A dose-escalation and signal-generating study of the immunocytokine L19-IL2 in combination with dacarbazine for the therapy of patients with metastatic melanoma.

Thomas K. Eigentler1*, Benjamin Weide1*, Filippo de Braud2, Gianluca Spitaleri2, Antonella Romanini3, Annette Pflugfelder1, Reinerio González-Iglesias4, Annaelisa Tasciotti4, Leonardo Giovannoni4, Kathrin Schwager5, Valeria Lovato5, Manuela Kaspar5, Eveline Trachsel5, Hans D. Menssen4, Dario Neri6, Claus Garbe1

Authors’ affiliations:
1) Department of Dermatology, University Medical Center, Liebermeisterstrasse 25, 72076 Tuebingen, Germany;
2) Clinical Pharmacology and New Drugs Development Unit, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy;
3) Department of Oncology, Division of Medical Oncology, S. Chiara Hospital, Via Mazzei 16, 56124 Pisa, Italy;
4) Philogen SpA, La Lizza, 7 53100 Siena, Italy;
5) Philochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland;
6) Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland.

* These authors contributed equally to this work.

Running title:
L19-IL2 plus dacarbazine in metastatic melanoma
Key words:

Immunocytokine, metastatic melanoma, interleukin-2, EDB domain of fibronectin, vascular tumor targeting.

Notes:

- **Financial Support:** The research activity of D.N. is funded by the ETH Zurich, the Swiss National Science Foundation, the European Union (ADAMANT project), the Swiss Cancer League, the SwissBridge Foundation and the Stammbach Foundation. The research activity of B.W. is funded by the Deutsche Forschungsgemeinschaft (DFG), grant SFB685.

- **Corresponding author:** Claus Garbe, Department of Dermatology, University Medical Center, Liebermeisterstrasse 25, 72076 Tübingen, Germany. Phone: +49 7071 298 7110; Fax: +49 7071 29 51 87; E-mail: claus.garbe@med.uni-tuebingen.de

- **Conflict of interest:** D.N. is co-founder and shareholder of Philogen, the biotech company which has licensed the L19 antibody from the ETH Zurich.

- The trial is registered in the register ClinicalTrials.gov with the Identifier number NCT01055522.

- This work was presented in part as a poster at the 45th American Society of Clinical Oncology (ASCO) Annual Meeting, Orlando, FL, May 29 – June 2, 2009, at the 46th ASCO Annual Meeting, Chicago, IL, June 4-8, 2010 and at the 47th ASCO Annual Meeting, Chicago, IL, June 3-7, 2011; and as an oral presentation at the 7th International
Melanoma Research Congress / 4th Melanoma & Skin Cancer Centers
Meeting, Sydney (Australia), November 4-7, 2010. Moreover, an
abstract reporting on this work was submitted to the 2011 International
Melanoma Congress, Tampa, FL, November 9-13, 2011.

- Philogen SpA contributed to the study design, the collection, analysis
 and interpretation of data, the writing of the manuscript, and the
decision to submit the manuscript for publication.

- The manuscript is 3446 word long, and it contains 3 figures and 2
tables.
Statement of Translational Relevance

Ever since its approval in 1976, dacarbazine represents the standard of care for the treatment of patients with metastatic melanoma, however, only a minority of melanoma patients responds to dacarbazine treatment. This article presents clinical evidence that the combination of dacarbazine with the tumor-targeting immunocytokine L19-IL2 (a biopharmaceutical consisting of the human recombinant antibody L19, specific to the alternatively-spliced EDB domain of fibronectin, fused to human interleukin-2) is well tolerated in patients with metastatic melanoma and can induce long-lasting objective responses in a subset of patients.
Abstract

Purpose: L19-IL2 is an immunocytokine composed of an antibody fragment specific to the EDB domain of fibronectin, a tumor angiogenesis marker, and of human interleukin-2 (IL2). L19-IL2 delivers IL2 to the tumor site exploiting the selective expression of EDB on newly formed blood vessels. Previously, the recommended dose (RD) of L19-IL2 monotherapy was defined as 22.5 MioIU IL2 equivalents. In this study, safety and clinical activity of L19-IL2 in combination with dacarbazine were assessed in metastatic melanoma patients.

