Impact of macrophages on osteosarcoma metastases

Title:
Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage-activating agents

Authors:
Emilie P. Buddingh¹,8, Marieke L. Kuijjer²,8, Ronald A.J. Duim², Horst Bürger³, Konstantin Agelopoulos⁴, Ola Myklebost⁶, Massimo Serra⁶, Fredrik Mertens⁷, Pancras C.W. Hogendoorn², Arjan C. Lankester¹,9, Anne-Marie Cleton-Jansen²,9

Running title:
Impact of macrophages on osteosarcoma metastases

Keywords:
Osteosarcoma, bone tumors, tumor-associated macrophages, gene expression profiling, metastasis

Footnotes:
¹ Authors’ Affiliations

¹¹Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands; ²Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands; ³Institute of Pathology, University of Münster, Germany; ⁴Department of Medicine, Hematology and Oncology, University of Münster, Germany; ⁵Department of Tumor Biology, the Norwegian Radium Hospital, Oslo University Hospital, Oslo,
Impact of macrophages on osteosarcoma metastases

2 Financial support

3 Corresponding author

4 Conflicts of interest

Norway; 6Laboratory of Experimental Oncology Research, Istituto Ortopedico Rizzoli, Bologna, Italy; 7Department of Clinical Genetics, Lund University Hospital, Lund, Sweden; 8These authors contributed equally to this work; 9These last authors contributed equally to this work.

2 This work was supported by EuroBoNet, a European Commission granted Network of Excellence for studying the pathology and genetics of bone tumors (grant number LSHC-CT-2006-018814), by the Netherlands Organization for Health Research and Development (ZonMw, grant number 92003-399 to E.P.B.), and by the Dutch Cancer Society (KWF, grant number 2008-4060 to M.L.K.).

3 Anne-Marie Cleton-Jansen, Department of Pathology, Leiden University Medical Center, PO box 9600, Leiden 2300 RC, The Netherlands. A.M.Cleton-Jansen@lumc.nl, tel: +31 71 5266515, fax: +31 71 5266952.

4 We declare that we have no conflicts of interest.
Statement of Translational Relevance:

We have shown by genome wide mRNA profiling and immunohistochemistry that the presence of macrophages in primary pre-chemotherapy biopsies is associated with suppression of metastasis and thus survival in several cohorts of osteosarcoma. Osteosarcoma is a primary bone tumor, affecting especially adolescents. Survival has not improved since the introduction of adjuvant chemotherapy. Our findings support the use of liposomal muramyl tripeptide phosphatidylethanolamine (L-MTP-PE) as adjuvant drug in treatment of osteosarcoma and provides a biological rationale for clinical efficacy of this compound, since L-MTP-PE is an effective activator of macrophages. L-MTP-PE has recently been EMEA approved and our data provide an important biological background which can guide future clinical decisions regarding the implementation of macrophage activating agents in osteosarcoma adjuvant treatment regimens.
Abstract

PURPOSE: High-grade osteosarcoma is a malignant primary bone tumor with a peak incidence in adolescence. Overall survival of patients with resectable metastatic disease is approximately twenty percent. The exact mechanisms of development of metastases in osteosarcoma remain unclear. Most studies focus on tumor cells, but it is increasingly evident that stroma plays an important role in tumorigenesis and metastasis. We investigated the development of metastasis by studying tumor cells and their stromal context.

EXPERIMENTAL DESIGN: To identify gene signatures playing a role in metastasis, we performed genome-wide gene expression profiling on pre-chemotherapy biopsies of patients who did (n=34) and patients who did not (n=19) develop metastases within five years. Immunohistochemistry was performed on pre-treatment biopsies from two additional cohorts (n=63 and n=16), and on corresponding post-chemotherapy resections and metastases.

RESULTS: 118/132 differentially expressed genes were upregulated in patients without metastases. Remarkably, almost half of these upregulated genes had immunological functions, particularly related to macrophages. Macrophage-associated genes were expressed by infiltrating cells and not by osteosarcoma cells. Tumor-associated macrophages (TAMs) were quantified with immunohistochemistry and were associated with significantly better overall survival in the additional patient cohorts. Osteosarcoma samples contained both...
M1 (CD14/HLA-DRα positive) and M2 type TAMs (CD14/CD163 positive and association with angiogenesis).

