tr>
<td>ET₄R expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>25</td>
<td>8 (32.0)</td>
<td>17 (68.0)</td>
<td>0.017</td>
</tr>
<tr>
<td>High</td>
<td>35</td>
<td>23 (65.7)</td>
<td>12 (34.3)</td>
<td></td>
</tr>
</tbody>
</table>

Fisher’s exact test was used to analyze the distribution of cases between groups
Figure 2

(A) Graphs showing relative mRNA levels of E-Cadherin, Snail, TWIST, N-Cadherin, Slug, and Vimentin.

(B) Graphs showing relative Snail mRNA levels.

(C) Western blot analysis of E-cadherin, Hsp70, and Twist in A2780 cells with ET-1 and zibotentan treatment.

(D) Bar graph indicating E-cadherin promoter activity fold over control.

(E) Bar graph showing Snail promoter activity fold over control.

(F) Western blot analysis of ET-1 with 0 to 60 minutes of ET-1 treatment, showing Snail and E-cadherin expression.

Legend:
- WT: Wild Type
- CIS: Cancerous
- TAX: Taxol treatment
- ET-1: Endothelin-1
- zibotentan: Zibotentan treatment
- NoAb: No Antibody
Figure 3
Clinical Cancer Research

Acquisition of chemoresistance and EMT phenotype is linked with activation of the endothelin A receptor pathway in ovarian carcinoma cells

Laura Rosano, Roberta Cianfrocca, Francesca Spinella, et al.

Clin Cancer Res Published OnlineFirst January 10, 2011.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-10-2325</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2011/04/14/1078-0432.CCR-10-2325.DC1</td>
</tr>
<tr>
<td>Author Manuscript</td>
<td>Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.</td>
</tr>
</tbody>
</table>