Analysis of miR-195 and miR-497 expression, regulation and role in breast cancer

Dan Li1*, Yulan Zhao1*, Changxing Liu3*, Xiaona Chen1, Yanting Qi2, Yue Jiang1,2, Chao Zou1, Xiaolong Zhang1, Shunying Liu1, Xuejing Wang5, Dan Zhao1, Qiang Sun5, Zhenbing Zeng8, Andreas Dress8, Marie C. Lin7,1, Hsiang-Fu Kung6,1, Hallgeir Rui2, Ling-Zhi Liu2, Feng Mao5, Bing-Hua Jiang4,2* and Lihui Lai1*.

1Institute of Molecular and Chemical Biology, East China Normal University, Shanghai, China.

2Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.

3Department of General Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

4Department of Pathology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.

5Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.

6Faculty of Medicine, The Chinese University of Hong Kong, HK, SAR, China.

7Brain Tumor Center, Neurosurgery Division, Faculty of Medicine, PWH, The Chinese University of Hong Kong, Shatin, Hong Kong, China.

8CAS-MPG Partner Institute and Key Lab for Computational Biology, SIBS, CAS, Shanghai, China.

*Corresponding authors:

Lihui Lai, Ph.D., Institute of Molecular and Chemical Biology, East China Normal University.
University, Shanghai 200062, China. Email: lhlai@bio.ecnu.edu.cn. Phone: +86-21-62237226, Fax: +86-21-62237226.

Bing-Hua Jiang, Ph.D., Department of Pathology, Nanjing Medical University, Nanjing, China. E-mail: bhjiang@jefferson.edu. Phone: 215-5036147.

* These three authors contributed equally to this work.

Running title: MiR-195 and miR-497 in breast cancer

Key words: miR-195, miR-497, methylation, Raf-1, breast cancer

There is no conflict of interests.

This work was supported in part by the National Basic Research Program of China (2007CB947001, 2007CB947002), by State High Technology Developing Project (2008AA02Z115), by the Key Programs of National Science Foundation of China (30430240), by Shanghai Metropolitan Fund for Research and Development (04DZ14005 and 04JC14096), and by National Cancer Institute, NIH Grant R01CA109460.
Statement of translational relevance

In this study, we show that the promoter hypermethylation of miR-195/497 cluster causes their down-regulation in breast cancer. The Levels of miR-195/497 expression are inversely correlated with tumor malignancy, and Raf-1 is identified as a direct target of both miRNAs. Our data imply that both miR-195 and miR-497 may be potential interest as therapeutic and diagnostic targets in breast cancer.
Abstract

Purpose: To investigate expression, regulation, potential role and targets of miR-195 and miR-497 in breast cancer.

Experimental design: The expression patterns of miR-195 and miR-497 were initially examined in breast cancer tissues and cell lines by Northern blotting and quantitative real-time PCR. Combined bisulfite restriction analysis and bisulfite sequencing were carried out to study the DNA methylation status of miR-195 and miR-497 genes. Breast cancer cells stably expressing miR-195 and miR-497 were established to study their role and targets. Finally, normal, fibroadenoma and breast cancer tissues were employed to analyze the correlation between miR-195/497 levels and malignant stages of breast tumor tissues.

Results: MiR-195 and miR-497 were significantly down-regulated in breast cancer. The methylation state of CpG islands upstream of the miR-195/497 gene was found to be responsible for the down-regulation of both miRNAs. Forced expression of miR-195 or miR-497 suppressed breast cancer cell proliferation and invasion. Raf-1 and Ccnd1 were identified as novel direct targets of miR-195 and miR-497. MiR-195/497 expression levels in clinical specimens were found to be correlated inversely with malignancy of breast cancer.