CONCLUSIONS: In contrast to most other tumor types, TAMs are associated with reduced metastasis and improved survival in high-grade osteosarcoma. This study provides a biological rationale for the adjuvant treatment of high-grade osteosarcoma patients with macrophage-activating agents, such as muramyl tripeptide.
Impact of macrophages on osteosarcoma metastases

Introduction

High-grade osteosarcoma is a malignant bone tumor characterized by the production of osteoid. The highest incidence is in adolescent patients, with a second peak in patients over 40 years of age. (1) Despite wide-margin surgery and intensification of chemotherapeutic treatment, overall survival rates have reached a plateau at about sixty percent. (2-4) Novel treatment modalities are needed, but data on critical biological mechanisms allowing the development of novel therapeutic agents are scarce for this relatively rare tumor. In addition to conventional chemotherapeutic agents, recent trials have explored immunostimulatory strategies. The ongoing EURAMOS-1 trial randomizes for treatment with interferon (IFN)-α in patients with good histological response to neo-adjuvant chemotherapy. (5) A recently published clinical trial has shown improved overall survival for osteosarcoma patients treated with the macrophage activating agent muramyl tripeptide (MTP) added to the standard chemotherapy regimen. (6) However, only limited information on macrophage infiltration and activation in osteosarcoma is available. (7)

Tumor-associated macrophages (TAMs) may promote tumorigenesis through immunosuppression, expression of matrix-degrading proteins and support of angiogenesis. In numerous cancer types, high numbers of M2 or 'alternatively activated' TAMs are associated with a worse prognosis. (8-13) M2 macrophages have important functions in wound-healing and angiogenesis, express high levels
of the immunosuppressive cytokines IL-10 and TGF-β and express scavenger receptors such as CD163. (14, 15) ‘Classical activation’ of macrophages by interferon-γ or microbial products results in polarization towards M1 type macrophages. M1 macrophages express high levels of pro-inflammatory cytokines such as interleukin (IL)-12, IL-1, and IL-6 and have potent anti-tumor efficacy, both by reactive oxygen species and cytokine-induced cytotoxicity and by induction of natural killer (NK) and T cell activity. (16) Rarely, high numbers of TAMs are associated with better prognosis. (17, 18) In these cases, TAMs are presumably polarized towards an M1 phenotype, although macrophage subtypes were not reported in these two studies. Alternatively, macrophages may directly phagocytose tumor cells, as has been demonstrated in acute myeloid leukaemia. (19)

To investigate the role of stroma and stroma-tumor interactions important in metastasis of osteosarcoma, we investigated the development of metastasis by studying tumor cells and their stromal context. Using genome-wide expression analysis, we showed that high expression of macrophage-associated genes in pre-treatment biopsies was associated with a lower risk of developing metastases. In addition, we quantified and characterized TAMs in two independent cohorts, including pre-treatment biopsies, post-chemotherapy resections, and metastatic lesions. In contrast to the tumor-supporting role for TAMs in most epithelial tumor types, higher numbers of infiltrating TAMs correlated with better survival in osteosarcoma. Our findings suggest that
macrophages have direct or indirect anti-osteosarcoma activity and provide a possible explanation for the beneficial effect of treatment with macrophage-activating agents in osteosarcoma.
Materials and methods

Patient cohorts

Genome-wide expression profiling was performed on snap-frozen pre-treatment diagnostic biopsies containing viable tumor material of 53 resectable high-grade osteosarcoma patients from the EuroBoNet consortium (http://www.eurobonet.eu) (cohort 1). For immunohistochemical validation a tissue microarray containing 145 formalin-fixed paraffin-embedded (FFPE) samples of 88 consecutive high-grade osteosarcoma patients with primary resectable disease (cohort 2) and 29 FFPE samples of a cohort of 20 consecutive high-grade osteosarcoma patients with resectable disease were used (cohort 3), including material from pre-treatment biopsies, post-chemotherapy resections, and metastatic lesions. (20) Clinicopathological details can be found in Supplemental Table 1. All biological material was handled in a coded fashion. Ethical guidelines of the individual European partners were followed and samples and clinical data were stored in the EuroBoNet biobank.

