TITLE:

A Novel Anti-Human HB-EGF Monoclonal Antibody with Multiple Anti-Tumor Mechanisms against Ovarian Cancer Cells

Authors:

Shingo Miyamoto1,§, Ryo Iwamoto2,§, Akiko Furuya3,§, Kumiko Takahashi3, Yuka Sasaki3, Hiroshi Ando3, Fusanori Yotsumoto1, Tomoko Yoneda2, Miki Hamaoka2, Hiroshi Yagi4, Takuya Murakami3, Sayaka Hori3, Kenya Shitara5, and Eisuke Mekada2

§These authors contributed equally to this work.

Authors’ affiliations:

Department of 1Obstetrics and Gynecology, Fukuoka University, Fukuoka, Japan; 2Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; 4Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; 3Biologics Research Laboratories, 5Intellectual Property Department, Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan

Corresponding author:

Eisuke Mekada, Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan.
Phone: +81-6-6879-8286, Fax: +81 6 6879 8289, E-mail; emekada@biken.osaka-u.ac.jp
Kenya Shitara, Intellectual Property Department, Kyowa Hakko Kirin Co., Ltd., 1-6-1, Ootemachi, Chiyoda-ku, Tokyo, 100-8185, Japan. Phone: +81-3-3282-0007,
Fax: +81-3-3284-1968, E-mail; kenya.shitara@kyowa-kirin.co.jp

Word counts: 4510
Statement of translational relevance

As increasing evidence has suggested a critical role for HB-EGF in ovarian cancer progression, an anti-HB-EGF monoclonal antibody which inhibits HB-EGF function is expected to be an effective therapeutic antibody against ovarian cancer. In this research article, we show a novel mouse-human chimeric anti-HB-EGF antibody, cKM3566, which exerts anti-tumor activities through not only neutralization but also antibody dependent cellular cytotoxicity (ADCC) \textit{in vitro}. We demonstrated that cKM3566 has more potent \textit{in vivo} anti-tumor effects than KM3566 which has only neutralizing activity, and that cKM3566 significantly inhibits the tumor growth in two xenograft therapeutic models (P<0.01). These results indicate that cKM3566 is a promising anti-ovarian cancer therapeutic antibody. The humanized derivative of cKM3566, KHK2866, is currently under phase 1 clinical trial for ovarian cancer in USA.
Abstract

Purpose: Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family and plays a pivotal role in tumor progression in ovarian cancer. We developed an anti-HB-EGF monoclonal antibody and investigated its anti-tumor activities in vitro and in vivo to evaluate its potential as a therapeutic antibody against ovarian cancer.

Experimental Design: We prepared monoclonal antibodies from HB-EGF null mice immunized with recombinant human soluble HB-EGF and evaluated their binding and neutralizing activity against HB-EGF. Next, we generated a mouse-human chimeric antibody and examined its in vitro and in vivo anti-tumor activities.

Results: Two murine anti-HB-EGF monoclonal antibodies were developed, and one of them, KM3566, was revealed to have a high binding reactivity for membrane-anchored HB-EGF (pro-HB-EGF) expressed on the cell surface, as well as neutralizing activity against growth promoting activity of soluble HB-EGF. The mouse-human chimeric counterpart for KM3566 (cKM3566) induced dose-dependent antibody-dependent cellular cytotoxicity (ADCC) against cancer cells expressing HB-EGF in vitro, and significantly inhibited tumor growth in SCID mice inoculated with MCAS or ES-2 human ovarian cancer cells.

Conclusions: A novel anti-HB-EGF chimeric antibody, cKM3566 with two anti-tumor mechanisms, neutralization and ADCC, exhibits potent in vivo anti-tumor activity. These results indicate cKM3566 is a promising anti-ovarian cancer therapeutic antibody.
Introduction

Ovarian cancer causes more deaths than any other cancer of the female reproductive system. In 2010, an estimated 21,880 new cases and 13,850 deaths of ovarian cancer were reported in the US (1). Ovarian cancer usually has a poor prognosis because many cases are diagnosed in advanced stages. Standard treatment involves surgery followed by chemotherapy, and most patients achieve a complete response after debulking surgery and platinum-based chemotherapy. However, 50% of these patients relapse and die of the disease. Therefore, the development of novel treatments which can increase the survival of the patients with ovarian cancer is needed.