Conclusions: Our data imply that both miR-195 and miR-497 play important inhibitory roles in breast cancer malignancy and may be the potential therapeutic and diagnostic targets.
Introduction

MicroRNAs (miRNA) are a class of highly conserved, small noncoding RNAs, which regulate gene expression in a variety of eukaryotic organisms and execute pivotal roles in physiological and pathological processes including development, differentiation, metabolism, immunity, cell proliferation and apoptosis (1-3). In general, these single-stranded miRNAs show a trend toward multiple targeting sites in the coding sequence (CDS) regions or the 3’ untranslated (3’UTR) regions of their target messenger RNAs (mRNAs) and cause translational repression or mRNA cleavage (4). There is growing evidence that differential expressions of miRNAs are associated with tumor types and cancer development (5).

Breast cancer is one of the leading causes of cancer death in women worldwide (6). miRNAs, such as miR-21, miR-27a, miR-17, miR-155, miR-10b, miR-125b and miR-145, are found to be dysregulated and serve as oncogenic agent or tumor suppressor in breast cancer (6-11). It has been known that these tiny molecules are involved in tumor cell proliferation, migration, invasiveness and metastasis. Recently, blood-based miRNA profiling studies demonstrate that systemic miR-195 levels are increased before surgery and decreased after surgery in breast cancer patients (12). Interestingly, miR-497 has been found to be one of most prominently down-regulated miRNAs in male breast cancer (13). As miR-195/497 is a highly conserved miRNA cluster located at Chromosome 17p13.1 (6), it would be interesting to simultaneously the roles of miR-497 in breast cancer.

Accumulating evidence also demonstrates that genetic and epigenetic alterations cause the dysregulation of subsets of miRNAs (14, 15). Among them, promoter
hypermethylation is known for silencing the specific miRNA expression to be involved in tumorigenesis (15). Mammalian DNA is predominantly methylated at the C-5-position of complimentary CpG bp by DNA methyltransferases (16). The aberrations of this epigenetic modification may lead to various diseases including cancer (15, 17). For miRNA expression, DNA methylation of CpG islands was found to be present in the promoter region of miRNAs with tumor suppressor features in human cancer such as miR-127, miR-124a, miR-1, as well as miR-148a and miR-34b (18-21). Thus, such DNA methylation might also play a role in tumorigenesis. The objective of the present study was to reveal the roles of miR-195 and miR-497 in breast cancer.
Materials and Methods

Human tissue samples

Human breast tumor samples and normal tissues were obtained from Peking Union Medical College Hospital and Shanghai Huashan hospital. All participants provided written informed consent following institutional review board approval at the participating hospitals. Tissue samples were collected and frozen in liquid nitrogen. These tissues were prepared in the hospital biorepository, and clinical annotation is available though a database. Cases were classified and selected based on diagnosis using the CoPath Anatomic Pathology system, and no information regulated by HIPPA was included in the study, which qualifies for the status of NIH Exemption #4.

Cell culture and RNA preparation

Human breast cancer cell lines MDA-MB-231, MDA-MB-435s, MDA-MB-453, ZR-75-30, SK-BR-3, T47D, and MCF 7 were obtained from ATCC (Manassas, VA). Cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) (MDA-MB-231, MDA-MB-435s, MDA-MB-453, T47D) or RPIM 1640 medium (ZR-75-30, SK-BR-3) supplemented with 10% fetal bovine serum (FBS). MCF7 cells were maintained in MEM supplemented with 10% FBS, and 0.01 mg/ml bovine insulin. Total RNAs were extracted from tissues and cells using Trizol reagent (Invitrogen, Carlsbad, CA, USA).

Combined bisulfite restriction analysis and bisulfite sequencing.
The University of California Santa Cruz (UCSC) database was used to identify CpG islands (CGI) spanning miR-195 and miR-497 genes. Genomic DNA was isolated using Universal Genomic DNA Extraction Kit Ver.3.0 (Takara, Shiga, Japan), and bisulfite conversion was performed using EZ DNA Methylation-Gold Kit™ (Zymo Research, Orange, CA). Bisulfite-converted genomic DNA that converts only unmethylated cytosines to uracils, was amplified with specific primers. The purified PCR fragments were cloned into a pMD19-T vector (Takara Code: D102A), and individual clones were sequenced. For combined bisulfite restriction analysis (COBRA), PCR fragments were digested with Taq I (New England Biolabs Inc. Beverly, MA, USA) for 3 h at 37°C. The restriction products were electrophoresed on a 3% agarose gel, and visualized by staining with Gold View (SBS Genetech, Shanghai, China). The primers used for amplification of CGI on miR-195 and miR-497 genes are: miR-195 and miR-497-CG-BSF1: GTGTTTATTTGTAGTGATTT; miR-195 and miR-497-CG-BSR1: TAACCTCCCTCAATCTCTTTATTCTT.

