Oncogenic B-RAF signalling in melanoma impairs the therapeutic advantage of autophagy inhibition

Jane L. Armstrong¹, Marco Corazzari³, Shaun Martin¹,², Vittoria Pagliarini³, Laura Falasca³, David S. Hill¹, Nicola Ellis¹, Salim Al Sabah¹, Christopher P.F. Redfern², Gian Maria Fimia³, Mauro Piacentini³,⁴, Penny E. Lovat¹.

¹Dermatological Sciences, Institute of Cellular Medicine, Medical School, and ²Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK; ³National Institute for Infectious Disease, ‘L. Spallanzani’, and ⁴University of Tor Vergata, Rome, Italy

Running title: Targeting autophagy for melanoma therapy

Key words: autophagy, melanoma, B-RAF, endoplasmic reticulum stress

Financial Support: This work was supported by the JGW Patterson Foundation, British Skin Foundation, Newcastle Healthcare Charity, The Newcastle upon Tyne Hospitals NHS Foundation Trust, The North Eastern Skin Research Fund and Cancer Research UK in the UK, and the Ministry of Health of Italy “Ricerca Corrente” and “Ricerca Finalizzata”, Banca S. Paolo di Torino, AIRC and Fondazione Telethon in Italy. The support of the European Commission Marie Curie grant "TRACKS" and the EU grant "Apo-Sys" to MP is also acknowledged.

Address correspondence/reprint requests to:
Dr Penny Lovat
Dermatological Sciences,
Institute of Cellular Medicine,
Newcastle University,
2nd Floor William Leech Building,
The Medical School,
Framlington Place,
Newcastle upon Tyne
NE2 4HH, UK
Tel: +44 191 2227170
Fax: +44 191 2227179
E mail: p.e.lovat@ncl.ac.uk

Notes: Armstrong and Corazzari contributed equally to this manuscript and are joint first authors, Piacentini and Lovat are joint senior authors.

Acknowledgments:
We would like to thank the Bio-Imaging Unit, Institute of Cellular Medicine, Newcastle University, for their assistance with confocal microscopy studies, and Abbott Laboratories for provision of ABT737 and A-793844.
Translational Relevance

Survival rates for patients with metastatic melanoma remain extremely poor, emphasising the acute need for novel therapies. Clinical endoplasmic reticulum stress-inducing agents, fenretinide and bortezomib, able to induce effective apoptosis in melanoma cells, are also able activate autophagy, a lysosomal-mediated catabolic process used most frequently to promote cell survival. Targeting the autophagy pathway may therefore represent a novel means to augment therapy. Results from the present study show induction of autophagy in response to clinically achievable concentrations of fenretinide or bortezomib promotes melanoma cell survival, but that autophagy induction is abrogated in cells bearing oncogenic B-RAF. These findings therefore provide evidence for the development of novel therapeutic strategies based on autophagy inhibition in combination with fenretinide or bortezomib for B-RAF wild-type tumors, accounting for approximately 50% of all melanomas. Targeting autophagy according to B-RAF mutational status hence supports the development of personalised treatment for melanoma patients.
PURPOSE: Metastatic melanoma is characterised by extremely poor survival rates and hence novel therapies are urgently required. The ability of many anti-cancer drugs to activate autophagy, a lysosomal-mediated catabolic process which usually promotes cell survival, suggests targeting the autophagy pathway may be a novel means to augment therapy.

EXPERIMENTAL DESIGN: Autophagy and apoptosis were assessed in vitro in human melanoma cell lines in response to clinically-achievable concentrations of the ER stress-inducing drugs fenretinide or bortezomib, and in vivo using a s.c. xenograft model.

RESULTS: Autophagy was activated in response to fenretinide or bortezomib in B-RAF wild-type cells, shown by increased conversion of LC3 to the autophagic vesicle-associated form (LC3-II) and re-distribution to autophagosomes and autolysosomes, increased acidic vesicular organelle formation and autophagic vacuolization. In contrast, autophagy was significantly reduced in B-RAF mutated melanoma cells, an effect attributed partly to oncogenic B-RAF. Rapamycin treatment was unable to stimulate LC3-II accumulation or re-distribution in the presence of mutated B-RAF, indicative of deregulated mTORC1-dependent autophagy. Knockdown of Beclin-1 or ATG7 sensitised B-RAF wild-type cells to fenretinide- or bortezomib-induced cell death, demonstrating a pro-survival function of autophagy. In addition, autophagy was partially reactivated in B-RAF mutated cells treated with the BH3 mimetic ABT737 in combination with fenretinide or bortezomib, suggesting autophagy resistance is partly mediated by abrogated Beclin-1 function.