Heparin-binding EGF-like growth factor (HB-EGF) is a growth factor which belongs to the Epidermal Growth Factor (EGF) family (2). HB-EGF is synthesized as a type 1 transmembrane protein called pro-HB-EGF and is released by proteolytic ectodomain shedding, which yields a soluble form of HB-EGF (sHB-EGF) (3). Studies of knock-in mice expressing an uncleavable mutant form of HB-EGF indicated that the major functions of HB-EGF were mediated by sHB-EGF \textit{in vivo} (4). Moreover, several lines of evidence indicate that sHB-EGF and proHB-EGF have distinct biological activity (5). Thus, ectodomain shedding is critical for HB-EGF functions. The elevated expression of HB-EGF has been reported in several kinds of cancers, such as ovarian (6, 7), gastric (8, 9), and breast cancer (10, 11, 12). Especially, increasing evidence has suggested a critical role for HB-EGF in ovarian cancer progression. Tumor formation of ovarian cancer cells was completely blocked by RNA interference targeting pro-HB-EGF or by CRM197, which is a non-toxic mutant of diphtheria toxin and a specific HB-EGF inhibitor (6). Ovarian cancer patients with high HB-EGF expression had significantly worse prognosis than those with low HB-EGF expression (7). In addition, HB-EGF is suggested to be involved in tumor resistance against chemotherapeutic agent, paclitaxel (13). These results indicate that inhibition of HB-EGF function is a promising strategy for ovarian cancer therapy. In fact, CRM197 is currently
being evaluated in a phase I clinical trial for ovarian cancer patients.

In this study, we developed an anti-HB-EGF monoclonal antibody (mAb). Over the last decade, mAb therapy has been established as an effective treatment against cancer. As a therapeutic antibody against cancer, chimeric or humanized antibody with human immunoglobulin G1 (IgG1) isotype is commonly used, because it can mediate multiple effector functions, including antibody-dependent cellular cytotoxicity (ADCC). Recent studies have revealed that ADCC is one of the important therapeutic mechanisms of clinically effective antibodies (14, 15).

Since HB-EGF exists in two forms, pro-HB-EGF and sHB-EGF, an anti-HB-EGF mAb of human IgG1 isotype which has both a high binding reactivity for pro-HB-EGF expressed on the cell surface and a neutralizing activity against sHB-EGF growth factor activity is expected to exert potent anti-tumor activities through two mechanisms, ADCC and neutralization. To date, no anti-HB-EGF antibody with multiple anti-tumor mechanisms has yet been reported.

In this study, we generated new anti-HB-EGF mAbs and investigated their in vitro and in vivo anti-tumor activities and evaluated their potential as a therapeutic antibody against ovarian cancer.
Materials and Methods

Materials

Mouse anti-human HB-EGF mAb MAB259 (IgG2a), recombinant human HB-EGF (rhHB-EGF), and recombinant mouse IL-3 were obtained from R&D systems (Minneapolis, MN). Biotinylated rhHB-EGF was prepared using EZ-Link Sulfo-NHS-Biotin (Pierce, Rockford, IL). A rabbit anti-hemagglutinin epitope tag (HA) polyclonal antibody was obtained from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). A mouse anti-mutated granulocyte colony-stimulating factor mAb KM511 (IgG1) was produced by Kyowa Hakko Kirin Co., Ltd. as described previously (16) and used as a negative control antibody. A mouse IgG2a control mAb and a mouse IgG2b control mAb were obtained from R&D systems. A human anti-2,4-Dinitrophenol (DNP) mAb (IgG1) was produced by Kyowa Hakko Kirin Co., Ltd. from KM™ mouse, which carries a human chromosome fragment and produces fully human immunoglobulins, immunized with Keyhole Limpet Hemocyanin-DNP and used as a negative control antibody for mouse-human chimeric antibody.

Mice and cell lines

C.B-17/lcr-scid Jcl (SCID) mice were purchased from CLEA Japan, Inc. (Tokyo, Japan). HB-EGF null mice were developed at Osaka University (17). DER cells, 32D cells that stably express EGF receptor, were also developed at Osaka University (18). A FUT8 (α-1,6-fucosyltransferase) knockout chinese hamster ovary cell line, FUT8 (-/-) CHO, was developed at Kyowa Hakko Kirin Co., Ltd. as described previously (19). P3-U1 (CRL-1597), SKOV-3 (HTB-77), ES-2 (CRL-1978), NIH:OVCAR-3 (HTB-161), MDA-MB-231 (HTB-26), SK-BR-3 (HTB-30), T-47D (HTB-133), Hs 578T (HTB-126), and AGS (CRL-1739) were purchased from the American Type Culture Collection (Rockville, MD). MKN28 (JCRB0253), MKN45 (JCRB0254), MKN74 (JCRB0255), NUGC-3 (JCRB0822), MKN1 (JCRB0252), and MCAS (JCRB0240) were purchased from Japanese Collection of
Research Bioresources (Tokyo, Japan). MCF 7 (04-022), ZR-75-1 (09-1500), and Vero (IU-002) were purchased from DS Pharma Biomedical Co., Ltd. (Osaka, Japan).