5-Aza-dC treatment and precursor transfection

ZR-75-30 cells were seeded 24 h prior to treatment with 5 µM 5-aza-2'-deoxycytidine (5-Aza-dC; Sigma-Aldrich, St. Louis, MO, USA). After 5 days of treatment, the cells were harvested and total RNAs were prepared and used for quantitative real-time PCR analysis. Pre-miR-195 and pre-miR-497 and pre-miRTM miRNA precursors were purchased from Ambion. Cells were transfected with the precursors at 100 nM using LipofectAMINE 2000 reagent (Invitrogen).
Northern blot analysis

Total RNAs (25 μg each) were electrophoresed on 15% acrylamide and 8 M urea denature gels, and transferred onto Hybond N+ membrane (Amersham Biosciences). The membranes were baked at 80°C for 2 h before hybridization, then hybridized with oligo-nucleotide probes corresponding to the complementary sequences of the following mature miRNAs: miR-195, 5’- GCCAATTTCTGTGCTGCTA-3’ and miR-497, 5’-ACAAACCACAGTGCTGCTGCTG-3’. Probes were 5-end labeled using the polynucleotide kinase in the presence of [γ-32P] ATP. Hybridization was performed at 39°C in ULTRAhyb™-Oligo Hybridization Buffer (Ambion) for 16 h. Membranes were washed at 42°C, 3 times with 2× SSC with 0.1% SDS. The membranes were rehybridized after stripping the oligo nucleotides used as probes in 1% SDS for 30 min at 65°C. The U6 RNA (5’-GCTAATCTTCTCTGTATCGTTCCAATTTT-3’) was used as an internal control.

Real-time polymerase chain reaction assays for mature miRNAs

Total RNAs were prepared from tissue samples and cell lines for the analysis. The expression levels of miR-195 and miR-497 were assayed using the primers designed by Biomics Company. Reverse transcription reaction was performed using 30 ng of total RNAs and 1 μM looped primers. Real-time PCR was performed using the standard SYBR Green Assay protocol by the MX3000p Real-Time PCR Detection System (Stratagene). The 25 μl PCR reaction included 2 μl reverse transcription product, 1x PCR Master Mix
(Takara,) 1.5 μmol/L forward primer, and 0.7 μmol/L reverse primer. The reactions were incubated in a 96-well plate at 95°C for 10 sec, followed by 40 cycles of 95°C for 5 sec, and 60°C for 30 sec. The 2-ΔΔCt method for relative quantification of gene expression was used to determine miRNA expression levels. Each sample was analyzed in triplicate, and U6 RNA was used to normalize the miRNA levels.

Western blot analysis.

For each sample, 25 μg of total protein extracts were separated on SDS-PAGE gels, and transferred to PVDF membrane. All the primary antibodies were incubated overnight at 4°C, followed by the incubation with AP-conjugated goat anti-rabbit secondary antibody and detection with BCIP/NBT (Amresco, Solon, OH). Bands were quantified with Labworks Instrument software (UVP LLC, Upland, CA).

Soft agar colony-formation assays

MCF7 and ZR-75-30 cells were transfected with miR-195, miR-497, or negative control precursor miRNAs. After 24 h of transfection, cells were suspended in complete medium containing 0.35% agar, and overlaid on 0.6% agar in 6-well plates (2× 10^3 cells/well). Each assay was performed in triplicates. The plates were maintained for up to 2 weeks. The number of colonies (> 50 μm in diameter) was counted under a microscopic field at 10× magnification.