CONCLUSION: Our findings suggest inhibition of autophagy in combination with ER stress-inducing agents may represent a means by which to harness autophagy for the therapeutic benefit of B-RAF wild-type melanoma.
The increasing incidence of cutaneous melanoma worldwide coupled with the limited response to current treatment modalities continues to reflect poor survival rates for patients with metastatic disease. Resistance to, or loss of, the apoptotic pathway is a key event in tumorigenesis; however, recent research has highlighted pro-autophagic therapy as a novel strategy to induce cell death in apoptotic-resistant tumors (1).

Autophagy (macroautophagy) represents the major lysosomal-mediated process for the degradation and recycling of intracellular components. Regulated by a complex signalling cascade involving mammalian target of rapamycin (mTOR) inhibition, the autophagy proteins (Atgs) and two ubiquitin-like conjugation systems, autophagy culminates in formation of a double-membraned vesicle (autophagosome) which ultimately fuses with the lysosomal compartment (autolysosome) to break down sequestered material (2, 3). Autophagy represents a homeostatic mechanism to regulate cellular metabolism and energy production, thus promoting cell survival under conditions of metabolic stress. Conversely, autophagy may also promote a tumor suppressor pathway; in an apoptosis-deficient background, autophagy-defective tumor cells accumulate damaged proteins and organelles, resulting in elevated genomic stress and tumorigenesis (4). Consistent with a role for autophagy in tumor suppression, many essential autophagy mediators are bona fide tumor suppressor genes (5). Furthermore, autophagy may also contribute to cell death, either through catabolism of essential cytoplasmic components (autophagic cell death) or enhancement of apoptosis (6, 7).

The functional outcome of autophagy activation in response to anti-cancer therapy is unpredictable; it may promote or inhibit cell death. However, the observation that stimulation of endoplasmic reticulum (ER) stress results in autophagy-mediated cell death of cancer cells implies that agents able to promote ER stress have considerable therapeutic benefit (8-10). Our recent data demonstrating the ER stress-inducing drugs fenretinide, a synthetic retinoid,
and bortezomib, a 26S proteasome inhibitor, promote cell death of melanoma cells in vitro and in vivo (11-13), together with the ability of these agents to induce autophagy (14, 15), suggests targeting ER stress-induced autophagy is a viable approach for melanoma therapy.

As well as their inhibitory effect on apoptosis, multiple oncogenes, such as Ras, Akt, mTOR and Bcl-2, impede autophagy (5), thus exerting a dual role in the prevention of cell death. In the context of melanoma, oncogenic/activating mutations in B-RAF are present in 50-70% of melanomas and persist during melanoma pathogenesis (16, 17). B-RAF belongs to the RAF-extracellular signal-regulated kinase (ERK) kinase/ERK pathway, activation of which promotes melanoma proliferation and resistance to apoptosis (18). However, the role of B-RAF in the regulation of autophagy is controversial; ERK signalling is associated with autophagosome-lysosome fusion (19), and autophagic cell death (20). Furthermore, overexpression of mutant B-RAF in melanoma cells results in autophagy induction (21), suggesting activated B-RAF promotes autophagy. Nevertheless, the significance of this effect remains undefined in a therapeutic context.

The aim of the present study was to understand the relationship between autophagy and cell death during the therapeutic induction of ER stress in melanoma, and the influence of oncogenic B-RAF in this context. Collectively, our data suggest that inhibition of autophagy in combination with fenretinide or bortezomib offers a more effective therapeutic strategy for B-RAF wild-type melanoma.

Materials and Methods

Cell culture, drug treatment and analysis of apoptosis
Melanoma cell lines CHL-1, A375, and WM266-4 were cultured as described previously (22), verified as melanoma by melan A staining (23), and B-RAF mutational status confirmed using Custom TaqMan SNP genotyping assays (Applera Europe BV, UK). Fenretinide (Janssen-Cilag Ltd., High Wycombe, UK) was added in ethanol, bortezomib (Millenium, Janssen-Cilag Ltd.), thapsigargin, acridine orange, bafilomycin A1, chloroquine, rapamycin, bacitracin (Sigma, Dorset, UK), ABT737 or its enantiomer A-793844 (Abbott Laboratories, Illinois) were added in DMSO (24). For apoptosis assays, trypsinised cells were incubated with FITC-conjugated Annexin V and 7-Amino-Actinomycin (BD Biosciences, Belgium). 10,000 events were analysed by flow cytometry with CellQuest Pro software. For cell death assays, flow cytometry of propidium iodide–stained methanol/acetone-fixed cells was used to estimate the percentage of cells in the sub-G1 fraction (13).

Immunoprecipitation and western blotting

Bcl-XL was immunoprecipitated from cell lysates using the Pierce Crosslink Immunoprecipitation Kit (Thermo Fisher Scientific, MA). Preparation of whole-cell lysates and western blotting for B-RAF, p62 (D-3), ATG7 (Santa Cruz Biotechnology, Santa Cruz, California), ATF4 (Calbiochem, Merck Chemicals Ltd., Nottingham, UK), Beclin-1 (BD Biosciences) all diluted 1:1000, ERK1/2, phosphorylated (Thr202/Tyr204) ERK1/2, p70 S6 Kinase, phosphorylated (Thr389) p70 S6 Kinase, LC3B (Cell Signalling Technology, Danvers, Massachusetts) all diluted 1:2000, Ambra-1 (Covalab, France), UVRAG (Abgent, San Diego, California), diluted at 1:500, and β-actin (Sigma) diluted 1:5000, were performed as described previously (12).