Experimental Design: The first 10 studied patients received escalating doses of L19-IL2 on day 1, 3, and 5 in combination with 1g/m² of dacarbazine on day 1 of a 3-weekly therapy cycle. Subsequently, 22 patients received L19-IL2 at RD plus dacarbazine. Up to six treatment cycles were given, followed by a maintenance regimen with biweekly L19-IL2.

Results: The RD of L19-IL2 in combination with dacarbazine was defined as 22.5 MioIU. Toxicity was manageable and reversible, with no treatment related deaths. Twenty-nine patients were evaluable for efficacy according to RECIST. In a centralized radiology analysis, 8/29 (28%) patients achieved a RECIST-confirmed objective response, including a complete response still ongoing 21 months after treatment beginning. The 12-month survival rate and median overall survival of the RD treated patients (n=26) were 61.5% and 14.1 months, respectively.

Conclusions: The repeated administration of L19-IL2 in combination with...
dacarbazine is safe and shows encouraging signs of clinical activity in metastatic melanoma patients. This combination therapy is currently evaluated in a randomized phase II trial with metastatic melanoma patients.
INTRODUCTION

Melanoma is the most aggressive type of skin cancer, causing 8,700 estimated deaths per year in the U.S. alone [1, 2], and having a very poor prognosis, well reflected in a 5-year survival rate of below 5% [3].

Current therapy approaches for treating metastatic melanoma include cytotoxic chemotherapy, immunotherapy, and the combination of the two. Until the recent approval of ipilimumab and vemurafenib, the melanoma therapy landscape was dominated by two agents, dacarbazine and Interleukin-2 [4, 5]. Dacarbazine is the only chemotherapeutic agent approved by FDA; when given as single agent, it shows response rates between 5% and 15% [6]. However, responses are rarely durable and most patients experience disease relapse after a few weeks or months [7]. Despite such modest efficacy, dacarbazine still represents the reference treatment of metastatic melanoma, chosen as comparative arm in many clinical trials [8]. Some immunotherapeutic approaches have led to more durable responses in a small number of patients. In 1998, FDA approved high-dose bolus Interleukin-2 (HD IL2) for the treatment of metastatic melanoma, based on its ability to mediate durable and complete responses in a small subset of patients [9-11]. However, major toxicities associated with HD IL2 limit its administration to patients with excellent performance status [8].

In consideration of the significant toxicities associated with IL2 treatment, monoclonal antibodies have been proposed as “vehicles” for the selective delivery of this immune-stimulatory cytokine to the tumor environment, thus sparing normal tissues [12-15]. Reisfeld and collaborators have pioneered the
use of full immunoglobulins, featuring a C-terminal fusion of IL2 with the heavy chain of the IgG molecule [16]. This strategy has been moved to clinical trials in patients with neuroendocrine tumors [17] and melanoma [18, 19], using antibodies specific to EpCAM and GD2-Ganglioside, respectively. Such approaches have shown good safety profile and favorable pharmacokinetics, but limited signs of antitumor activity [18, 19]. In order to avoid the generation of multi-functional therapeutic proteins featuring the simultaneous presence of an antigen-binding moiety, IL2, and of the Fc antibody portion which could cross-link the cytokine onto cells carrying Fcγ receptors, we constructed smaller fusion proteins between a human antibody in the single-chain variable Fragment (scFv) format and recombinant human IL2 [20-23]. In particular, the monoclonal antibody L19, specific to the alternatively spliced extra-domain B (EDB) of fibronectin, appeared to be an ideal candidate for the pharmacodelivery of IL2, in view of its very limited binding to normal mature tissues and its ability to selectively localize to newly formed blood vessels in almost all cancers, irrespective of histopathology [22]. L19-IL2 had been administered as monotherapy to patients with renal cell carcinoma and other solid tumors in a Phase I/II study [23], and the recommended dose (RD) for monotherapy was determined to be 22.5 Mio IU IL2 equivalents.

Here we report safety and activity results of the L19-IL2/dacarbazine combination therapy in 32 metastatic melanoma patients.