Fluorescence-activated cell sorting (FACS) cell cycle analysis.
MCF7 and ZR-75-30 cells were seeded at 30% confluence in 12-well plate 24 h before transfection. Cells were treated with nocodazole for 16-20 h after the transfection of miR-195, miR-497, or negative control precursor at 100 nM; and fixed in 70% ethanol at 4°C for 24 h. Fixed cells were then washed once with PBS, resuspended in 500 ml PBS containing 10 mg/ml propidium iodide and 50 mg/ml RNase, and incubated for 30 min at room temperature. The cells were then analyzed with Fluorescent-Activated Cell Sorter (BD FACSaria cell sorter, BD Bioscences, San Jose, CA, USA).

Lentivirus preparation, titration and infection

HEK293T cells were seeded in 10 cm plate at 6×10⁶ cells, and transfected with 9 µg of pLemir-195 or pLemir-497 plasmid and 26 µl of the packaging mix stock using Arrest-In transfection reagent (Openbiosystems). The culture supernatants were collected 48 h and 72 h after transfection, filtered through 0.45-µm filters, and stored as virus stocks. For virus titration, TLA-HEK293T cells were seeded at 5x 10⁴ cells per well with 24-well tissue culture plate in DMEM. The diluted virus were added to each well, and incubated at 37°C for 4 h. Then, the transduction mix was removed from cultures, cells were cultured for 48 h for the virus titration. For virus infection, cells were incubated at 37°C with virus and polybrene (8 µg/ml) for 6 h, then for 2 days to select puromycin-resistant cells.

miRNA target prediction and luciferase activity assay

MiRNA target prediction was performed by in-lab developed algorithm KeyTar. KeyTar
miRNA target prediction is based on miRNA: target sequence, structure, and function (unpublished). The human 3' UTR region of Ccnd1 gene was amplified by PCR using the following primers: Ccnd1-3UTR-F: 5'-GGTACCCTTGGGCTTTCCCAGAGT-3’, and Ccnd1-3UTR-R: 5’-CGTCTAGATGGCTAAGTGAAGCATGAGG-3’, and cloned into the KpnI and XbaI sites of the pGL3-control vector (Promega, Madison, Wisconsin, USA). The human 3’ UTR of Raf-1 gene was amplified by PCR using the following primers: Raf-1-3UTR-F: 5’-GAATTCTGCAATGAAGGCTGGTA-3’, and Raf-1-3UTR-R: 5’-CTCGAGGCCCCAAAGGGATAGAAA-3’, and cloned into the EcoRI and XhoI sites of the pGL3-control vector. Nucleotide-substitution mutations were carried out using PCR-based methods at the 3’UTR regions of Ccnd1 and Raf-1. Primers were as below: Mut 3’UTR of Ccnd1: 5’-CGACGACGTTGACTTCCAGGCAC-3’ and 5’-GCAATAAGAAAATGGAGCTGCGGCCTTCCAGGCAC-3’; and Mut 3’UTR of Raf-1: 5’-CGACGAGCTAAGGACCTTCTAGACT-3’ and 5’-TTCTCTGAAAAATGTGTTCAGCCTC-3’. All constructs were verified by sequencing. The underlined nucleotides indicate the bases where mutations were made. For luciferase assay, the 293A cells were cultured in 24-well plates, and transfected with 100 ng luciferase reporter plasmid, 5 ng pRL-TK vector expressing the Renilla luciferase (Promega), and 50 pmoles of miR-195, miR-497, or miRNA negative control precursor. Transfection was performed using Lipofectamine 2000 (Invitrogen). After transfection for 36 h, firefly and renilla luciferase activities were measured using the Dual-Luciferase Reporter Assay (Promega). Each transfection was repeated twice in triplicate.
Statistical analysis. The results are expressed as mean ± SD. Data comparisons were performed using analysis of variance followed by Dunnett’s method using Microsoft Excel. The Mann-Whitney test was used to compare depot-specific differences between cancer tissues and normal controls. The results were considered statistically significant at p< 0.05.