Transfection experiments
RNA interference-mediated gene knockdown was achieved using siRNA for ATF4 (SI03019345), B-RAF (SI00299488) (Qiagen, Crawley, UK), Beclin-1 (HSS112741, HSS112742), and ATG7 (HSS116182, HSS173705) (Invitrogen, Paisley, UK), and incorporated a validated negative control siRNA (Qiagen AllStars Negative Control siRNA/Invitrogen Negative Control siRNA). 2 x 10^5 cells per well were transfected with 40 nM siRNA using lipofectamine 2000 (Invitrogen) as described previously (24, 25).

Expression vectors for B-RAF^WT and B-RAF^V600E (provided by R Marais, Institute of Cancer Research, London, UK), or pcDNA4 (Invitrogen) were transiently transfected using lipofectamine 2000.

Retroviral expression of GFP-LC3 and mRFP-GFP-LC3

For retroviral expression, GFP-LC3 or mRFP-GFP-LC3 (provided by T. Yoshimori, Research Institute for Microbial Diseases, Osaka University, Japan) (26, 27) were sub-cloned into pCLPCX vector as previously described (25). 15 μg of the retroviral vectors were co-transfected with 5 μg of an expression plasmid for the vesicular stomatitis virus G protein into 293 gp/bsr cells using the calcium phosphate method. After 48 hours, the supernatant containing the retroviral particles was recovered and supplemented with polybrene (4 μg/ml). CHL-1, A375 and WM266-4 cells were infected by incubation with retroviral-containing supernatant for 6-8 hours.

Autophagy analysis

For fluorescence microscopy, cells were grown on glass coverslips prior to treatment and fixation in 4% paraformaldehyde, and visualisation of GFP-LC3 or mRFP-GFP-LC3 under a Leica TCS SP II laser-scanning confocal microscope with LCS Lite 2.61 software (Leica Microsystems, Milton Keynes, UK). For transmission electron microscopy, CHL-1 or
A375 xenograft tumors were fixed in 2.5% glutaraldehyde and embedded in Epon as described previously (25). Ultrathin sections were contrasted with uranyl acetate and photographed using a Zeiss CM 900 electron microscope. To detect the formation of acidic vesicular organelles, trypsinised cells were re-suspended in PBS and stained with acridine orange (1 μg/ml) for 15 minutes at room temperature. 10,000 events were immediately acquired by flow cytometry and analysed using CellQuest Pro software.

Xenograft mouse model and immunohistochemical analysis

Female CD1 nude mice, 6 to 8 wk old (Charles River, Massachusetts), were inoculated s.c. into the right flank with 7.5x10^6 CHL-1 or A375 cells in 100 μL DMEM containing 4.5 g/L L-Glucose (Invitrogen). On establishment of tumors 125 mm^3 in volume, mice were randomized into 3 treatment groups (3-6 mice per group) and treated subsequently by daily i.v injection (tail) for 10 days with 0.1 mg/kg bortezomib or 1.45 mg/kg fenretinide as previously described (11). The control group was treated with 100 μL of vehicle only. Caliper measurements of tumor length (L) and width (W) were taken each day, and tumor volume determined through the formula V = [(L*L)*W]/2. Mice were humanely killed on the final day of treatment, and tumors extracted and snap frozen in liquid nitrogen before storage at -80°C. Tumors were processed for Ki67 and TUNEL positivity as previously described (11), and analyzed using a Leica TCS SP II laser-scanning confocal microscope and LCS Lite 2.61 software.

Statistical analysis

Data were analyzed by drug treatment (fenretinide, bortezomib, rapamycin) with the use of two-way ANOVA (cells, vector) or one-way ANOVA with Tukey’s post hoc test,
using SPSS Release 15 (SPSS Inc.); where Levene’s test was significant, data were log transformed for analysis.