Cell lines

The nineteen osteosarcoma cell lines HAL, HOS, HOS-143b, IOR/MOS, IOR/OS10, IOR/OS14, IOR/OS15, IOR/OS18, IOR/OS9, KPD, MG-63, MHM, MNNG-HOS, OHS, OSA, Saos-2, SARG, U2OS, and ZK-58 were maintained in
RPMI 1640 (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal calf serum and 1% Penicillin/Streptomycin (Invitrogen) as previously described. (21)

RNA isolation, cDNA synthesis, cRNA amplification, and Illumina Human-6 v2.0 Expression BeadChip hybridization

Osteosarcoma tissue was snap-frozen in 2-Methylbutane (Sigma-Aldrich, Zwijndrecht, the Netherlands) and stored at -70°C. Using a cryostat, 20 μm sections from each block were cut and stained with hematoxylin and eosin to ensure at least 70% tumor content and viability. RNA was isolated using TRIzol (Invitrogen), followed by RNA clean-up using the QIAGEN Rneasy mini kit with on-column DNAse treatment (Venlo, the Netherlands). RNA quality and concentration were measured using an Agilent 2100 Bioanalyzer (Santa Clara, CA, USA) and Nanodrop ND-1000 (Thermo Fisher Scientific, Waltham, MA, USA), respectively. Synthesis of cDNA, cRNA amplification, and hybridization of cRNA onto the Illumina Human-6 v2.0 Expression BeadChips (San Diego, CA, USA) were performed as per manufacturer's instructions.

Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR)

RT-qPCR analysis of selected target genes was performed as previously described. (22) Each experiment was performed in duplicate using an Automated Liquid-Handling System (Tecan, Genesis RSP 100, Männedorf, Switzerland). Data were normalized using geometric mean expression levels of three reference genes.
Impact of macrophages on osteosarcoma metastases

genes, *i.e.* SRPR, CAPNS1, and TBP using geNorm (http://medgen.ugent.be/~jvdesomp/genorm/). Primer sequences can be found in Supplemental Table 2.

Enzymatic and fluorescent immunostainings

Enzymatic and fluorescent immunostainings were performed on 4 μm sections of FFPE tissue as previously described. (20) Details regarding antibodies and procedures can be found in Supplemental Table 3. In case of double immunohistochemistry (IHC), incubation with anti-CD45 and development with DAB+ (Dako, Glostrup, Denmark) occurred first, followed by a second antigen-retrieval before incubation with either anti-CD163 or anti-HLA-DRα and development using the alkaline-phosphatase substrate Vector Blue (Vector Labs, Burlingam, CA, USA). In case of double immunofluorescent (IF) stainings, primary antibodies were co-incubated overnight. As a positive control normal and formic acid decalcified tonsil was used, as a negative control no primary antibody was added. Tissue microarray slides were scanned using the MIRAX SCAN slide scanner and software (Zeiss, Mirax 3D Histech, Hungary). Numbers of positively stained cells and vessels were counted using ImageJ (National Institutes of Health, Bethesda, Maryland, USA) and averaged per 0.6 mm core. IF and double IHC images were acquired using a Leica DM4000B microscope (Wetzlar, Germany) fitted with a CRI Nuance spectral analyzer (Cambridge Research and Instrumentation Inc., Woburn, MA, USA) and analyzed using the supplied co-
localization tool to determine percentage of single and double positive pixels per region of interest.

Microarray data analysis

Gene expression data were exported from BeadStudio version 3.1.3.0 (Illumina) in GeneSpring probe profile format and processed and analyzed using the statistical language R. (23) As Illumina identifiers are not stable and consistent between different chip versions, raw oligonucleotide sequences were converted to nuIDs. (24) Data were transformed using the variance stabilizing transformation algorithm to take advantage of the large number of technical replicates available on the Illumina BeadChips. (25) Transformed data were normalized using robust spline normalization, an algorithm combining features of quantile and loess normalization, specifically designed to normalize variance-stabilized data. All microarray data processing was carried out using Bioconductor package lumi. (26, 27) Quality control was performed using Bioconductor package arrayQualityMetrics. (28) MIAME-compliant data have been deposited in the GEO database (www.ncbi.nlm.nih.gov/geo/, accession number GSE21257).