Isolation of murine anti-HB-EGF monoclonal antibodies

HB-EGF null mice were immunized four times with rhHB-EGF. Aluminum hydroxide and *Bordetella pertussis* were added as adjuvants only for the first immunization. The spleen was removed 3 days after the final immunization, and 1×10^8 splenocytes were fused with 1×10^7 P3-U1 cells in the presence of polyethylene glycol 1000 (Junsei, Tokyo, Japan). Screening of cultured hybridoma cells was performed by binding ELISA and inhibition assay.

In the binding ELISA, rhHB-EGF was plated onto 96-well plates at a concentration of 0.5 μg/mL. After overnight plating, plates were washed with Phosphate Buffered Saline (-) (PBS) and blocked with 1% BSA in PBS. Next, hybridoma culture supernatant was added into each well. After 2 hours of incubation, plates were washed, and horseradish peroxidase (HRP)-labeled anti-mouse immunoglobulin (Dako Corp., Carpinteria, CA) was added into each well. To compare the binding activity of various isotypes of antibodies, HRP-labeled anti-mouse immunoglobulin kappa chain (Beckman Coulter, Inc. Brea, CA) was used as a labeled antibody. After 1 hour of incubation, plates were washed and 2,2’-azino-bis (3-ethylbenz-thiazoline)-6-sulfonic acid (WAKO, Osaka, Japan) was added as a substrate. Absorbance at 415 nm with a reference wave length of 490 nm was measured using an E-max microplate reader (Molecular Devices Corp., Sunnyvale, CA).

In the inhibition assay, the inhibitory activity of the anti-HB-EGF antibody against binding of rhHB-EGF to EGFR was measured by a cell-based assay. DER cells were seeded at 2.0×10^4 cells/well into 96-well plates overnight. Hybridoma culture supernatant was added into each well, and then biotinylated rhHB-EGF (20 ng/mL) and Streptavidin-Alexa647 (Invitrogen Corp., Carlsbad, CA) were sequentially added into each well and mixed. After 4 hours of incubation, mean fluorescence intensity was measured by an 8200 cellular detection.
system (Applied Biosystems, Tokyo, Japan).

Dual positive hybridoma cells in the above two assays were cloned twice by limiting dilution, and two hybridoma clones were established (KM3566, KM3579). The immunoglobulin subclass of KM3566 (IgG1) or KM3579 (IgG2b) was determined with anti-mouse isotype-specific antibodies (Zymed, San Francisco, CA).

Neutralization assay for HB-EGF growth factor activity
HB-EGF growth factor activity assay was performed using human ovarian cancer MCAS cells. MCAS cells were seeded in 96-well plates for cell suspension culture (Sumitomo Bakelite Co., Ltd., Tokyo, Japan) and cultured overnight. Six ng/mL of rhHB-EGF was pre-incubated with serially diluted anti-HB-EGF mAbs for 2 hours at 4°C, and added to the pre-cultured MCAS cells (final rhHB-EGF concentration: 3 ng/mL) and incubated for 48 hours at 37°C, 5% CO2. The number of living cells was then measured by Cell Count Reagent SF (Nacalai Tesque Inc., Kyoto, Japan) according to the manufacturer’s instructions. Statistical significance between the experimental groups was determined by a two-tailed unpaired t test.

Cell binding assay
Vero cells expressing C-terminally HA-tagged HB-EGF, HA-tagged TGFα, HA-tagged epieregulin, HA-tagged betacellulin, and HA-tagged amphiregulin were prepared as previously described (20). The expression of all constructs was analyzed by immunoblotting using an anti-HA tag antibody as a primary antibody. Cell binding assays were performed using these cells as described previously (20). Briefly, these cells were seeded in 48-well plates and incubated with anti-HB-EGF mAbs at 1 μg/mL for 2 hours at 4°C. The cells were then washed and fixed with 1.75% formaldehyde in PBS (+) for 20 min at 4°C. After washing, the fixed cells were blocked with blocking solution (0.2 M Glycine, 0.1 M Tris-HCl, pH8.1) for
30 min at 4°C. Then, the cells were incubated with HRP-conjugated anti-mouse IgG antibody (Millipore, Billerica, MA). After washing, color development detection was carried out by peroxidase substrate (Nacalai Tesque) according to the manufacturer’s instructions. Absorbance at 450nm was measured using a microplate reader (Thermo Electron Corp., Marietta, Ohio).