The clinical development of L19-IL2 in metastatic melanoma was justified not only by the previous reports of therapeutic activity of recombinant human IL2 in this indication [9, 10, 24], but also by the preclinical observation that L19
stains tumor tissues in biopsy sections of human melanomas [25], is capable of selective accumulation in neoplastic lesions in patients with metastatic melanoma, and that it does not bind to the vast majority of normal adult human tissues [23]. Furthermore, a fluorescent *ex vivo* immunostaining analysis performed on biopsies taken 24 hours after injection of L19-IL2 confirmed that the immunocytokine selectively localizes to vascular structures within melanoma metastases [Supplementary Figure 1]
MATERIALS AND METHODS

Patient characteristics

In the dose-escalation part of the study, 3-4 patients were recruited into each of three sequential dosing cohorts. Doses were escalated using the following scheme: 10, 15 and 22.5 Million International Units (Mio IU) IL2 equivalent (IL2e) [22, 26], each in combination with 1 g/m² of dacarbazine. In the following expansion of the last cohort, named Phase IIb Step1, 22 enrolled patients received the RD of 22.5Mio IU of L19-IL2 in combination with 1 g/m² of dacarbazine.

Adult patients with histologically or cytologically confirmed unresectable metastatic (stage IV) non-uveal melanoma were enrolled into the study if following features applied: measurable disease defined as at least one lesion that could be accurately and serially measured per RECIST, cutaneous lesions measuring at least 1 cm were considered measurable; prior chemotherapy including dacarbazine for metastatic melanoma were allowed if treatment had been completed > 6 months prior to study entry; an Eastern Cooperative Oncology Group (ECOG) performance status of ≤ 2; a life expectancy of at least 12 weeks; LDH < 2 x ULN; for phase IIb only, fewer than three organs involved or cutaneous and/or subcutaneous metastases only. The following conditions were considered exclusion criteria: primary ocular melanoma; evidence of brain metastasis by computed tomography (CT) scan in the two months prior to study entry; active autoimmune disease; long-term basis use of corticosteroids or other immunosuppressant drugs.
The complete list of inclusion and exclusion criteria is reported in the Appendix.

Both competent authorities and ethical committees approved the study protocol; all patients signed an informed consent form before being admitted into the study. The trial was conducted according to the principles of the latest version of the Declaration of Helsinki and the guidelines for Good Clinical Practice. The trial is registered in http://clinicaltrials.gov/ with the number NCT01055522.

Study design and treatment

This was an open-label, non-randomized, Phase II study involving three centers in Germany and Italy. During the dose-escalation part, patients were enrolled in three sequential cohorts (3-4 subjects per cohort) corresponding to a fixed dose of dacarbazine and increasing doses of L19-IL2; subsequently, 22 patients were enrolled and treated at the confirmed RD. The Phase IIb Step 1 part of the study is the first step of an optimal Simon two-step design, considering a type-one error rate of 5%, a power of 80%, a null hypothesis \(p_0 = 0.10 \), and a target response rate \(p_1 = 0.25 \). Assumption for continuation of enrollment in the following Phase IIb Step 2 part of the study, was that at least 3 out of the 22 patients enrolled in the Step 1 respond to the combination treatment.

L19-IL2 immunocytokine was provided by Philogen S.p.A. (Siena, Italy), [22, 23]. L19-IL2 was administered as a 1-hour intravenous (IV) infusion on days 1, 3 and 5 of each 21-day cycle (Figure 1).
The primary objective of the Phase Ila was to confirm the RD of L19-IL2 (previously defined as 22.5 Mio IU [23]) when administered in combination with a fixed dose of dacarbazine in patients with metastatic melanoma. The primary objective of the Phase Ilb Step 1 was the evaluation of the objective response rate (ORR) after induction. The Phase Ila secondary objectives included the investigation of the pharmacokinetic (PK) profile of L19-IL2, the analysis of the induction of human anti-fusion protein antibodies (HAFA), the study of the antitumor activity of L19-IL2 with dacarbazine in patients with metastatic melanoma, and the evaluation of the immunological activity of study treatment. The secondary objectives of Phase Ilb Step 1 included the evaluation of progression-free survival (PFS), overall survival (OS), as well as safety and tolerability.

