MicroRNA-494 downregulates KIT and inhibits gastrointestinal stromal tumor cell proliferation

Won Kyu Kim,1, 2 Misun Park,1, 2 Young-Kook Kim,3 Kwon Tae You,3 Han-Kwang Yang,4 Jae Myun Lee,1, 5 and Hoguen Kim1, 2

1Brain Korea 21 Projects for Medical Science, Yonsei University College of Medicine, Seoul, Korea
2Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
3School of Biological Science and Center for National Creative Research, Seoul National University, Seoul, Korea
4Department of Surgery, Seoul National University, College of Medicine, Seoul, Korea
5Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea

Running Title: MiR-494 downregulates KIT

Correspondence:
Hoguen Kim, M.D., Ph.D.
Professor of Pathology
Yonsei University College of Medicine
Seoul 120-752, Korea
Tel: +82 2 2228 1761/ Fax: +82 2 363 5263/ e-mail: hkyonsei@yuhs.ac

Financial Support: This research was funded by grant number FPR08A2-100 sponsored by the 21C Frontier Functional Proteomics Project, Korean Ministry of Education, Science, and Technology and by the Converging Research Center Program through the Ministry of Education, Science and Technology (2010K001115).

Disclosure of Potential Conflicts of Interest: The authors have declared that no competing interests exist.

Word count: 5,066

Total numbers of Figures and Tables: Five figures, one table, eight supplementary figures and one supplementary table.

Statement of Translational Relevance

Gastrointestinal stromal tumors (GISTs) have changed from being poorly defined to well-recognized tumors. Mutations of KIT and PDGFRA are major factors causing the development of GISTs. Of those genes, activating mutations of KIT are particularly crucial to
the development and progression of GISTs. Imatinib (STI571), which blocks KIT activation, has been successfully applied to treat patients with GISTs. However, imatinib-resistant mutations are frequently found in patients with GISTs during treatment. Therefore, the development of alternative therapeutic tools is required. One of the alternatives is microRNA-based therapy. We previously found five microRNAs, the expression of which was inversely related to KIT expression in GISTs. Of these five microRNAs, we verified an inverse relationship between miR-494 and KIT expression in 31 GISTs. We also demonstrated that miR-494 downregulates KIT, and miR-494 overexpression inhibits GIST cell growth. Therefore, KIT inactivation through miR-494 might be another promising approach for GIST treatment.

Abstract

Purpose: Gain-of-function mutations and KIT overexpression are well-known tumorigenesis mechanisms in gastrointestinal stromal tumors (GISTs). This study aimed to discover microRNAs that target KIT and reveal the relationship between the discovered microRNAs and KIT expression in GISTs.

Experimental Design: Fresh-frozen GISTs from 31 patients were used to confirm the relationship between miR-494 and KIT expression using quantitative reverse transcription-polymerase chain reaction to assess miR-494 expression levels and western blotting to assess KIT protein expression levels. A luciferase assay was performed for the target evaluation. The functional effects of miR-494 on GIST882 cells (GIST cell line with activating KIT mutation) were validated by a cell proliferation assay and fluorescence-activated cell sorting analysis.

Results: An inverse relationship was found between the expression levels of miR-494 and KIT in GISTs ($r = -0.490, P = .005$). The direct targeting of KIT by miR-494 was demonstrated by the reduction in KIT expression after miR-494 overexpression and the increase in KIT expression after inhibiting endogenous miR-494 expression. We demonstrated that miR-494 regulates KIT by binding two different seed match sites. Induced miR-494 overexpression in GIST882 reduced the expression of downstream molecules in KIT signaling transduction pathways, including phospho-AKT and phospho-STAT3. Finally, miR-494 overexpression provoked apoptosis and inhibited GIST cell growth, which were accompanied by changes in G1 and S phase content.

Conclusions: Our findings indicate that miR-494 is a negative regulator of KIT in GISTs and overexpressing miR-494 in GISTs may be a promising approach to GIST treatment.

Keywords: miR-494; KIT; GIST; Proliferation; RNA Therapy

Introduction

The molecular genetics of gastrointestinal stromal tumors (GISTs) are among the best understood of human tumors (1). Two oncogenes of the receptor tyrosine kinase family, KIT and PDGFRA, have gain-of-function mutations in approximately 70% and 15% of GISTs,
respectively (2, 3). Mutations of these two genes cause sustained activation, resulting in constant stimulation of the downstream signaling pathways of KIT and PDGFRA (4, 5). Of these genes, KIT activation is especially crucial to the development and progression of GISTs (3). The downstream molecular pathways involved in GIST tumorigenesis after KIT mutation include PI3 kinase-AKT, Src family kinase, Ras-ERK, and JAK-STAT (6). Activation of these molecular pathways after KIT activation results in GIST tumorigenesis through cell proliferation activation and apoptotic signal inhibition (4, 6, 7).

The progression of GIST is successfully blocked by imatinib, which suppresses KIT by competitively binding its ATP binding pocket, inhibiting KIT activation, and blocking the activation of the downstream MAP kinase and PI3 kinase-AKT pathways (7, 8). However, the development of imatinib resistance during imatinib treatment reduces the inhibitory effects of imatinib. Therefore, more diverse approaches to inhibit activated KIT via posttranscriptional and posttranslational mechanisms are required for GISTs with KIT activation (9-11).