Flow cytometry (FCM)

Binding analysis of anti-HB-EGF mAbs for pro-HB-EGF expressed on the cell surface was carried out by flow cytometry. Cells were detached with 0.02% EDTA solution (Nacalai Tesque) and blocked with 1 mg/mL of human IgG (Sigma-Aldrich Co. LLC., St. Louis, MO) and stained with various concentrations of anti-HB-EGF mAbs or control antibodies diluted with staining buffer (1% BSA, 0.02% EDTA, 0.05% sodium azide in PBS) for 60 min on ice. After washing, the cells were incubated with FITC-labeled goat anti-mouse IgG (H+L) (KPL, Inc., Gaithersburg, ML) diluted with staining buffer for 60 min on ice. To compare the binding reactivity of various isotypes of antibodies, FITC-labeled anti-mouse kappa chain (Novus Biologicals, littleton, CO) was used as a labeled antibody. Stained cells were then analyzed using an EPICS XL-MCL FCM instrument (Beckman Coulter, Tokyo, Japan).

Production and purification of mouse-human chimeric anti-HB-EGF antibody with IgG1 isotype

The heavy- and light-chain variable region cDNAs from hybridoma cells producing KM3566 or anti-DNP mAb were isolated by PCR and cloned into the expression vector (21) for production of recombinant antibody with human IgG Fc domain. The vector was then introduced into FUT8 (-/-) CHO cells via electroporation, and the transfectant cells were grown in serum-free EX-CELL302 (JRH Bioscience, Lenexa, KS). The chimeric KM3566 antibody (cKM3566) and anti-DNP mAb was then purified from the supernatant using a
Prosep-A column (Nihon Millipore, Tokyo, Japan).

ADCC

Peripheral blood mononuclear cells (PBMCs) from healthy donors were prepared using Lymphoprep (Axis-Shield, Oslo, Norway) and used as effector cells. Target cells (1×10^4 cells/well) and effector cells (2.5×10^5 cells/well, effector to target ratio is 25:1) were put into 96-well plates and incubated with various concentrations of KM3566 and cKM3566 for 4 hours at 37°C, 5% CO₂. After centrifugation, the released lactate dehydrogenase (LDH) in the supernatant was detected by a Cyto Tox96 Non-Radioactive Cytotoxicity Assay Kit (Promega, Madison, WI). Percentage of target cell lysis was calculated according to the following formula:

$$\% \text{ cytotoxicity} = 100 \times \frac{(E - S)}{(M - S')}$$

Where E is experimental release (values in the supernatant from target cells incubated with antibody and effector cells), S is the spontaneous release (values in the supernatant from target cells incubated with effector cells without antibody), S' is the spontaneous release (values in the supernatant from target cells incubated with medium alone), and M is the maximum release (values in the supernatant from target cells lysed with a lysis solution provided in the kit). Blood donors were randomly selected from healthy volunteers registered at Kyowa Hakko Kirin Co., Ltd. All donors gave written informed consent prior to participation.

In vivo anti-tumor activity

All of the in vivo experiments were done in conformity with institutional guidelines in compliance with national laws and policies. Anti-tumor activity of KM3566 and cKM3566 was evaluated in a mouse xenograft model. MCAS cells (1×10^6) or ES-2 cells (1×10^6) were injected s.c. into 6-8-week-old female SCID mice. From the day of the inoculation of cancer cells, KM3566 (10 mg/kg) or cKM3566 (10 mg/kg) or Saline solution was injected i.v. twice.
a week for 3 weeks. For the therapeutic model, MCAS cells \((1 \times 10^6)\) or ES-2 cells \((1 \times 10^6)\) were injected s.c. into 6-8-week-old female SCID mice. Seven days later, tumors reached about 100 mm\(^3\) in size, and the mice were randomized into groups of five animals each. Mice were treated with cKM3566 (10 mg/kg) or Saline solution by i.v. injection twice a week for 2 or 3 weeks. The tumor volume was calculated according to the following formula:

\[
\text{Tumor volume (mm}^3\text{)} = 0.5 \times \text{(major diameter)} \times \text{(minor diameter)}^2
\]

Statistical analysis

Statistical significance between the experimental groups was determined by a two-tailed unpaired \(t\) test.
Results

Isolation of anti-HB-EGF mAb

Considering the difficulty in obtaining mAbs against human HB-EGF due to a high degree of amino acid sequence conservation among species, we used HB-EGF null mice for immunization. The HB-EGF null mice were immunized with rhHB-EGF, and hybridoma cells were made by fusion of murine splenocytes and myeloma cells. To efficiently screen for the hybridoma cells that produce anti-HB-EGF antibodies with neutralizing activity against cell growth promoting activity of sHB-EGF, we performed an inhibition assay, in which inhibitory activity of the antibodies against binding of rhHB-EGF to EGFR was evaluated. We also performed the binding ELISA using plates coated with rhHB-EGF to evaluate the specificity of the antibodies for rhHB-EGF. As a result, we succeeded in isolating two anti-HB-EGF mAbs, KM3566 and KM3579. In this study, MAB259, a commercially available anti-HB-EGF mAb, was used as a standard mAb for the evaluation of our newly-prepared mAbs. All of these three mAbs bound to rhHB-EGF (Fig. 1a), and did not bind to bovine serum albumin (data not shown). As shown in Fig. 1b, KM3566 and MAB259 showed comparable inhibitory activity against binding of rhHB-EGF to EGFR. KM3579 showed lower inhibitory activity than KM3566 and MAB259, although these three antibodies showed equivalent binding activity in the binding ELISA.