Results

Fenretinide and bortezomib activate autophagy in melanoma cells

Characteristic features of early and late stages of autophagy were used to determine the ability of fenretinide and bortezomib to induce autophagy in three human melanoma cell lines. Conversion of unconjugated LC3 (LC3-I) to the lipidated form (LC3-II) is associated with autophagosome formation and localisation to autophagosomes, while acridine orange is used to stain acidic vesicular organelles (AVOs) including autolysosomes (28). LC3-II induction was seen in all three cell lines in response to clinically-achievable concentrations (29, 30) of fenretinide or bortezomib (Fig. 1A), but the magnitude of response differed significantly between each cell line ($F_{2,18} = 51.8$, $P < 0.001$), with the highest level of induction observed in CHL-1 cells (Tukey’s HSD, $P < 0.001$). Similarly, significantly greater AVO staining was observed in response to fenretinide or bortezomib in CHL-1 cells compared to A375 or WM266-4 cells (Fig. 1A; Tukey’s HSD, $P < 0.001$). In addition, in cells stably expressing GFP-LC3, the number of LC3-positive autophagosomes increased in response to fenretinide and bortezomib in CHL-1 cells, but not in A375 or WM266-4 cells (Supplementary Fig. S1). Autophagic flux was assessed by use of the autophagy inhibitor chloroquine, as well as visualisation of tandem mRFP-GFP-tagged LC3 to simultaneously detect LC3-positive immature autophagosomes (yellow) and mature autolysosomes (red), denoted by characteristic punctate fluorescence (26). Fenretinide or bortezomib treatment further stimulated LC3-II accumulation in the presence of chloroquine in CHL-1 cells, but
not in A375 or WM266-4 cells (Fig. 1B). Furthermore, CHL-1 cells expressing mRFP-GFP-LC3 displayed increased yellow and red punctate staining in response to fenretinide or bortezomib (Fig. 1C). However, while higher basal levels of red puncta were observed in A375 and WM266-4 cells, there was little increase in response to drug treatment, though induction of yellow puncta was evident after bortezomib treatment. Ultrastructural evaluation of CHL-1 or A375 xenograft tumors treated for 10 days with fenretinide or bortezomib revealed multiple double-membraned autophagosomes and autophagic vacuoles in fenretinide- and bortezomib-treated CHL-1 tumors. Conversely, increased numbers of autophagic vacuoles were present in control A375 tumors compared to CHL-1 tumors, but there was little evidence for autophagy induction in response to either ER stress-inducing agent (Supplementary Fig. S2).

Increased basal autophagy in A375 and WM266-4 cells was consistent with significantly increased LC3-II expression in these cells compared to CHL-1 cells (A375 vs CHL-1, 2-fold increase, P = 0.027; WM266-4 vs CHL-1, 8.5-fold increase, P = 0.006). Furthermore, blockade of lysosomal-mediated protein turnover by bafilomycin A1 (28) resulted in accumulation of p62 in A375 and WM266-4 cells, but not CHL-1 cells (Fig. 1D). These data suggest that A375 and WM266-4 cells display an increased rate of basal autophagy but are resistant to autophagy induction in response to fenretinide or bortezomib.

ER stress mediates fenretinide- and bortezomib-induced autophagy

To determine whether ER stress signalling was required for fenretinide- or bortezomib-induced autophagy, the ER stress-associated activating transcription factor 4 (ATF4) (24), was down-regulated by siRNA in CHL-1 or A375 cells prior to treatment with fenretinide, bortezomib or thapsigargin (included as a positive control for ER stress). Knockdown of ATF4 increased LC3-II levels, but significantly reduced further LC3-II
accumulation in response to drug treatment in CHL-1 (Fig. 2A,B; $F_{1,18} = 46.2, P < 0.001$) and A375 cells (data not shown), as well as inhibition of p70 S6 kinase phosphorylation, a target of mTOR, indicating the ER stress response is required for autophagy induction, and is mediated, at least in part, by ATF4 activation and mTOR inhibition.

We have previously shown that A375 and WM266-4 cells display a reduced sensitivity to ER stress activation compared to CHL-1 cells, as evidenced by reduced up-regulation of GADD153, ATF4 and GADD34 (12), suggesting an abrogated ER stress response may limit autophagy induction in these cells. To test this hypothesis, the ER stress response was enhanced through use of bacitracin (12). Fenretinide and bortezomib-induced LC3-II accumulation were enhanced in CHL-1 cells by combined treatment with bacitracin compared to treatment with fenretinide or bortezomib alone, though this was only significant for fenretinide ($P = 0.021$). Conversely, bacitracin did not augment LC3-II accumulation in response to either ER stress inducing agent in A375 (Fig. 2C) or WM266-4 cells (data not shown). These data suggest resistance to autophagy induction in B-RAF mutated melanoma cells lies downstream of the ER stress response.

To determine whether melanoma cells resistant to ER stress-induced autophagy were also resistant to autophagy activated by direct inhibition of mTOR complex 1 (mTORC1), CHL-1, A375 and WM266-4 cells were treated with rapamycin. CHL-1 cells were sensitive to rapamycin treatment, as evidenced by decreased phosphorylation of p70 S6 kinase, increased LC3-II expression and AVO staining, p62 degradation, induction of yellow and red punctate fluorescence in mRFP-GFP-LC3-expressing cells, and green puncta in GFP-LC3-expressing cells, indicating activation of autophagy (Fig. 3, Supplementary Fig. S1). Compared to CHL-1 cells, p70 S6 kinase phosphorylation was reduced basally in autophagy induction-resistant A375 and WM266-4 cells, but was further inhibited in A375 cells after rapamycin treatment. However, there was little effect of rapamycin on autophagy induction in
either A375 or WM266-4 cells compared to CHL-1 cells. Similar results were also obtained with respect to rapamycin treatment on autophagy induction in additional B-RAF wild-type (SK-Mel-23) and mutated (SK-Mel-28) cells, as well as in the transgenic mouse \(B-RAF^{V600E} \) cell line, 4599 (31) (data not shown). These data suggest resistance to autophagy induction is related to aberrant regulation of mTORC1-dependent signalling and the resulting high basal levels of autophagy (21).