Results

MiR-195 and miR-497 are down-regulated in human breast cancer tissues and cell lines. Initially, we examined the expression levels of miR-195 and miR-497 in breast cancer tissues. The expression levels of both miR-195 and miR-497 in breast cancer tissues were greatly decreased when compared to those in the normal adjacent tissue (Figures 1A and 1B). Similarly the levels of miR-195 and miR-497 were lower in different breast cancer cell lines including MCF7, ZR-75-30, MDA-453, MDA-435, and MDA-231 (Figures 1B and 1C), indicating that miR-195 and miR-497 are decreased in both human breast cancer tissues and cell lines.

DNA methylation is responsible for miR-195 and miR-497 down-regulation. We sequentially examined the methylation status of CpG islands in human breast cancer tissues and matching normal tissue by COBRA. Digestion of the amplicon by methylation-sensitive enzyme Taq I indicates that genomic DNA contains methylation. Analysis of 5 pairs of human breast cancer tissues showed significant methylation at Taq I sites in 4 out of 5 tumors, T1-T4 (Figure 2A). The same methylation site was observed in
MCF7 and ZR7530 cells. In contrast, there is no obvious CpG methylation in the normal tissue, suggesting that CpG islands are specifically methylated in human breast cancer.

To determine the methylation status of CpG islands in the nucleotide sequence upstream of miR-195 and miR-497 promoters on Chromosome 17, we carried out bisulfite sequencing analysis of genomic DNA isolated from normal and tumor tissues, and breast cancer cell lines. The results showed dense methylation of certain CpGs located in the region upstream of miR-195 and miR-497 promoters in the tumor tissues and cancer cells MCF7 and ZR7530, whereas only a few scattered CpGs were methylated in the region upstream of miR-195 and miR-497 promoters from normal breast tissue (Figure 2B). To study whether CpG methylation affects miR-195 and miR-497 expression, the cancer cells were treated with DNA demethylating agent 5-aza-2-deoxycytidine (5-Aza-dC). The cells treated with 5-Aza-dC increased the expression of both miR-195 and miR-497 (Figure 2C). Thus, DNA methylation is responsible for the low expression of miR-195 and miR-497 in breast cancer cells.

MiR-195 and miR-497 inhibit breast cancer cell colony formation and invasion in vitro. The breast cancer cells were transiently transfected with miR-195, miR-497 or negative control precursors to study their effects in colony formation. Overexpression of miR-195 and miR-497 in both ZR-75-30 and MCF7 cells exhibited a significant reduction of colony number when compared to the cells transfected with the negative control (Figure 3A). To analyze the role of miR-195 in cell invasion, ZR-75-30 and MCF7 cells were transfected with miR-195 or miR-497, and analyzed by Transwell assay. MiR-195 or miR-497 transfection significantly inhibited cell invasion when compared to the control.
(Figure 3B). To understand the potential mechanism of miR-195, miR-497 in inhibiting these biological effects, we found that miR-195 and miR-497 overexpression for induced cell cycle G1 arrest 48 h after transfection (Figure 3C), and 24 h and 36 h after transfection (Supplementary Figure 1).

MiR-195 and miR-497 directly target Raf-1. To further understand molecular mechanism of miR-195 and miR-497 in inhibiting breast cancer cells, we searched for potential targets of miR-195 and miR-497 by the KeyTar miRNA target prediction algorithm that is based on sequences and real physiological situation. This algorithm suggested that Raf-1 is a novel direct target of both miR195 and miR-497 (Figure 4B). The potential sites of miR195 and miR-497 in Raf-1 3’UTR were even more conserved than those in Ccnd1 3’UTR, a known target of miR-195 and miR-497. Luciferase assays showed that miR-195 and miR-497 significantly reduced the activity of the Raf-1 gene reporter, but not of the mutated gene reporter (Figure 4C). Western blot analysis of Raf-1 and Ccnd1 in ZR-75-30 and MCF7 cell lines showed that miR-195 or miR-497 transfection inhibited Raf-1 and Ccnd1 expression and ERK1/2 phosphorylation (Figures 4D-4E). To confirm the data further, we subsequently established stable-expression of miR-195 and miR-497 breast cancer cells by lentivirus transfection (Figure 4F). Similarly, we found that miR-195 and miR-497 inhibited cell growth and survival (data not shown), and led to significant down-regulation of both Raf-1 and Ccnd1 in vitro (Figure 4G). The results further demonstrate that Raf-1 is a novel target of miR-195 and miR-497 in different experimental systems.