During the dose-escalation, the highest investigated dose level for which a dose-limiting toxicity (DLT) incidence in not more than one out of three patients is observed, was designated as RD. DLTs were defined using the CTCAE v3.0 considering each of the following events as DLT, if believed related to the study treatment: grade 4 thrombocytopenia (platelet count < 25,000/mm³) or grade 3 thrombocytopenia with hemorrhage; grade > 1 renal toxicity (creatinine, blood urea nitrogen); grade ≥ 2 hypoproteinemia, hypoalbuminemia, edema, proteinuria, dyspnea, hypotension, hypoxia (decreased O₂ saturation at rest) or any other signs of acute capillary leak syndrome; grade ≥ 3 non-hematological toxicity despite supportive therapy; failure to recover to grade ≤ 1 toxicity (excluding alopecia) after delaying the initiation of the next cycle by a maximum of 2 weeks; failure to deliver any of the doses due to toxicity; failure to re-treat the patient on the second cycle.
due to toxicity. In patients who experienced a DLT, treatment with L19-IL2 was stopped and subsequently resumed only if toxicity resolved to the pretreatment level. Patients experiencing a DLT were removed from the study if the toxicity did not recover to grade 2 within two weeks or grade < 2 after 4 weeks.

Safety and efficacy assessments

After obtaining patients informed consent, screening evaluations and procedures, which are fully described in the Appendix, were performed within 14 days prior to initiating study drug treatment. Patients returned for the end of treatment visit 30 to 37 days after the last dose of study drug, unless the objective tumor response was assessed as “progressive disease” in a previous treatment visit or the patient at some point discontinued the treatment. Adverse events and toxicities were graded as per CTCAE version 3.0 [27]. Disease status was assessed at baseline, after every two cycles (i.e., 6 weeks) and at study discontinuation using RECIST 1.0 [28]. Chest, abdomen, pelvis and brain scans, either CT (preferred) or MRI (at discretion of the investigator), were performed at baseline. At the following tumor assessments, scans of chest, abdomen and pelvis were taken; brain scans were performed only if patients were symptomatic. Patients remained on study until the occurrence of unacceptable toxicity, disease progression, withdrawal of consent, or until a L19-IL2 or dacarbazine infusion in the first two cycles was missed, except in the case of a missed dose due to DLT. Best overall responses were defined as the largest shrinkage in the sum of diameters of target lesions at any moment of time, compared to baseline.
Pharmacokinetics

Determination of L19-IL2, dacarbazine and AICA (5-aminoimidazole-4-carboxamide) in human serum was performed as described in Appendix.

L19-IL2 production and characterization

Production, characterization and toxicology testing of L19-IL2 were described previously [23].
RESULTS

Study design

Patients could receive up to 6 cycles of treatment (induction) with L19-IL2 and dacarbazine. Patients with stable or responding disease after induction could receive additional biweekly L19-IL2 administration, without dacarbazine, as maintenance therapy.

Dose finding, pharmacokinetics, safety and tolerability

All enrolled patients had progressing disease at the time of entering the study. The median age at the start of treatment was 55 years, 23 patients were males and 9 females (Table 1). Patients enrolled in the dose-escalation part of the study were heavily pretreated, with 9/10 patients having received previous chemotherapy and 8/10 previous radiotherapy. Further details about baseline characteristics of the single patients (i.e., site of disease, prior treatments, mutational status) are given in the Supplementary Table 1.

The maximum tolerated dose (MTD), determined as 22.5 Mio IU in a previous monotherapy study [23], was found to be safe also in combination with standard dacarbazine (1g/m^2), and none of the 10 patients enrolled in the dose-escalation part of the study experienced a drug-related DLT.

Pharmacokinetic evaluation was performed on all the Phase Ila patients. Figure 2 shows the mean concentrations (±standard deviation) of L19-IL2, dacarbazine and AICA by dose group, during the first cycle of treatment. The maximum concentration (Cmax) of L19-IL2 increased dose-proportionally within the tested L19-IL2 dose range and occurred within 1 hour after the end
of the IV infusion. After reaching Cmax, the L19-IL2 concentration decreased with a terminal half-life of 2-3 hours. Analysis of both dacarbazine and AICA revealed essentially identical pharmacokinetic profiles in patients that received different L19-IL2 doses [Figure 2]. Similar profiles were recorded for all the three compounds during the second cycle of treatment [data not shown]. L19-IL2 was found to be non-immunogenic even after repeated administrations, as documented by the absence of changes in the L19-IL2 PK profiles at different cycles and by the inability of patients’ serum (1:100 dilution) to compete with a polyclonal rabbit anti-serum (1:10’000 dilution) raised against the immunocytokine [Supplementary Figure 2].