Oncogenic B-RAF confers resistance to autophagy induction in melanoma cells

Numerous oncogenes are known to inhibit autophagy (5); as autophagy-efficient CHL-1 cells are B-RAF wild-type, whereas autophagy-defective A375 and WM266-4 cells harbour mutated B-RAF (\(B-RAF^{V600E} \) and \(B-RAF^{V600D} \) respectively), this raises the possibility that oncogenic B-RAF confers resistance to the induction of autophagy. To test this hypothesis, \(B-RAF^{WT} \) or \(B-RAF^{V600E} \) were over-expressed in CHL-1 cells (Fig. 4). Rapamycin treatment of CHL-1 cells expressing \(B-RAF^{WT} \) resulted in significant accumulation of LC3-II (\(n = 5, t_{18} = -3.325, P = 0.004 \)) and increased yellow and red punctate fluorescence in mRFP-GFP-LC3-expressing cells, compared to untreated cells. Conversely, over-expression of \(B-RAF^{V600E} \) alone significantly increased LC3-II levels (\(n = 5, t_{18} = -2.596, P = 0.018 \)), compared to cells expressing \(B-RAF^{WT} \). However, rapamycin treatment had no significant effect on LC3-II accumulation (\(n = 5, t_{18} = -1.118, P = 0.278 \)) or re-distribution in CHL-1 cells expressing \(B-RAF^{V600E} \). These data are consistent with a role for oncogenic B-RAF in the promotion of basal autophagy but inhibition of mTORC1-dependent autophagy induction.

In the context of ER stress, however, fenretinide or bortezomib treatment resulted in a significant accumulation of LC3-II (\(F_{2,14} = 5.6, P = 0.016 \)), but with no significant difference between CHL-1 cells expressing \(B-RAF^{WT} \) or \(B-RAF^{V600E} \) (\(n = 3, F_{1,14} = 0.007, P = 0.934 \)) or the vector*treatment interaction (\(F_{2,14} = 0.822, P = 0.46 \)) (Fig. 4). Conversely, there was a
decrease in fenretinide- or bortezomib-induced AVO formation (data not shown) and red punctate fluorescence in mRFP-GFP-LC3-expressing CHL-1-\(B-RAF^{V600E}\) compared to CHL-1-\(B-RAF^{WT}\) cells (Fig. 4B). Furthermore, siRNA-mediated B-RAF knockdown in A375 cells was associated with increased red puncta in mRFP-GFP-LC3-expressing cells in response to fenretinide, but did not alter LC3-II accumulation in response to fenretinide or bortezomib (Supplementary Fig. S3). These data suggest autolysosome formation in response to fenretinide- and, to a lesser extent, bortezomib is inhibited by oncogenic B-RAF.

Relationship between fenretinide- and bortezomib-induced autophagy and apoptosis

ER stress-inducing therapy can promote cell death through autophagy in apoptosis-defective cells (32, 33), whereas autophagy activation is commonly a pro-survival response in apoptosis-competent cells (7). CHL-1, A375 and WM266-4 cells activate apoptosis with differing sensitivity to fenretinide or bortezomib (11). This observation was supported by data demonstrating fenretinide and bortezomib activated apoptosis in CHL-1 cells to a greater extent than either A375 or WM266-4 cells (Supplementary Fig. S4: Post Hoc Tukey’s HSD CHL-1 vs. A375 or WM266-4, \(P < 0.001\); A375 vs. WM266-4 \(P = 0.6\)). Furthermore, evaluation of CHL-1 or A375 xenograft tumors treated with fenretinide or bortezomib revealed an increased inhibitory effect of fenretinide or bortezomib on CHL-1 tumor growth after 10 days treatment (Fig. 5A: 2-way ANOVA; \(F_{1,21} = 13.6, P = 0.001\)). Furthermore, the percentage of apoptotic TUNEL-positive cells significantly increased in response to drug treatment, with a greater effect observed in CHL-1 compared to A375 tumours (Supplementary Fig. S4: \(F_{2,18} = 11.28, P = 0.001\)). Collectively, these data suggest CHL-1 cells are able to activate both apoptosis and autophagy more efficiently than A375 or WM266-4 cells in response to ER stress.
To test the function of autophagy in relation to cell death in response to fenretinide or bortezomib, the expression of Beclin-1 or ATG7 was abrogated by siRNA-mediated knockdown in both CHL-1 and A375 cells (Fig. 5B, D). Beclin-1 or ATG7 knockdown significantly enhanced fenretinide- and, to a lesser extent, bortezomib-induced cell death of CHL-1 cells (1-way ANOVA: F$_{4,10}$ ≥ 47.58, P ≤ 0.001), and ATG7 knockdown had a greater effect on fenretinide treatment compared to Beclin-1 knockdown (Fig. 5C). These data suggest that autophagy activation limits ER stress-induced cell death in CHL-1 cells. Conversely, individual siRNAs resulted in increased or decreased fenretinide- or bortezomib-induced cell death of A375 cells (F$_{4,10}$ ≥ 17.5, P ≤ 0.001); however, taken together these data demonstrate that Beclin-1 or ATG7 knockdown does not affect the outcome of fenretinide or bortezomib treatment in A375 cells (Fig. 5E).