MiR-195 and miR-497 levels correlate inversely with malignancy of human
breast tumors. We also investigated the relationship between the expression levels of miR-195 and miR-497 and the malignant stages of human breast tumors. As shown in Figure 5A, miR-195 and miR-497 levels were significantly down-regulated in malignant tumors (n=71, Stage I-III) when compared to those in the normal tissues (P<0.0001), and to those in the benign tumors, known as fibroadnoma (P<0.05). No significant difference existed between normal and benign tumor. Such data suggested that levels of miR-195 and miR-497 are inversely associated with malignancy of human breast cancer. But there were no significant differences between each stage of breast cancer (P>0.05), indicating that miR-195 and miR-497 could not be used in staging of malignant breast tumors. In addition, malignant breast tumors showed much higher expression levels of Raf-1 and Erk1/2 when compared to the normal tissues (Figure 5B). Thus, the expression levels of Raf-1 are inversely correlated with expression levels of miR-195 and miR-497 in human cancer tissues. In addition, we analyzed the association between miR-195/497 and hormone receptors. No significant difference of miR-195/497 expression was found between estrogen receptor (ER) positive (n=45) versus ER negative (n=26) breast cancers. There was no significant difference of the two miRNAs between progesterone receptor (PR) positive and PR negative tumors (n=40 vs 31, P>0.05).

Discussion

In this study, miR-195 and miR-497 were found to be significantly down-regulated in breast cancer tissues and cell lines. MiR-195 was initially reported to be up-regulated in cardiac hypertrophy, and its overexpression led to pathological heart growth and heart
failure in transgenic mice (22). Recently, miR-195 was found to be down-regulated in a variety of cancers, including gastric cancer, liver cancer, bladder cancer, and adrenocortical cancer (23-26). Introduction of miR-195 markedly suppressed colony formation in vitro and tumor development in nude mice (24). MiR-497 expression was found to be down-regulated in different cancers, such as primary peritoneal carcinoma, gastric cancer and breast cancer (23, 27). However, the role of miR-497 in human cancer is not clear yet. Our data suggested that both miR-195 and miR-497 were significantly down-regulated in breast cancer, and that they were regulated by a common mechanism of CpG methylation upstream of miR-195 and miR-497 promoters. Recent studies showed that certain miRNA genes such as miR-1, miR-127, miR-148a, and miR-34b/c contain CpGs that are susceptible to DNA methylation for decreasing their expression (18, 20, 21). To understand whether CpG methylation was responsible for downregulation of miR-195 and miR-497, we found that DNA demethylating agent treatment restored the expression of miR-195 and miR-497 in breast cancer cells, suggesting that DNA methylation in CpG nucleotides upstream of miR-195 and miR-497 promoters has a functional role to decrease their expression. Other than DNA methylation, p53 inactivation or genetic deletion could lead to miRNA deregulation (28, 29). In chronic lymphocytic leukemia patients, chromosome 17p deletion may influence a set of miRNAs, such as miR-21 and miR-34a (30, 31).