Neutralization activity against HB-EGF growth factor activity

We evaluated neutralization activity of anti-HB-EGF mAbs against sHB-EGF growth factor activity. We used MCAS cells, which show HB-EGF-dependent growth when cultured in a plate for cell suspension culture, in this assay. As shown in Fig. 2, KM3566 and MAB259 showed comparable neutralization activity against the proliferation of MCAS cells induced by exogenous rhHB-EGF. They inhibited HB-EGF-dependent growth of MCAS cells in a dose-dependent manner. In contrast, KM3579 showed slight neutralization activity only at the
highest concentration.

Binding specificity

To further evaluate the binding specificity of the anti-HB-EGF mAb, KM3566, we performed a cell binding assay using Vero cells and Vero cells expressing HA-tagged HB-EGF, HA-tagged TGFα, HA-tagged epiroregulin (EPR), HA-tagged betacellulin (BTC), and HA-tagged amphiregulin (ARG). The expression of all constructs was confirmed by the immunoblotting analysis using an anti-HA tag antibody, although the expression of HA-tagged ARG was low (Fig. 3a). KM3566 specifically bound to HB-EGF, but not to other members of the EGF family of growth factors (Fig. 3b).

Binding reactivity for pro-HB-EGF expressed on the cell surface

Next, to analyze binding of anti-HB-EGF mAbs to pro-HB-EGF expressed on the cell surface of cancer cells, we performed flow cytometry using two human ovarian cancer cell lines, MCAS and ES-2, and two gastric cancer cells, MKN-28 and NUGC-3, as target cells. These cancer cells were stained with serially diluted anti-HB-EGF mAbs. As shown in Fig. 4a-d, KM3566 showed high binding to all cancer cells tested. In contrast, KM3579 showed variable levels of binding depending on the target cancer cell line, high binding to MCAS and NUGC-3, and low binding to ES-2 and MKN-28. MAB259 showed low binding to all of the cancer cells tested. These results demonstrated that KM3566 has a high binding reactivity for pro-HB-EGF expressed on the cell surface.

To further evaluate the binding of KM3566 to various cancer cell lines, four ovarian cancer cell lines, six breast cancer cell lines, and six stomach cancer cell lines were stained with 20 µg/mL of KM3566 or an isotype-matched control antibody, KM511. The relative mean fluorescence intensity values (MFI KM3566 / MFI KM511) were shown in Fig. 4e. KM3566 bound to all cancer cells tested, although the binding levels varied among cancer cell lines.
Evaluation of the *in vitro* anti-tumor effects of cKM3566

To examine the anti-tumor effects of KM3566, we generated a mouse-human chimeric antibody with human IgG1 Fc domain (cKM3566). KM3566 and cKM3566 showed equivalent inhibitory activity against binding of rhHB-EGF to EGFR (Fig. 5a). We evaluated human PBMC-mediated ADCC of KM3566 and cKM3566 against MCAS and ES-2 cells. As shown in Fig. 5b, ADCC activity of cKM3566 was detected against both cancer cells in a dose-dependent manner. The cytotoxicity of cKM3566 was observed from 0.01 μg/mL and higher, and the activity saturated at 1 μg/mL. KM3566 is a murine antibody of IgG1 subclass which is known not to mediate any effector functions, including ADCC. As expected, KM3566 did not exhibit any ADCC activity.

Evaluation of *in vivo* anti-tumor activities of cKM3566

To evaluate therapeutic potential of cKM3566, we examined its *in vivo* anti-tumor activities against MCAS cells or ES-2 cells inoculated into SCID mice. In xenograft tumor prevention models, we compared anti-tumor activities of two antibodies, KM3566 and cKM3566 (Fig. 6a). cKM3566 was expected to exert anti-tumor activities through two mechanisms, neutralization and ADCC, while for KM3566, only one mechanism, neutralization, was expected. In prevention models, anti-HB-EGF mAbs or Saline solution was administered from the day of inoculation of cancer cells. As shown in Fig. 6a, in the MCAS model, KM3566 treatment significantly inhibited tumor growth (P<0.01) and cKM3566 exhibited a more potent anti-tumor activity than KM3566 (P<0.01), although tumor formation and growth were observed in all six mice in all experimental groups. In the ES-2 model, KM3566 did not show any anti-tumor activity, and tumor formation and growth were observed in five out of six mice, while in the control treatment group, it was observed in all six mice. In contrast, cKM3566 completely inhibited tumor growth and tumor formation was observed in only one
mouse.