ABT737 promotes fenretinide- and bortezomib-induced cell death in B-RAF mutated melanoma

Genetic ablation of Beclin-1 or ATG7 showed a pro-survival role for autophagy after therapeutic induction of ER stress in B-RAF wild-type CHL-1 cells. As oncogenic B-RAF acts to suppress both ER stress- and rapamycin-induced autophagy, it is possible that a common point of autophagy dysregulation is Beclin-1. Although Beclin-1 was expressed in melanoma cells, Beclin-1 function may be limited by increased expression of Bcl-XL in B-RAF mutated melanoma cells (Supplementary Fig. S4) (34, 35). To reactivate autophagy and test the hypothesis that autophagy promotes cell survival in B-RAF mutated melanoma cells, the BH3 mimic ABT737 was employed to liberate Beclin-1 from its inhibition by Bcl-XL (36) (Supplementary Fig. S4). Treatment of A375 cells with fenretinide or bortezomib alone increased the expression of p62, likely due to the generation of intracellular ROS or proteasome inhibition (13, 37, 38), however, combined treatment with ABT737 resulted in
down-regulation of both total p62 and ubiquitinated p62 (39), as well as enhanced accumulation of p62 in the presence of bafilomycin A1 (data not shown), and increased red puncta in mRFP-GFP-LC3-expressing cells, compared to treatment with the enantiomer, suggesting increased autophagy-mediated p62 degradation (Fig. 6A,B). Nevertheless, fenretinide- and bortezomib-induced cell death was significantly increased in the presence of ABT737, compared to treatment with either the enantiomer or vehicle (P< 0.001) (Fig. 6C). Abrogation of autophagy by ATG7 knockdown resulted in a small but significant increase in A375 cell death in response to combined treatment with ABT737 and fenretinide or bortezomib (Fig. 6D; F_{1,8} = 24.7, P = 0.001). These data suggest the ability of ABT737 to promote autophagy, and hence cell survival, in B-RAF mutated A375 cells has little effect on fenretinide- or bortezomib-induced cell death in comparison with its prevailing apoptosis-promoting action.

Discussion

It has become increasingly apparent that the therapeutic activation of ER stress may offer considerable benefit in cancer treatment (40), and we have recently shown that the ER stress-inducing drugs fenretinide and bortezomib promote melanoma cell death (11-13), suggesting activation of ER stress is a promising approach for melanoma therapy. Emerging evidence now implicates the unfolded protein response (UPR) in the activation of autophagy (40), which can either counteract the accumulation of unfolded proteins to promote cell survival, or participate in ER stress-induced cell death (8, 41). Targeting the autophagy pathway may therefore be a novel means to augment therapy. In this respect, autophagy activation has a pro-survival function in B-RAF wild-type cells, and autophagy inhibition
potentiates ER stress-induced cell death in this setting. However, ER stress-induced autophagy is significantly less in B-RAF mutated compared to wild-type melanoma cells.