In addition, forced expression of miR-195 and miR-497 had similar effect to suppress breast cancer cell proliferation, blocked cell cycle G1 progression, and induced apoptosis. Such results suggest that miR-195 and miR-497 have similar effects to play a
tumor-suppressor role in breast cancer by the same cluster of gene regulation. Furthermore, we predicted and confirmed that Raf-1 is a novel target of both miR-195 and miR-497. Raf-1 has been found to be overexpressed or overactivated in a variety of cancers, including renal cell carcinoma, hepatocellular carcinoma, non-small cell lung cancer, melanoma, and papillary thyroid carcinoma (32). Recently, Raf-1 was found to be a target of miR-7 and miR-125b (33)(34). In breast cancer, miR-125b could target the same region of c-Raf-1 (34). In addition, Raf-1 was identified as a direct target of miR-7 in several cancer cell lines, including breast cancer (33). Here, we present the first report that Raf-1 is a direct target of both miR-195 and miR-497 in breast cancer, extending the potential target network of miRNAs. It would be interesting to test whether this novel regulation mechanism of miR-195 and miR-497 in breast cancer, and their common target of Raf-1 may also be extended to other human cancers.

Finally, our data showed that expression levels of miR-195 and miR-497 correlated inversely with malignancy of human breast tumors. Such expression pattern could potentially identify malignant tumors from normal or benign tumors. Recent finding in miRNA study suggests some miRNAs to be used for diagnosis or prognosis of breast cancer in the future. MiR-21 was significantly correlated with advanced clinical stage, lymph node metastasis, and poor survival of the patients (35). As miRNAs have unique expression profile in cancer tissues, and their expression is more stable than mRNA, miRNAs are promising for application as biomarkers. Future work should focus on the evaluation of the diagnostic or prognostic value of miR-195/497. In summary, the results suggest that both miR-195 and miR-497 are down-regulated in breast cancer, and their
silence is caused by DNA methylation. Our data imply that miR-195/497 may be potential therapeutic targets in breast cancer therapy.

Acknowledgements:

This work was supported by the National Basic Research Program of China (2007CB947001, 2007CB947002), by State High Technology Developing Project (2008AA02Z115), the Key Programs of National Science Foundation of China (30430240), by Shanghai Metropolitan Fund for Research and Development (04DZ14005 and 04JC14096), and by National Cancer Institute, NIH Grant CA109460. We thank Chuan-Xiu Bian, Xiaonan Fu, Daoyuan Dong, Zhongshi Liang, Yun Liu, and Ying Wu for some technical assistance.

References

Figure Legends

Figure 1. miR-195 and miR-497 are underexpressed in human breast cancer tissues and cell lines.

A. Pathological examination of normal breast tissues and tumor tissues using H / E staining. Normal breast tissue consisted with well-differentiated gland cells and milk ducts, while breast cancer had poorly-differentiated cells invaded into the milk ducts.

B. Northern blot analysis of miR-195/497. miR-195/497 were highly expressed in normal breast tissue, but less expressed in breast cancer tissues (T1 to T7). C1 to C5 represent MCF7, ZR-75-30, MDA-453, MDA-435, MDA-231 cell lines.

C. Detection of mature miR-195, miR-497 and miR-21 by Real Time PCR. U6 RNA was used for normalization control. Each data point was obtained in triplicate. Values (mean ± S.D) are shown. *, P<0.01 (t-test).

Figure 2. DNA Methylation analysis of miR-195 and miR-497 in human breast cancer tissues and cell lines.

A, Combined bisulfite restriction analysis of human breast cancer and normal tissue and breast cancer cell lines. Genomic DNA was treated with bisulfite, PCR-amplified, and digested with TaqI enzyme. C, incubation without TaqI. T, incubation with TaqI. N1-2, normal tissues ; T1-5 , tumor tissues.

B, Bisulfite sequencing analysis of normal and tumor tissue and cell lines to determine the methylation state of CpG nucleotides upstream of the miR-195/497 gene on Chromosome 17. Filled circle, methylated CpG; open circle, unmethylated CpG.
C. RT-PCR analysis of miR-195/497 in two breast cancer cell lines MCF7 and ZR-75-30 untreated or treated with DNA demethylating agent 5-aza-2-deoxycytidine (AZA).

Figure 3. miR-195/497 inhibit breast cancer cell growth and invasion in vitro.

A, Colony formation in soft agar of MCF7 and ZR-75-30 cells transfected with miR-195, miR-497 or the negative control oligo (a mismatched miRNA oligo, mir-mm). Colonies > 50 μm in diameter were counted under a microscopic field at 10x magnifications. Values (mean±S.D., n=3) are shown. *, P<0.05; **, P<0.01 (t-test).