Overall, 32 out of 32 patients were evaluable for safety. Toxicity was manageable and reversible, with no serious unexpected suspected adverse reactions (SUSAR) and no treatment related deaths. The incidence of drug-related adverse events by grade and System Organ Class (SOC) is listed in Table 2. The most frequent adverse events included chills, fatigue and fever, which however were generally dose related and mild or moderate in severity. In general, only few and manageable grade 3 and 4 adverse events related to the combination of L19-IL2 and dacarbazine were reported. Laboratory analyses revealed asymptomatic grade 3 and 4 leucopenia, neutropenia or anemia in one and five patients who received 10 Mio I.U. and 22.5 Mio I.U. of L19-IL2, respectively. Four patients experienced grade 3 cardiac and vascular complications, mainly hypotension; one of these patients required prolonged hospitalization but recovered without need of corrective therapy.

L19-IL2 dosage had to be adjusted for single administrations (postponed,
canceled or reduced) in 12 patients and dacarbazine dose was reduced in 2 patients.

Effects on lymphocyte subsets, following administration of L19-IL2 and dacarbazine, were similar in the majority of the Phase IIa patients. A striking but transient decrease (>90%) in the absolute number of total lymphocytes occurred during each treatment cycle after L19-IL2 + dacarbazine administration (samples were collected each cycle at day 1, one hour after dacarbazine infusion). Lymphopenia, which is a known transient consequence of both IL2 [29] and dacarbazine administration, was mainly observed in T lymphocyte and natural killer (NK) cell populations [Supplementary Figure 3A]. Moreover, at day 8 of every treatment cycle, a significant increase of CD71 expression on CD4+ Th lymphocytes and CD8+ Tc lymphocytes was recorded, indicating lymphocyte activation and proliferation, [Supplementary Figure 3B]. At day 8 of each treatment cycle, a considerable increase of CD25 (IL2 receptor α chain) and CD122 (IL2 receptor β chain) expression on CD4+ Th lymphocytes was also observed [Supplementary Figure 3C]; such expansion of CD4+ T cells expressing the IL2 receptor is also a well-known effect of IL2 administration [29]. No loss of immune stimulation was observed for patients treated with up to 9 cycles, (i.e., repeated therapy cycles still led to transient increase of immune effector cells; data not shown).

Antitumor activity of L19-IL2 plus dacarbazine

A waterfall plot, indicating the best responses compared to baseline experienced by the evaluable patients according to a central assessment is reported in Figure 3C. The plot reports the maximum percentage of tumor
reduction for target lesions according to RECIST [28]. According to the central assessment, 9 out of 29 evaluable patients (31%; 95% confidence interval [CI] 14 to 48) achieved shrinkage greater than 30% which was not accompanied by appearance of new lesions; 8 of these patients (28%; 95% CI, 11 to 44) had a RECIST-confirmed objective response. These data are comparable to the efficacy analysis results given by the investigators, for which 8 out of 30 evaluable patients (27%; 95% CI, 11 to 42) showed a shrinkage of the sum of the longest diameters of the tumor lesions greater than 30%, of which 5 (17%; 95% CI, 3 to 30) turned out to be RECIST-confirmed objective responses (data not shown). The two efficacy analyses (central and investigators’ assessments) resulted in similar profiles with few discrepancies caused by differently selected target lesions, which do not affect substantially the overall picture. One-year survival and progression-free survival data are reported in Figure 3A and Figure 3B, respectively. Eighteen out of 32 patients were still alive 12 months after beginning of treatment, giving a 1-year survival rate of 56.3%. This rate increases to 61.5% when considering only patients treated at RD (16 alive after 1 year out of 26 RD treated patients), [Figure 3A]. Median overall survival was 14.1 months (95% CI, 10.1 to 19.9) for patients treated at RD and 13.9 months (95% CI, 7.8 to 17.0) for all patients. The median progression-free survival was 2.5 months (95% CI, 1.5 to 4.2) for all patients and 3.8 months (95% CI, 2.5 to 5.0) for the RD treated patients [Figure 3B]. The median duration of responses was 86 days (95% CI, 7 to 325; range 7 to 604 days); most of the responding patients experienced significant reduction of the lesions’ diameters which lasted from one month to over one year; one single patient (No. 8), who had a marked reduction of the target lesions at the
first tumour assessment, after 7 days discontinued treatment due to the appearance of a new cutaneous lesion, while the neoplastic masses progressed at later time points; 604 days correspond to the last contact with patient No. 7, which at the time was still responding to treatment. Selected examples of observed objective responses are shown in Supplementary Figure 4.