Statistical analysis

Differential expression between patients who did (n=34) and did not (n=19) develop metastases within five years from diagnosis of the primary tumor was
determined using Linear Models for Microarray Data (LIMMA), (29) applying a Benjamini and Hochberg False Discovery Rate adjusted P-value cut-off of 0.05. Other univariate statistical analyses were performed using GraphPad Prism software (version 5.01, La Jolla, California, USA). Multivariate survival analyses were carried out according to the Cox proportional hazards model in SPSS (version 16.0.2, Chicago, Illinois, USA). Two-sided P-values <0.05 were determined to be significant; P-values between 0.05 and 0.15 were defined to be a trend.
Impact of macrophages on osteosarcoma metastases

Results

High expression of macrophage-associated genes in osteosarcoma biopsies of patients who did not develop metastases within five years from diagnosis (cohort 1)

Comparison of genome-wide gene expression in tumors of patients who did and did not develop metastases within five years resulted in 139 significantly differentially expressed (DE) probes, of which 125 corresponded to 118 upregulated and 14 to downregulated genes in patients who did not develop metastases. A summary of DE genes and detailed descriptions of all probes can be found in Table 1 and Supplemental Table 4, respectively. Two DE genes were specific for macrophages (CD14 and MSR1) and 30/132 of the DE genes were associated with macrophage functions such as antigen processing and presentation (e.g. HLA-DRA and CD74) or pattern recognition (e.g. TLR4 and NLRP3). Overall, approximately 20% of the upregulated probes corresponded to genes which were associated with macrophage function and development and an additional 25% of the upregulated probes corresponded to genes with other immunological functions, such as cytokine production and phagocytosis. Four genes were selected for validation of the microarray data using RT-qPCR: CD14, HLA-DRA, CLEC5A, and FCGR2A. Expression levels as determined by RT-qPCR correlated well with expression levels obtained by microarray analysis (Supplemental Figure 1). Metastases-free survival curves of the same cohort,
generated using median expression of the probe of interest as a cut-off determining low and high expression, are shown in Figure 1B and in Supplemental Figure 2. Cox proportional hazards analysis revealed expression of macrophage-associated genes CD14 and HLA-DRA to be independently associated with metastasis free survival (Supplemental Table 5).

Macrophage-associated genes are expressed by infiltrating hematopoietic cells and not by tumor cells

The most probable source of expression of the differentially expressed macrophage-associated genes were infiltrating immune cells and not osteosarcoma cells. To confirm this, we performed qRT-PCR of CD14 and HLA-DRA on osteosarcoma cell lines (n=19) and biopsies (n=45, a subset of cohort 1). CD14 and HLA-DRA expression was variable in osteosarcoma biopsies, but almost undetectable in cell lines. This indicates that these macrophage-associated genes were not expressed by tumor cells but by infiltrating cells, since only osteosarcoma biopsies contain macrophage infiltrate, whereas RNA from cell lines is exclusively from tumor cells (Figure 1A, P-value Mann-Whitney U test <0.0001). In addition, we performed double IHC for the hematopoietic cell marker CD45, which is not expressed by osteosarcoma tumor cells, and the macrophage marker CD163 or the macrophage-associated protein HLA-DRα (Figure 1C). We chose this approach because no reliable osteosarcoma markers are available.

(1) Our results confirmed that infiltrating, hematopoietic cells were the source of
the macrophage-associated gene expression levels. Together, these data show that osteosarcoma tumor cells do not express macrophage-associated genes, neither in vitro nor in vivo.