Next, we tried to examine the \textit{in vivo} anti-tumor activity of cKM3566 in MCAS or ES-2 xenograft tumor therapeutic models. In therapeutic models, cKM3566 or Saline solution was administered seven days after inoculation of cancer cells. As shown in Fig. 6b, cKM3566 significantly inhibited growth of tumor in both models (P<0.01). The minimum treatment/control ratio (T/C min) in the MCAS and ES-2 xenograft model was 0.65 on Day 10 and 0.55 on Day 28.
Discussion

Growth factors of the EGF family are generally not considered to be promising targets for cancer therapy since there are many growth factors that can provide growth-promoting signals redundantly, and when a sole factor is neutralized, other ligands are suspected to compensate for it. However, increasing evidence has suggested that HB-EGF is expressed predominantly among all of the growth factors of the EGF family in ovarian cancer and has a pivotal role in its progression (6, 7, 22). In addition, Yagi et al. recently reported that a chemotherapeutic agent, paclitaxel, induced transient ERK and Akt activation through elevated expression and ectodomain shedding of HB-EGF, resulting in the escape from apoptosis. CRM197, a nontoxic mutant of diphtheria toxin and a specific inhibitor of HB-EGF, showed synergistic anti-tumor activities with paclitaxel by restoring the sensitivity to paclitaxel in ovarian cancer SKOV3 cells (13). These studies suggest that an anti-HB-EGF agent is expected to be effective and exert synergistic anti-tumor activities with chemotherapeutic agents such as paclitaxel against ovarian cancer.

In this study, we succeeded in isolating a novel anti-HB-EGF mAb KM3566 which has both a high binding reactivity for pro-HB-EGF expressed on the cell surface and a neutralizing activity against sHB-EGF growth factor activity. KM3566 demonstrated high binding to all cancer cells tested in this study. Thus, the mouse-human chimeric antibody of KM3566 with human IgG1 Fc domain was expected to mediate ADCC against cancer cells expressing HB-EGF. In fact, we successfully demonstrated ADCC activity of the mouse-human chimeric antibody, cKM3566, against cancer cells. These results suggest that cKM3566 can exert anti-tumor activities against cancer cells expressing HB-EGF through two mechanisms: neutralization and ADCC.

In the ovarian cancer MCAS prevention model, we demonstrated that KM3566, a murine antibody of IgG1 subclass that does not exhibit any ADCC activity against MCAS cells, significantly inhibited tumor growth. This means that the neutralization activity against
HB-EGF growth factor activity contributes to the in vivo efficacy of the antibody, as preceding studies have suggested (6, 23). cKM3566, which can exert ADCC as well as neutralization, exhibited significantly more potent in vivo anti-tumor activities than KM3566. These results suggest that both mechanisms; neutralization and ADCC, might contribute to the in vivo anti-tumor efficacy of the antibody, although precise mechanisms need to be solved in future.

On the other hand, in the ovarian cancer ES-2 prevention model, KM3566 did not show any anti-tumor activity, although cKM3566 dramatically inhibited tumor growth. ES-2 cells inoculated in SCID mice may proliferate independently of HB-EGF, unlike MCAS cells. This likely reflects the clinical situation, where the extent of dependency on HB-EGF probably varies among cancer cells. The cKM3566 antibody is expected to exert a potent anti-tumor activity against not only cancer cells with high dependency on HB-EGF, but also ones with low dependency on the molecule.

Interestingly, the binding reactivity for pro-HB-EGF varied among the anti-HB-EGF mAbs. KM3566 bound strongly to all of the cancer cells tested, but KM3579 and MAB259 did not. Pro-HB-EGF is known to be associated with other molecules such as CD9, integrins and heparan sulfate proteoglycans (16, 24, 25, 26) on the cell surface. Therefore, the epitope recognized by KM3579 and MAB259 may be masked by pro-HB-EGF-associated molecules in some cases. As for MAB259, it is also possible that it has low binding reactivity for natural HB-EGF molecules produced in human cells, although it has high binding reactivity for rhHB-EGF produced in insect cells.

The in vivo anti-tumor activities of cKM3566 were examined in xenograft tumor therapeutic models using MCAS or ES-2 ovarian cancer cells. cKM3566 showed significant anti-tumor activities in both cell models (P<0.01). These results indicate that cKM3566 is a promising anti-ovarian cancer therapeutic antibody.