No correlation was found between the BRAF, KIT or NRAS mutational status of the treated patients and the antitumor activity of the L19-IL2/dacarbazine regimen. In particular, tumor responses after L19-IL2 plus dacarbazine were achieved in melanoma patients irrespective of the BRAF or NRAS mutational status of their disease (Supplementary Table 1).
DISCUSSION

We have reported the results of a dose-escalation and signal-generating trial, performed with L19-IL2 in combination with dacarbazine in patients with metastatic melanoma. Overall, approximately 30% of the patients exhibited an objective response, including a complete resolution of all neoplastic lesions in one patient which is still ongoing more than 21 months from study entry.

Patients who achieved an objective response or disease stabilization after the combined induction therapy were offered additional biweekly L19-IL2 administrations as maintenance a therapy. A similar treatment strategy seemed to positively affect PFS as well as OS for metastatic melanoma patients in a recent Phase II study, when compared to historical controls. In this study, treatment consisted of a biochemotherapy induction regimen [including cisplatin, vinblastine, dacarbazine, decrescendo IL2, and interferon α-2b with granulocyte-macrophage colony-stimulating factor (GM-CSF) cytokine support] and a maintenance biotherapy (with low-dose IL2 and GM-CSF followed by intermittent pulses of decrescendo IL2 over 12 months) [30].

Given the limited number of patients, it is of course premature to judge about the clinical significance of the therapeutic potential of L19-IL2 in melanoma. However, the observation that more than 60% of the study patients were still alive 12 months from start of treatment is highly encouraging, considering that the median survival for pretreated melanoma patients is typically 6-9 months [31], and that in similar trials it was shown to range between 10 to 14 months for patients treated with recently FDA-approved ipilimumab, with or without dacarbazine [32]. Moreover, our results are in line with observations in HD IL2...
treated patients revealing response rates between 5% and 27%. In contrast to chemotherapy-induced responses, IL2 based schedules seem to be able to produce durable remissions [33, 34]. Similar effects could be observed in some patients responding to L19-IL2; results from a larger ongoing trial with L19-IL2 will confirm if this trend is real.

The combined treatment with L19-IL2 plus dacarbazine was reasonably well tolerated, and all side effects encountered in the study were manageable and reversible. In comparison to HD IL2 therapy, which is recommended to be carried out only in hospitals with easy access to an intensive care facility, the infusion of L19-IL2 never resulted in severe adverse events necessitating intensive care support. Rather, the application of L19-IL2 plus dacarbazine could be performed on a regular hospital ward or even in an outpatient setting (day hospital).

The immunocytokine L19-IL2 has been studied extensively in animal models of cancer, revealing an inhibitory activity on tumor growth when used as single agent [22, 35-39], which could be potentiated when the agent was used in combination with chemotherapy [36] or with antibody-based therapeutics, leading to complete tumor eradications [38, 39]. Following intravenous administration, L19-IL2 preferentially localizes at the tumor site, as evidenced by quantitative biodistribution studies and by microautoradiographic investigations [22]. Furthermore, the tumor targeting ability of the L19 antibody in scFv format [40] and in small immuno-protein (SIP) format [25] has extensively been studied in animal models [20, 25, 41-45] and in over 100 patients with cancer [46-48], using nuclear medicine techniques.
The pharmacokinetic studies performed in this trial have confirmed a rapid clearance of L19-IL2 at the end of the infusion, in full analogy with the data observed in preclinical models [22, 23] and in patients treated with L19-IL2 as single agent [23]. This rapid clearance is a favorable property of L19-IL2, which helps minimizing systemic adverse events, while the immunocytokine exhibits long residence times on the neoplastic lesions [15, 22, 25]. While the AUC of L19-IL2 in serum increased as expected as a result of the administered dose in the different cohorts, the serum levels of dacarbazine and of its metabolite AICA did not change substantially.