Macrophage numbers in osteosarcoma biopsies correlate with CD14 gene expression levels and are positively associated with localized disease and better outcome (cohorts 2 and 3)

To confirm the presence of TAMs in osteosarcoma we stained a tissue microarray containing 145 samples of 88 patients for the macrophage marker CD14 and counted the number of positive cells per tissue microarray core (cohort 2, Figure 2A). CD14 was chosen as opposed to CD68 because the latter marker is not expressed by monocytes and often shows cross-reactivity with mesenchymal tissue (data not shown). Number of CD14 positive cells per tissue microarray core correlated significantly with CD14 mRNA expression levels (14 samples overlap with gene expression analysis, Spearman correlation coefficient 0.64, P-value = 0.01). Similar to the gene expression data, there was a trend for patients with primary localized disease to have higher numbers of macrophages in pre-treatment diagnostic biopsies than patients with metastatic disease at presentation (mean number of macrophages per core 55 vs. 27, Mann-Whitney U test P-value 0.09). Also, patients with high macrophage counts at diagnosis tended to be less likely to develop metastases within five years (χ² P-value 0.13).
We subdivided this cohort into four quartiles based on numbers of CD14 positive cells in order to determine the group with the best overall survival. No significant differences were found between quartiles 2-4, but patients belonging to this group had better overall survival as compared to patients with low CD14 counts (lowest quartile, or less than 12 CD14 positive cells per tissue array core, Figure 2B, P-value log-rank test = 0.02). In another cohort of 16 patients, IF staining of CD14, CD163 and HLA-DRα was performed, again confirming a potential prognostic value of high macrophage numbers (cohort 3, Figure 3, P-value log-rank test = 0.01 and Supplemental Figure 3).

Macrophages in osteosarcoma have both M1 and M2 characteristics

To determine the phenotype of macrophages present in osteosarcoma, we performed double IHC with CD14 and either the M1-associated marker HLA-DRα or the M2-associated marker CD163. Not all CD163 and HLA-DR positive infiltrating cells expressed CD14 (Figure 3A and Supplementary Figure 3A). The total number of macrophages as determined by quantifying CD14 positive macrophages was associated with good survival (Figure 3B), but the phenotype of the macrophages (CD14/CD163 double positive versus CD14/HLA-DRα double positive) was not (Supplemental Figure 3B and data not shown). Another M2 characteristic is support of angiogenesis. The number of CD14 positive macrophages correlated with the number of CD31 positive vessels (Figure 2A and Figure 4), but vascularity did not correlate with prognosis (data not shown).
Macrophage numbers in diagnostic biopsies may predict histological response to chemotherapy and macrophage number increases following chemotherapy treatment

There was a trend for high macrophage count (highest three quartiles or >12 CD14-positive cells per tissue array core) in pre-chemotherapy diagnostic biopsies of the primary tumor to predict for good histological response to neoadjuvant chemotherapy (defined as more than 90% non-vital tumor tissue upon final resection), since 46% of patients with high macrophage numbers and 18% of patients with low macrophage numbers had a good histological response (cohort 2; χ^2 P-value 0.09). The prognostic benefit of macrophage counts in osteosarcoma was not independent of histological response using Cox proportional hazard analysis. Macrophage numbers were higher in post-chemotherapy resections of the primary tumor as compared to the pre-chemotherapy biopsies (Supplemental Figure 4). Moreover, gene expression analysis showed upregulation of macrophage-associated probes in post-chemotherapy resections (n=4) as compared with pre-chemotherapy biopsies (n=79, data not shown).
Impact of macrophages on osteosarcoma metastases

Discussion

Overall survival of high-grade osteosarcoma patients with resectable metastatic disease is poor at about twenty percent. (30) Mechanisms for the development of metastases in osteosarcoma are elusive. To identify genes that play a role in this process, we performed genome-wide expression profiling on pre-chemotherapy biopsies of osteosarcoma patients. We compared patients who developed clinically detectable metastases within five years with patients who did not develop metastases within this time frame (cohort 1). About 20% percent of genes overexpressed in patients without metastases were macrophage-associated, while an additional 25% percent of genes had other immunological functions (for example in phagocytosis, complement activation or cytokine production and response) but could still be attributed to macrophages (Table I and Supplemental Table 4). Thus, in total almost half of the differentially expressed genes belonged to one specific process, i.e. macrophage function. Macrophage-associated genes were expressed by infiltrating hematopoietic cells and not by osteosarcoma tumor cells (Figure 1), indicating a possible role for macrophages in preventing metastasis in osteosarcoma. To confirm these findings, we quantified infiltrating macrophages in two additional cohorts (cohort 2 and 3) and found an association with better overall survival in both cohorts. The anti-metastatic effect of TAMs in osteosarcoma is remarkable, since TAMs support tumor growth in a substantial number of other cancers, which are mostly
tumors of epithelial origin. For example, macrophages are associated with the angiogenic switch in breast cancer. (31) We find an association between macrophage infiltration and higher microvessel density, which suggests that the influx of macrophages may support certain aspects of tumor growth in osteosarcoma as well. However, in the case of osteosarcoma, direct or indirect anti-tumor activity of macrophages apparently outweighs their possible tumor-supporting effects. Macrophages can alter their phenotype from M2 to M1 and become the tumor’s foe instead of its friend, given the right circumstances. (32-34) The TAMs that were identified in this study in osteosarcoma had both M1 and M2 characteristics. The expression of CD163 and the association with angiogenesis are M2 characteristics. (31, 35) Some of the differentially expressed genes, such as MSR1 and MS4A6A are specific for M2 macrophages in vitro. (36) Others, such as the pro-inflammatory cytokine IL1B are more indicative of an M1 phenotype. (16) How macrophages inhibit osteosarcoma metastasis and if a balance between M1 and M2 type functions is responsible, is unknown.