HB-EGF is widely involved in physiological and pathological processes in the body.
Analysis of HB-EGF KO mice indicated that HB-EGF is required for the maintenance of heart function and other functions (5, 17). Therefore, we should pay an attention to possible adverse effects of systemic inhibition of HB-EGF signaling, as well as possible adverse effects of inducing systemic ADCC against HB-EGF-expressing cells when cKM3566 or its humanized derivative is used for clinical purpose.
Disclosure of potential conflicts of interest

The authors, Kenya Shitara, Yuka Sasaki, Hiroshi Ando, Akiko Furuya, Takuya Murakami, Sayaka Hori are employed by Kyowa Hakko Kirin Co., Ltd.

Acknowledgments

We thank S. Kawamoto for technical assistance and Drs. K. Nakamura, T. Tahara, and S. Nakanishi for helpful suggestions.
References

5. Mekada E. and Iwamoto R. UCSD Nature Molecule Pages 2008; doi:10.1038/mp.a002932.01.

Figure titles and legends

Fig. 1 Reactivity of anti-HB-EGF mAbs against rhHB-EGF

a) The binding activity of anti-HB-EGF mAbs to rhHB-EGF was measured by an ELISA assay. The various concentrations of anti-HB-EGF mAbs, KM3566 (black square), KM3579 (black triangle), MAB259 (black circle), and negative control antibody, KM511 (white square), mouse IgG2b control mAb (white triangle), mouse IgG2a control mAb (white circle) were reacted to plated rhHB-EGF. The binding was detected by HRP-labeled anti-mouse immunoglobulin kappa chain. Points indicate the mean ± SD (n=3) for the absorbance at 415 nm (reference: 490 nm). b) The inhibitory activity of anti-HB-EGF mAbs against the binding of rhHB-EGF to EGFR was measured in a cell-based assay. Biotinylated rhHB-EGF (20 ng/mL) and Streptavidin-Alexa647 was incubated with DER cells, 32D cells that stably express the EGFR, in the presence or absence of various concentrations of anti-HB-EGF mAbs, KM3566 (black square), KM3579 (black triangle), and MAB259 (black circle), and negative control antibody, KM511 (white square), mouse IgG2b control mAb (white triangle), mouse IgG2a control mAb (white circle) and the mean fluorescence intensity (MFI) was measured. The MFI at when 20 or 0 ng/mL of biotinylated rhHB-EGF was added with no antibody is indicated by the dotted line (+) or (-), respectively. Points indicate the mean ± SD (n=3) for the MFI.

Fig. 2 Neutralization activity of anti-HB-EGF mAbs against rhHB-EGF

The neutralization activity of the anti-HB-EGF mAbs for HB-EGF growth factor activity was measured using a cell-based assay. Three ng/mL of rhHB-EGF was pre-incubated with serially diluted anti-HB-EGF mAbs, KM3566 (black square), KM3579 (black triangle), and MAB259 (black circle), and negative control antibody, KM511 (white square), mouse IgG2b control mAb (white triangle), mouse IgG2a control mAb (white circle), for 2 hours at 4°C, and added to MCAS cells and incubated for 48 hours at 37°C, 5% CO2. The number of living
MCAS cells was then measured using a cell count reagent. The cell number at when 3 or 0 ng/mL of rhHB-EGF was added with no antibody is indicated by the dotted line (+) or (-), respectively. Points indicate the mean ± SD (n=3) for the absorbance at 450 nm (reference: 650 nm). Points with significant differences versus control antibody treatment are indicated by * (P < 0.05).

Fig. 3 Binding specificity of KM3566
a) Vero cells (-), and Vero cells expressing HA-tagged HB-EGF (HB-EGF), HA-tagged TGF-α (TGF-α), HA-tagged epiregulin (EPR), HA-tagged betacellulin (BTC), and HA-tagged amphiregulin (ARG) were lysed with cell lysis buffer and subjected to immunoblotting using an anti-HA tag antibody as a primary antibody. b) Vero cells (-), and Vero cells expressing HA-tagged HB-EGF (HB-EGF), HA-tagged TGF-α (TGF-α), HA-tagged epiregulin (EPR), HA-tagged betacellulin (BTC), and HA-tagged amphiregulin (ARG) were reacted with each mAb (1, KM3566; 2, the negative control antibody, anti-Myc antibody; 3, without mAb) in the cell binding assay as described in Materials and Methods. Each bar indicates the mean ± SD (n=3).