B, Matrigel invasion assay of MCF7 and ZR-75-30 cells that were transfected with control (upper) or miR-195/497 oligo (lower) (×200). A significant decrease was observed in miR-195- or miR-497-transfected breast cells. *, P<0.05.

C, Cell cycle analysis by FACS in MCF7 and ZR-75-30 cells transfected with miR-195 or miR-497. Mean±S.D. were shown. *, P<0.01 (t-test).

Figure 4. Raf1 and Ccnd1 are direct targets of miR-195/497.

A, Structure of human miR-195/497 locus.

B, Schematic diagram of putative miR-195/497 binding sites in the 3’UTR of Raf-1 and Ccnd1. The possible binding sites of miR-195/497 in the 3’UTR or CDS of the target genes were searched using MiRanda v1.0b (Enright et al. 2003). The conservation of the corresponding sites in the genomes of 28 species was analyzed using UCSC Genome Browser (NCBI36/hg18,http://genome.ucsc.edu/). The mutated nucleotides are indicated in red box. The sites for Raf1 were even more conserved than those for Ccnd1, a previously
reported target of miR-195/497.

C, Luciferase assays of Raf-1 and Ccnd1 in miR-195/497-overexpressed breast cells. Compared to negative control, the overexpression of both miR-195 and miR-497 could inhibit luciferase reporter activities of Raf-1 and Ccnd1. n = 3; ** p < 0.05.

D, Western blot analysis of Raf-1 and Ccnd1 levels in the cells transfected with miR-195/497 precursors. Significant decrease levels of Raf-1 and Ccnd1 were observed after the forced expression of miR-195/497. The expression pattern of Raf1 was similar to that of Ccnd1.

E, Western blot analysis of Raf-1 and its downstream genes in miR-195/497 over-expressed MCF-7 cells. MiR-195/497 repressed the expression levels of Raf-1 and ERK1/2, and inhibited the phosphorylation of Erk1/2.

F, Expression of miR-195/497 in lentivirus-transfected MDM231 cells. Higher miR-195 and miR-497 expression in miR-195/497-transfected cells was detected by semi-quantitative RT-PCR.

G, Western blot analysis of Raf-1 and Ccnd1 levels in MDM231 cells. Raf-1 and Ccnd1 levels were greatly suppressed in miR-195- and mir-497-expressing MDM-231 cells when compared to those in the cells expressing precursor control (scr-mdm231). Beta-actin was used as an internal control.

Figure 5. MiR-195/497 levels correlate inversely with malignance in human breast tumors.

A, miR-195/497 levels in primary breast tumor tissues. Normal: tissues from nondiseased individuals (n=25); breast fibroadenoma (n=9) and invasive ductal carcinoma (total: 71,
including Stage I: 22; Stage II: 23; and Stage III: 26) were employed. U6 rRNA was used as a loading control. No significant difference existed between normal and benign tumor tissues. Mir-195/497 levels were significantly down-regulated in each stage of malignant tumors (Stages I-III) as compared to normal (P<0.0001) or benign tumor tissues (P<0.05).

B, Western blot analysis for Raf-1 and its down-stream proteins in breast cancer tissues. Horizontal bars denote median. Malignant breast tumors had higher expression of Raf-1 (6/6), Erk1/2 (6/6) and phospho-Erk1/2 (3/6), as compared to those of normal tissue.
Li et al., Figure 1

A

B

C

Normal
Breast cancer

Input
miR-195
miR-497

Relative expression in breast cancer cells

miR-195
miR-497
miR-21
Li et al., Figure 2
Li et al., Figure 3
Li et al., Figure 5
Clinical Cancer Research

Analysis of miR-195 and miR-497 expression, regulation and role in breast cancer

Dan Li, Yulan Zhao, Changxing Liu, et al.

Clin Cancer Res Published OnlineFirst February 24, 2011.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-10-1800

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2011/03/30/1078-0432.CCR-10-1800.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.