In a multivariate regression model, the survival benefit of high TAM numbers was at least partly dependent on histological response to chemotherapy. Chemotherapy can cause “immunogenic cell death” of cancer cells, resulting in the release of endogenous danger signals. (37, 38) The binding of these danger signals to pattern recognition receptors on macrophages can skew polarization of M2 to M1 type TAMs. The interaction between dying tumor cells and resident
TAMs may facilitate clearance or inhibit outgrowth of metastatic tumor cells. However, patients with localized disease at diagnosis tended to have a larger macrophage infiltrate than patients with metastatic disease at diagnosis (mean number of macrophages per core 55 vs. 27). At this point, patients have not undergone chemotherapeutic treatment yet and an interaction between chemotherapy and macrophages can therefore not be responsible for the anti-metastatic effect of macrophages. Perhaps the anti-metastatic effect of TAMs in these patients is due to the constitutive presence of macrophages with an M1 phenotype. Alternatively, the presence of macrophages might be a reflection of a microenvironment not conducive for metastasis.

Although preliminary analysis of a clinical trial investigating the effect of treatment with the macrophage activating agent MTP yielded conflicting results, subsequent analysis revealed that treatment with MTP improved six-year overall survival from 70 to 78% in a cohort of patients with primary localized disease. (6, 39) Similar results were obtained in canine osteosarcoma. (40) MTP is a synthetic derivative of muramyl dipeptide (MDP), a common bacterial cell wall component. Muropeptides bind to intracellular pattern recognition receptors of the nucleotide-binding and oligomerization domain (NOD) like (NLR) family, expressed by macrophages. (41) In our study, five genes associated with NLR family signaling and the associated ‘inflammasome’ were highly expressed in pre-treatment biopsies of patients who do not develop metastases. The differentially expressed genes NLRP3, NAIP, NLRC4 and PYCARD are
components of the inflammasome, LYZ is a lysozyme which processes bacterial cell wall peptidoglycan into muramyl dipeptide, a ubiquitous natural analogue of MTP and IL1B is the downstream effector cytokine of the inflammasome pathway. Further research is needed to clarify if only patients with high numbers of TAMs benefit from MTP treatment, or if MTP treatment is effective regardless of macrophage number or activation status pre-treatment. Also, it is unknown if treatment with agents promoting macrophage migration or with other macrophage activating agents like toll-like receptor ligands or interferons have a similar beneficial effect on outcome.

Previous genome-wide expression profiling studies in osteosarcoma focused on identifying genes that predict histological response to neo-adjuvant chemotherapy. (42-45) As a consequence, the importance of macrophages in controlling metastases was not recognized. However, we previously compared gene expression profiles of osteosarcoma biopsies and cultured mesenchymal stem cells and determined which genes are expressed by tumor stroma and not by tumor cells. (46) There is considerable overlap between the stromal genes identified in our previous study and the macrophage-associated genes identified in the present study (including HLA class II genes as the most prevalent differentially expressed group of genes and the macrophage-associated genes MSR1, MS4A6A, and FCGFR2A).