Based on the supportive clinical results of the L19-IL2/dacarbazine combination therapy, a controlled Phase IIb study with 90 metastatic melanoma patients was started recently to prospectively analyze the antitumor activity of L19-IL2 plus dacarbazine versus dacarbazine alone in metastatic melanoma patients.
ACKNOWLEDGMENTS

We thank Prof. H. Kosmehl and Dr. A. Berndt for the immunohistochemistry of melanoma sections and Dr. E. Seregni and Dr. E. Bombardieri for the immunoscintigraphy of melanoma patients.
GRANT SUPPORT

The research activity of D.N. is funded by the ETH Zurich, the Swiss National Science Foundation, the European Union (ADAMANT project), the Swiss Cancer League, the SwissBridge Foundation and the Stammbach Foundation. The research activity of B.W. is funded by the Deutsche Forschungsgemeinschaft (DFG), grant SFB685.
REFERENCES

Table 1

<table>
<thead>
<tr>
<th>Table 1 - Patients' demography and characteristic</th>
<th>Nr. of Patients<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of patients receiving L19-IL2 + dacarbazine<sup>2</sup></td>
<td>32</td>
</tr>
<tr>
<td>Patients receiving L19-IL2 10 Mio IU + dacarbazine 1 g/m<sup>2</sup></td>
<td>3</td>
</tr>
<tr>
<td>Patients receiving L19-IL2 15 Mio IU + dacarbazine 1 g/m<sup>2</sup></td>
<td>3</td>
</tr>
<tr>
<td>Patients receiving L19-IL2 22.5 Mio IU + dacarbazine 1 g/m<sup>2</sup></td>
<td>26</td>
</tr>
<tr>
<td>Male</td>
<td>23</td>
</tr>
<tr>
<td>Female</td>
<td>9</td>
</tr>
<tr>
<td>Patients with baseline LDH</td>
<td></td>
</tr>
<tr>
<td><100 IU/l</td>
<td>1</td>
</tr>
<tr>
<td>>100 IU/l,<250 IU/l</td>
<td>19</td>
</tr>
<tr>
<td>>250 IU/l</td>
<td>10</td>
</tr>
<tr>
<td>n.a.</td>
<td>2</td>
</tr>
<tr>
<td>ECOG Performance Status<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Stage of metastatic disease at baseline</td>
<td></td>
</tr>
<tr>
<td>10 and 15 Mio IU (n=6)</td>
<td>22.5 Mio IU (n=26)</td>
</tr>
<tr>
<td>Stage IV M1a</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Stage IV M1b</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Stage IV M1c</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Sites of metastatic lesions at baseline<sup>4</sup></td>
<td></td>
</tr>
<tr>
<td>10 and 15 Mio IU (n=6)</td>
<td>22.5 Mio IU (n=26)</td>
</tr>
<tr>
<td>Lymphnodes</td>
<td>5</td>
</tr>
<tr>
<td>Lung</td>
<td>20</td>
</tr>
<tr>
<td>Soft Tissue</td>
<td>4</td>
</tr>
<tr>
<td>Adrenal Gland</td>
<td>18</td>
</tr>
<tr>
<td>Spleen</td>
<td>6</td>
</tr>
<tr>
<td>Bone</td>
<td>1</td>
</tr>
<tr>
<td>Liver</td>
<td>5</td>
</tr>
<tr>
<td>Intestine</td>
<td>3</td>
</tr>
<tr>
<td>Kidney</td>
<td>1</td>
</tr>
<tr>
<td>Prior systemic anti-neoplastic therapies received</td>
<td></td>
</tr>
<tr>
<td>10 and 15 Mio IU (n=6)</td>
<td>22.5 Mio IU (n=26)</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>6</td>
</tr>
<tr>
<td>of which dacarbazine</td>
<td>6</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>4</td>
</tr>
</tbody>
</table>

¹ Median age, 55 years; range, 30 to 83 years.

² Median number of induction cycles received, 5; range, 1 to 6 cycles.