The molecular mechanisms connecting ER stress and autophagy have been attributed to the inactivation of mTOR, UPR-dependent up-regulation of ATG proteins, and disruption of the balance between Bcl-2 proteins (40). We have previously shown that fenretinide- and bortezomib activate ATF4 (24), and here we demonstrate ATF4 is required for autophagy in response to ER stress in melanoma cells, suggesting the engagement of a common pathway upstream of both apoptosis and autophagy. Consistent with this observation, recent studies demonstrate ATF4 can mediate mTOR inhibition (42), and that LC3 is a direct transcriptional target of ATF4 (43). The inhibitory effect of oncogenic B-RAF on autophagy induction in this context is downstream of ER stress activation and is, at least partly, related to deregulation of mTORC1-dependent autophagy, as direct mTORC1 inhibition was unable to stimulate either LC3-II accumulation or re-distribution in the presence of mutated B-RAF. Furthermore, ABT737 treatment partially restored fenretinide- and bortezomib-induced autophagy, indicating Bcl-XL over-expression prevents activation of the BH3-only protein Beclin-1 during ER stress in B-RAF mutated cells. However, while fenretinide- or bortezomib-induced autolysosome formation was inhibited by oncogenic B-RAF, LC3-II accumulation was not affected by modulation of B-RAF expression. Furthermore B-RAF knockdown did not enhance bortezomib-induced autophagy, suggesting additional mechanisms of autophagy regulation exist during ER stress that are not B-RAF-dependent. Interestingly, accumulation of LC3-containing autophagosomes/aggregates during bortezomib treatment of B-RAF mutated cells is potentially due to inhibition of proteasomal LC3 processing, signifying crosstalk between the autophagy and proteasome degradation pathways (44).
The simultaneous activation of autophagy and apoptosis in response to fenretinide or bortezomib suggests therefore that autophagy inhibition in combination with ER stress-inducing drugs is a promising strategy for B-RAF wild-type tumors. However, the lower sensitivity to autophagy induction conferred by oncogenic B-RAF limits the therapeutic advantage of autophagy inhibition in B-RAF mutated melanoma cells. Autophagy activated in response to ABT737 had a small inhibitory effect on ER stress-induced cell death in comparison with its established apoptosis-promoting action in B-RAF mutated melanoma cells, suggesting inhibition of autophagy in this setting would be of marginal benefit. Fenretinide or bortezomib in combination with ABT737 may therefore be an appropriate and effective therapeutic strategy negating the need for additional autophagy modulation in B-RAF mutated melanoma.

The impact of deregulated autophagy in B-RAF mutated melanoma cells can also be viewed within the broader context of tumor biology. The concept of B-RAF-mediated inhibition of autophagy induction is consistent with a role for oncogenes in autophagy repression (5) as well as a tumour suppressive role of autophagy, but contradictory to the reported promotion of autophagy by oncogenic B-RAF, attributed to decreased mTORC1 activity (21). The increased rate of basal autophagy in B-RAF mutated compared to wild-type cells is therefore likely due to inhibition of mTORC1 signalling, though the relevance of this in vivo is unclear; mTOR is activated in the majority of malignant melanomas despite the presence of activating B-RAF mutations (45). Hyperactivation of mTOR (45) or increased expression of Bel-XL (46) are two potential mechanisms by which autophagy inhibition could be achieved in vivo.

Collectively, these data establish a role for oncogenic B-RAF in the inhibition of fenretinide- and bortezomib-induced autophagy in melanoma. While oncogenic B-RAF clearly plays a significant role in melanoma pathogenesis (16), up to 50% of tumors are
nevertheless B-RAF wild-type, with equally limited treatment options. The current study therefore provides evidence to support the development of novel strategies based on autophagy inhibition in combination with ER stress-inducing therapy in B-RAF wild-type tumors. Differentially harnessing autophagy and selection of the most appropriate treatment for melanoma patients stratified according to B-RAF mutational status hence supports the current trend towards personalised therapy for melanoma patients to improve clinical outcome.

References

Titles and legends to figures

Figure 1. Fenretinide and bortezomib activate autophagy. A,B,C, Non- and mRFP-GFP-LC3-expressing CHL-1, A375 or WM266-4 cells were treated with vehicle (C), fenretinide (F; 10 μM) or bortezomib (B; 200 nM) for 24 hr, or B, for 18 hr with the addition of chloroquine (CQ; 10 μM) for the final 2 hr. A,B, LC3-II expression was determined by
western blot analysis and band intensity normalised to β-actin. AVO induction was determined by acridine orange staining and flow cytometry, and expressed as fold increase compared to vehicle-treated cells, for each cell line (mean ± SD, n = 4). C, Representative fluorescent micrographs from melanoma cells expressing mRFP-GFP-LC3 (bar, 20 μm). D, CHL-1, A375 and WM266-4 cells were treated with bafilomycin A1 (Baf; 10 nM) for 24 hr. p62 and β-actin expression were determined by western blotting.

Figure 2. ER stress mediates fenretinide- and bortezomib-induced autophagy. A,B, CHL-1 cells were transfected with siRNAs for ATF4 (siATF4), or with a non-silencing control siRNA (siCtrl) prior to treatment with fenretinide (FenR, F; 10 μM), bortezomib (Bort, B; 30 nM), or thapsigargin (Thap, T; 7.5 μM) for 18 hr. A, ATF4, p70 S6K, phospho-p70 S6K (p-p70 S6K), LC3, and β-actin expression were determined by western blotting. B, LC3-II expression was quantified and band intensity normalised to β-actin. Data are expressed as fold increase compared to siCtrl untreated cells (mean ± SD, n = 3). C, CHL-1 and A375 cells were treated with vehicle (ctrl), fenretinide (F; 10 μM) or bortezomib (B; 30 nM) in combination with bacitracin (Baci; 500 μM) for 24 hr. A, LC3-II expression was determined by western blot analysis and band intensity normalised to β-actin. Data are expressed as fold increase compared to control cells, for each cell line (mean ± SD, n ≥ 3).