In conclusion, we demonstrated the presence and clinical significance of TAMs in pre-treatment samples of high-grade osteosarcoma. TAMs in osteosarcoma are
a heterogeneous cell population with both M1 anti-tumor and M2 pro-tumor characteristics. Although the exact mechanism by which macrophages exert their anti-metastatic functions is still unknown, this study provides an important biological rationale for the treatment of osteosarcoma patients with macrophage activating agents.

Acknowledgments

The authors wish to thank Alex Mohseny for culturing the OS cell lines and isolating RNA, Esther Hauben for histological review of all OS specimens used for genome-wide gene expression profiling, Stefan Bielack and Matthias Kevirc for collecting material and clinical data of the samples provided by the University of Münster, Germany, Inge Briaire-Bruijn for technical assistance and Jan Oosting and Eberhard Korsching for discussion on biostatistics and microarray data analysis.
Impact of macrophages on osteosarcoma metastases

Reference List

34. Buhtoiarov IN, Sondel PM, Eickhoff JC, Rakhmilevich AL. Macrophages are essential for antitumour effects against weakly immunogenic murine tumours induced by class B CpG-oligodeoxynucleotides. Immunology 2007;120:412-423.

Table and Figure legends

Table 1. Differentially expressed genes and probes by category comparing high-grade osteosarcoma patients with and without metastases within five years by genome-wide expression profiling (cohort 1). Twenty percent of differentially expressed probes corresponded to genes which are associated with macrophage functions such as antigen processing and presentation or pattern recognition. Twenty-five percent of the upregulated probes corresponded to genes with other immunological functions, such as cytokine production and phagocytosis.

Figure 1: Macrophage-associated genes are not expressed by osteosarcoma tumor cells. A, RT-qPCR of osteosarcoma cell lines and biopsies of CD14 and HLA-DRA demonstrating lack of expression by osteosarcoma cells. P-value Mann-Whitney U test <0.0001 noted as ***. B, high expression of macrophage associated genes was associated with a better metastasis-free survival (cohort 1, Kaplan-Meier curve, P-value obtained using logrank test, patients with metastasis at diagnosis have an event at t=0. These patients are included, because patients who develop metastases later on may as well have micrometastases at time of diagnosis. Metastasis-free survival curves for HLA-DRA, CLEC5A, and FCGR2A can be found in Supplemental Figure 2. C, double immunohistochemical staining of CD163 with the hematopoietic cell marker CD45 was performed and analyzed using spectral imaging microscopy. The pseudo-immunofluorescent image
(pseudo-IF) shows CD163 positive cells in red, CD45 positive cells in green and co-localization of both markers in orange. Lack of expression of CD163 and CD45 on surrounding tumor cells (dark blue) and some single positive CD45 cells can be noted.

Figure 2: A, example of representative stainings of high-grade osteosarcoma with high (left panels) versus low (right panels) levels of macrophage infiltration (CD14 staining) and vascular density (CD31 staining). B, high numbers of infiltrating macrophages (left panel, defined as the three upper quartiles, or more than twelve CD14 positive cells per tissue array core) are associated with better overall survival (right panel, P-value logrank test = 0.02, cohort 2). Q1, lowest quartile; Q2, 3, 4, three highest quartiles.