³ ECOG = Eastern Cooperative Oncology Group

⁴ Median number of months from diagnosis of metastatic disease to start of treatment, 2.9; range, 0.2 to 61.5 months.
Table 2

<table>
<thead>
<tr>
<th>Drug-related adverse events</th>
<th>Incidence of related adverse events</th>
<th>Drug-related adverse events</th>
<th>Incidence of related adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1</td>
<td>Grade 2</td>
<td>Grade 3</td>
</tr>
<tr>
<td>General disorders and administration site conditions</td>
<td>27/32</td>
<td>16/32</td>
<td>4/32</td>
</tr>
<tr>
<td>Oedema peripheral</td>
<td>5/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Anemia</td>
<td>5/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Chest pain</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Drug intolerance</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Liver disease</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Metabolic and nutritional disorders</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Dry mouth</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Gastrointestinal disorders</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Metabolic and nutritional disorders</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Skin and subcutaneous tissue disorders</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Rash</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Arthritis</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Chronic nonspecific arthritis</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Musculoskeletal and connective tissue disorders</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Joint range of motion decreased</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
<tr>
<td>Reproductive and breast disorders (i.e., breast swelling)</td>
<td>1/32</td>
<td>1/32</td>
<td>1/32</td>
</tr>
</tbody>
</table>
| Legend to Table 2: The number of patients who experienced a certain side effect of a certain grade, over the total number of treated patients is reported in the table. Events which changed grade over time are listed as single events of the highest grade assumed.
Figure Legends

Figure 1 - Treatment schedule. Patients were screened up to 14 days before beginning of the study. Each cycle of treatment comprises L19-IL2 administration on days 1, 3 and 5 (indicated by black arrowheads) and dacarbazine administration on day 1 (indicated as grey arrowheads), followed by 16 days rest (total duration of one cycle is 21 days). Patients could receive up to 6 cycles of treatment. The tumor assessments (indicated by dotted lines) were performed according to RECIST: the lesions were measured at screening and at the end of cycle 2, 4 and 6 (between days 14 and 21). Patients with stable or responding disease after induction could receive additional L19-IL2 administration every 2 weeks, without dacarbazine, as maintenance therapy.

Figure 2 – Pharmacokinetic analysis. Mean concentrations (± standard deviation) of L19-IL2, dacarbazine, and its metabolite AICA during and after a 1-hour intravenous infusion by dose group are plotted. For L19-IL2, the dose is expressed as IL2 equivalent. Data were collected on day 1 of the first cycle of treatment.

Figure 3 – Waterfall plot and survival curves. (A) One-year survival plot. One-year survival of all the 32 treated patients (black line) and of the 26 RD treated patients (dashed line) is reported in the plot. Survival rate at 12 months was 61.5% and 56.3 % for the RD treated patients and for all the 32 patients, respectively. (B) Progression-free survival plot. One-year progression-free survival of all the 32 treated patients (black line) and of the 26 RD treated patients (dashed line) is reported in the plot. Best overall response according to the central assessment (D). Best responses
(defined as the largest shrinkage in the sum of diameters of target lesions at any moment in time, compared to baseline) of evaluable patients are reported in the plot. Patients 1-3 received 10 Mio IU IL2 equivalent of L19-IL2 plus 1000 mg/m² of dacarbazine; patients 4-6 received 15 Mio IU IL2 equivalent of L19-IL2 plus 1000 mg/m² of dacarbazine. Patients 7-32 received 22.5 Mio IU IL2 equivalent of L19-IL2 plus 1000 mg/m² of dacarbazine. Patients No. 2 and No. 5 are not represented since they experienced a rapid progression of the disease during the first two cycles of treatment, which was only assessed by clinical examination. Patient No. 32 is not reported since he was considered not evaluable according to RECIST. Patient No. 7 experienced a rapid disappearance of all lesions, as well as a resolution of pleural effusions, while a subcarenal lymph node, with 34 mm diameter at presentation, reduced to 10 mm (size of a normal lymph node) within 10 months. Asterisks mark patients for which the indicated percentage of target lesions shrinkage was accompanied by appearance of new lesions.
A dose-escalation and signal-generating study of the immunocytokine L19-IL2 in combination with dacarbazine for the therapy of patients with metastatic melanoma

Thomas K Eigentler, Benjamin Weide, Filippo de Braud, et al.

Clin Cancer Res Published OnlineFirst October 25, 2011.

Updated version

Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-11-1203

Supplementary Material

Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2011/10/25/1078-0432.CCR-11-1203.DC1

Author Manuscript

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.