Fig. 4 Reactivity of anti-HB-EGF mAbs against pro-HB-EGF expressed on cell surface
a)~d) Cells were incubated with various concentrations of anti-HB-EGF mAbs, KM3566 (black square), KM3579 (black triangle), and MAB259 (black circle), and 20 μg/mL of negative control antibody, KM511 (white square), mouse IgG2b control mAb (white triangle), mouse IgG2a control mAb (white circle). The binding of these antibodies to pro-HB-EGF on the cell surface was detected by FITC-labeled anti-mouse kappa chain, and the mean fluorescence intensity (MFI) was measured. e) Various cell lines derived from ovarian, breast, and stomach cancers were incubated with 20 μg/mL of KM3566 or the negative control antibody, KM511. The binding of these antibodies to pro-HB-EGF on the cell surface was
detected by FITC-labeled goat anti-mouse IgG (H+L). The relative mean fluorescence intensities (MFI \textsubscript{KM3566} / MFI \textsubscript{KM511}) are shown.

Fig. 5 In vitro anti-tumor effects of cKM3566

a) The inhibitory activity of KM3566 or cKM3566 against the binding of rhHB-EGF to EGFR was measured as described in Fig. 1b. Biotinylated rhHB-EGF (20 ng/mL) and Streptavidin-Alexa647 was incubated with DER cells in the presence or absence of various concentrations of anti-HB-EGF mAbs, KM3566 (black triangle), cKM3566 (black circle), and the negative control antibody, KM511 (white triangle) and anti-DNP antibody (white circle), and the mean fluorescence intensity (MFI) was measured. The MFI at when 20 or 0 ng/mL of biotinylated rhHB-EGF was added with no antibody is indicated by the dotted line (+) or (-), respectively. Points indicate the mean ± SD (n=3) for the MFI. b) Human PBMCs from healthy donors were prepared and used as effector cells. Target cells (MCAS or ES-2) were incubated with effector cells (Effector/Target = 25/1) and antibody, KM3566 (black triangle), cKM3566 (black circle), and negative control antibody, KM511 (white triangle) and anti-DNP antibody (white circle). The released LDH was measured, and cytotoxicity (%) was indicated as the mean ± SD (n=3). Data are representative of three repeat experiments.

Fig. 6 In vivo anti-tumor activities of cKM3566

a) MCAS (1 x 106) or ES-2 (1 x 106) cells were injected s.c. into SCID mice (Day 0). KM3566 (10 mg/kg: black triangle), cKM3566 (10 mg/kg: black circle) or Saline solution (control treatment, white circle) was injected i.v. twice a week from day 0 for 3 weeks, and the tumor sizes (mm3) were measured (n=6). Arrows below the transverse axis indicate days of antibody treatment. Statistical significance between the cKM3566 versus control treatment and cKM3566 versus KM3566 treatment is indicated as P<0.05 (*) or P<0.01 (**) and P<0.05 (†) or P<0.01 (††), respectively. b) MCAS (1 x 106) or ES-2 (1 x 106) cells were
injected s.c. into SCID mice (Day 0). cKM3566 (10 mg/kg; black circle) or Saline solution (control treatment, white circle) was injected i.v. twice a week from day 7 for 2 or 3 weeks and the tumor sizes (mm3) were measured (n=5). Arrows below the transverse axis indicate days of antibody treatment. Statistical significance between the cKM3566 versus control treatment is indicated as P<0.05 (*) or P<0.01 (**).
Fig. 1

a)

![Graph showing antibody concentration (μg/mL) vs. OD450.]

b)

![Graph showing antibody concentration (μg/mL) vs. MFI.]

Antibody concentration (μg/mL)
Fig. 2
Fig. 3

a)

![Western Blot Image]

- **β-actin**

b)

![Graph Image]

- **OD450**

Legend:
- HB-EGF
- TGF-α
- EPR
- BTC
- ARG
- (-)
Fig. 4

- **Panel a)**: MCAS
- **Panel b)**: NUGC-3
- **Panel c)**: ES-2
- **Panel d)**: MKN-28
- **Panel e)**: Comparison of MFI between ovarian, breast, and stomach cancer cell lines.
Fig. 5

a) MFI

b) Cytotoxicity (%)
Fig. 6

a) Tumor volume (mm3) vs Days after tumor inoculation for MCAS and ES-2.

- ** p<0.01 vs Control
- * p<0.05 vs Control
- ** p<0.01 vs KM3566

Student's t-test (two-tailed)

b) Tumor volume (mm3) vs Days after tumor inoculation for MCAS and ES-2.

- ** p<0.01 vs Control
- * p<0.05 vs Control

Student's t-test (two-tailed)
A Novel Anti-Human HB-EGF Monoclonal Antibody with Multiple Anti-Tumor Mechanisms Against Ovarian Cancer Cells

Shingo Miyamoto, Ryo Iwamoto, Akiko Furuya, et al.

Clin Cancer Res Published OnlineFirst September 14, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-11-1029

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pub@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.