Figure 3: A, osteosarcoma samples are infiltrated with CD14 and CD163 single and double positive macrophages. Spectral imaging was used to reduce auto-fluorescence of osteosarcoma cells. In the composite image, CD14 positive cells are represented in green, CD163 positive cells are represented in red, and CD14/CD163 double positive cells are represented in yellow. Background auto-fluorescence of tumor cells is represented in grey. B, in an independent cohort of 16 patients (cohort 3), high macrophage infiltration as determined by immunofluorescent CD14 staining was associated with significantly improved overall survival. P-values obtained using logrank test, cut-off at the median.
Figure 4: Macrophage infiltration as determined by CD14 positive cell count correlated with vascularity as determined by CD31 positive vessel count. Data of all osteosarcoma samples (pre- and post-treatment primary tumor and metastatic samples, cohort 2) is shown. Q1, lowest quartile; Q2, 3, 4, three highest quartiles. Kruskal-Wallis test $P < 0.0001$, Dunn’s post-test P-values <0.05 noted as *, <0.001 noted as ***.
<table>
<thead>
<tr>
<th>Category</th>
<th>Nr of probes</th>
<th>Nr of genes</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern recognition receptor or signaling</td>
<td>18</td>
<td>17</td>
<td>MSR1, CD44, NLRP3, TLR7, TLR8, TLR4, MAP, IL1B, ARMCARD, NLRC4, C1QA, C7, C8, L86</td>
</tr>
<tr>
<td>Immunological</td>
<td>15</td>
<td>12</td>
<td>HLA-DMB, HLA-DRA, CD74, HLA-A1, MTO1, LST1</td>
</tr>
<tr>
<td>Hematopoietic cells</td>
<td>10</td>
<td>9</td>
<td>MSR1, CD44, NLRP3, TLR7, TLR8, TLR4, MAP, IL1B, ARMCARD, NLRC4, C1QA, C7, C8, L86</td>
</tr>
<tr>
<td>Cytokines and cytokine signaling</td>
<td>6</td>
<td>5</td>
<td>CXCL16, CSF2RA, IFNG1, IL1A2, ALOX5</td>
</tr>
<tr>
<td>Metabolism</td>
<td>6</td>
<td>5</td>
<td>PFKFB2, FCGR2B, FGL2, FGL2, FGL2</td>
</tr>
<tr>
<td>Fc receptor</td>
<td>5</td>
<td>4</td>
<td>FCGR1, FCGR2A, SLC2A9, MAP, IL1B, ARMCARD, NLRC4, C1QA, C7, C8, L86</td>
</tr>
<tr>
<td>Cytoskeleton</td>
<td>4</td>
<td>3</td>
<td>HCLS1, WAS, TMBIM4, NLRP3, NLRC4</td>
</tr>
<tr>
<td>Apoptosis, cell cycle control and proliferation</td>
<td>4</td>
<td>4</td>
<td>TMBIM4, TMBIM4, NLRP3, NLRC4, MAP, IL1B, ARMCARD, NLRC4, C1QA, C7, C8, L86</td>
</tr>
<tr>
<td>Endocytosis</td>
<td>4</td>
<td>3</td>
<td>APP3P1, NECA2, MAP, IL1B, ARMCARD, NLRC4, C1QA, C7, C8, L86</td>
</tr>
<tr>
<td>Apoptosis, cell cycle control and proliferation</td>
<td>4</td>
<td>4</td>
<td>TMBIM4, TMBIM4, NLRP3, NLRC4, MAP, IL1B, ARMCARD, NLRC4, C1QA, C7, C8, L86</td>
</tr>
<tr>
<td>AKT pathway</td>
<td>3</td>
<td>3</td>
<td>PIK3P1, P1F1, MAP, IL1B, ARMCARD, NLRC4, C1QA, C7, C8, L86</td>
</tr>
<tr>
<td>AKT pathway</td>
<td>3</td>
<td>3</td>
<td>PIK3P1, P1F1, MAP, IL1B, ARMCARD, NLRC4, C1QA, C7, C8, L86</td>
</tr>
<tr>
<td>Growth hormone signaling</td>
<td>3</td>
<td>3</td>
<td>PIK3P1, P1F1, MAP, IL1B, ARMCARD, NLRC4, C1QA, C7, C8, L86</td>
</tr>
<tr>
<td>Morphogenesis</td>
<td>3</td>
<td>3</td>
<td>PIK3P1, P1F1, MAP, IL1B, ARMCARD, NLRC4, C1QA, C7, C8, L86</td>
</tr>
<tr>
<td>Others</td>
<td>7</td>
<td>6</td>
<td>CUGBP2, CYP2S1, AVAV1, GGN</td>
</tr>
<tr>
<td>Unknown</td>
<td>16</td>
<td>15</td>
<td>VM01, MIA, MG, MS44A</td>
</tr>
<tr>
<td>Total</td>
<td>125</td>
<td>118</td>
<td>14</td>
</tr>
</tbody>
</table>
Figure 1
Figure 2
Figure 3
Figure 4
Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage-activating agents

Clin Cancer Res Published OnlineFirst March 3, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-10-2047

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2011/04/14/1078-0432.CCR-10-2047.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.