Figure 3. B-RAF mutated melanoma cells are resistant to rapamycin-induced autophagy. Non- and mRFP-GFP-LC3-expressing CHL-1, A375 or WM266-4 cells were treated with vehicle (ctrl, C) or Rapamycin (Rap, R; 1 μM) for 24 hr. A, p70 S6K, phospho-p70 S6K (p-p70 S6K), p62, LC3 and β-actin expression were determined by western blotting. B, representative fluorescent micrographs from mRFP-GFP-LC3-expressing cells (bar, 20 μm).
C, AVO induction was determined by acridine orange staining and flow cytometry, and expressed as fold increase compared to vehicle-treated cells, for each cell line (mean ± SD, n = 3).

Figure 4. *B-RAF*^{V600E} confers resistance to autophagy induction. A,B, CHL-1 or mRFP-GFP-LC3-expressing CHL-1 cells were transfected with expression vectors for *B-RAF*^{WT} or *B-RAF*^{V600E}, or the empty vector (Vec) for 48 hr prior to treatment with vehicle (ctrl, C), fenretinide (FenR, F; 10 μM), bortezomib (Bort, B; 200 nM), or rapamycin (Rap, R; 1 μM) for 24 hr. A, B-RAF, ERK1/2, phospho-ERK1/2 (p-ERK1/2), LC3 and β-actin were detected by western blotting. B, Representative fluorescent micrographs from CHL-1 cells expressing mRFP-GFP-LC3 (bar, 20 μm).

Figure 5. Fenretinide- or bortezomib-induced autophagy promotes cell survival. A, Mice bearing CHL-1 (i) or A375 (ii) xenograft tumors were treated daily with vehicle (Control), 1.45 mg/kg fenretinide (FenR, F), or 0.1 mg/kg bortezomib (Bort, B). Relative tumor volume (mm³) is expressed relative to the volume on day 1 of treatment from ≥ 3 tumors (mean ± SD). B-E, CHL-1 (B,C) or A375 (D,E) cells were transfected with siRNAs for Beclin-1 (siBCN1-1,-2) or ATG7 (siATG7-2,-5), or with a non-silencing control siRNA (siCtrl) prior to treatment with fenretinide (FenR, F; 15 μM) or bortezomib (Bort, B; 200 nM) for 24 hr. B,D, Beclin-1 (BCN1), ATG7 and β-actin (Actin) expression were determined western blotting. C,E, Cell death was measured by analysis of the sub-G1 fraction, and expressed as percentage cell population (mean ± SD, n ≥ 3).

Figure 6. ABT737 enhances fenretinide- or bortezomib-induced cell death. A,C A375 cells or B, mRFP-GFP-LC3-expressing A375 cells or, D, A375 cells transfected with siRNAs for
ATG7-5 (siATG7) or a non-silencing control siRNA (siCtrl), were treated with fenretinide (F; 5 μM) or bortezomib (B; 50 nM) in combination with ABT737 (5 μM) or its enantiomer control (enant.; 5 μM), or with vehicle (ctrl, C) for 10-24 hr. A, p62 and β-actin were detected by western blotting after 10 hr drug treatment, B, representative fluorescent micrographs from A375 cells expressing mRFP-GFP-LC3 (bar, 20 μm) after 10 hr drug treatment. C,D, Cell death was measured by analysis of the sub-G1 fraction after 24 hr (C) or 18 hr (D) drug treatment, and expressed as percentage cell population (mean ± SD, n ≥ 3).
Figure 1

A

B

C

D

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
Figure 2

A

siCtrl siATF4

p-p70 S6K p70 S6K

ATF4 LC3-I LC3-II

Actin

B

LC3-II expression fold induction

C

CHL-1 A375

+ Baci + Baci

LC3-I LC3-II

Actin

LC3-II expression fold induction

+ Baci + Baci

CHL-1 A375
Figure 3

A

<table>
<thead>
<tr>
<th></th>
<th>CHL-1</th>
<th>A375</th>
<th>WM266-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-p70 S6 K</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>p70 S6 K</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>p62</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>LC3-I</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>LC3-II</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Actin</td>
<td>C</td>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

B

ctrl Rap

CHL-1 WM266-4

C

Acridine orange staining fold induction

<table>
<thead>
<tr>
<th></th>
<th>CHL-1</th>
<th>A375</th>
<th>WM266-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4

A

<table>
<thead>
<tr>
<th></th>
<th>Vec</th>
<th>WT</th>
<th>V600E</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>ctrl</th>
<th>Rap</th>
<th>FenR</th>
<th>Bort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vec</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-RAFWT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-RAFV600E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Oncogenic B-RAF signalling in melanoma impairs the therapeutic advantage of autophagy inhibition

Jane L Armstrong, Marco Corazzari, Shaun Martin, et al.

Clin Cancer Res Published OnlineFirst January 26, 2011.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-10-3003

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2011/04/14/1078-0432.CCR-10-3003.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.