KIT overexpression has been reported as a characteristic feature of GISTs, and the presence of KIT mutations usually leads to strong KIT expression (12, 13). Although KIT mutations are present in approximately 70% of GISTs, KIT overexpression is observed in more than 90% of GISTs, suggesting that a complementary mechanism participates in KIT overexpression (2, 14). Dysregulation of microRNAs (miRNAs) is a possible mechanism, as miRNAs play important roles in regulating gene expression in cancers (15, 16).

In erythroleukemic cells, miR-221/miR-222 are presently reported to target KIT (17). In GISTs, no miRNAs targeting KIT have been identified. We previously compared KIT expression and miRNA expression profiles in GISTs and identified five possible candidate miRNAs for which their expression is inversely related to KIT expression (13). In this study, we proposed that miR-494 regulates KIT expression by demonstrating that 1) miR-494 expression is inversely correlated with KIT expression in GIST tissues, 2) exogenous miR-494 induces KIT downregulation, and 3) inhibition of endogenous miR-494 increases KIT expression. We also demonstrated that miR-494 represses the proliferation of a GIST cell line with a KIT-activating mutation (GIST882) (7). Taken together, our results suggest that miR-494 is involved in GIST tumorigenesis via regulating KIT expression.

Materials and methods

Cell lines and culture

The GIST882 cell line with an activating KIT mutation (exon 13, K642E) was a generous gift from Dr. Jonathan Fletcher, Harvard University, Cambridge, MA. SNU216, SNU638, SNU1, NCI-N87, DLD-1 and HeLa cells were purchased from the Korean Cell Line Bank (Cancer Research Institute, Seoul, Korea). Cell culture images were taken with an IX71 camera (Olympus, Tokyo, Japan).

Patient and tissue samples

The 31 GISTs included in this study were identified in the Department of Pathology at Yonsei University Medical Center between August 1997 and June 2006 for molecular marker studies. Authorization to use these tissues for research purposes was obtained from the Institutional Review Board of Yonsei Medical Center. Some of the fresh specimens were
obtained from the Liver Cancer Specimen Bank of the National Research Resource Bank Program of the Korea Science and Engineering Foundation of the Ministry of Science and Technology. Among the 31 GISTs, 17 samples had previously been used for miRNA profiling and proteomic analyses (12, 13, 18, 19). Conventional pathologic parameters including anatomic site, risk, and tumor size were examined prospectively without prior knowledge of the molecular data (Table 1). The GISTs were divided into four groups based on tumor risk according to the criteria of Fletcher et al (20).

RNA preparation and TaqMan miRNA assay
Total RNA was extracted from frozen tissues using TRIZOL (Life Technology, Rockville, MD). The expression levels of miRNA were quantified by the TaqMan miRNA assay (Applied Biosystems, Foster City, CA, USA) and analyzed with an Applied Biosystems 7300 Real-Time PCR system. The assay ID was 002365 for miR-494 and 001093 for RNU6B, which was used to normalize miR-494 levels in the samples. Data analysis was conducted using both quantity values for miR-494 from GIST tissues and C_T values ($2^{-\Delta\Delta CT}$ method) (21) to measure the induced expression of miR-494 in HeLa and GIST882 cells. All assays were performed in triplicate.

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)
The qRT-PCR primer sequences for KIT (PrimerBank ID; 4557695a2) and GAPDH (PrimerBank ID; 2282013a2) were obtained from the PrimerBank database (http://pga.mgh.harvard.edu/primerbank/). The reaction was performed in a final volume of 20 µl with Premix Ex Taq (TAKARA, Tokyo, Japan) according to the manufacturer’s instructions. All reactions were run on an ABI Prism 7300 Real-Time PCR system in triplicate. The analysis of the results was conducted with quantity values using 7300 system SDS software (Applied Biosystems), and GAPDH was used for normalization. KIT mRNA levels were presented as the relative levels compared to the KIT mRNA levels in negative control samples in all figures.

miRNA mimics and transfection
Appropriate miRIDIAN miRNA mimics (non-targeting miRNA, miR-221, miR-222, and miR-494 miRNAs, and an miR-494 inhibitor; Thermo Scientific, Waltham, MA, USA) were used in this study. All transfection experiments were performed using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). On the third day after transfection, all cells were harvested and managed for further western blot analysis.

Western blots
Whole lysates from samples were prepared using passive lysis buffer (Promega, Madison, WI, USA). Primary antibodies used were against GAPDH (Trevigen, Gaithersburg, MD, USA), KIT, STAT3, ERK, phospho-ERK (Santa Cruz Biotechnology, Santa Cruz, CA, USA), phospho-KIT (Invitrogen), AKT, phospho-AKT, and phospho-STAT3 (Cell Signaling, Danvers, MA, USA). The western blot images were analyzed with a LAS-4000 Mini camera (Fujifilm, Tokyo, Japan).

Luciferase reporter assay
We designed a reporter assay by generating a vector (named N) with the coding
sequences for Renilla luciferase and the entire 3′-untranslated region (UTR) sequences of KIT that were obtained from cDNAs of GIST882 cells. The 3′-UTR sequences (NCBI reference sequence; NM_000222) obtained from GIST882 by PCR amplification were cloned downstream of the SV40 enhancer and the early promoter-driven Renilla luciferase cassette in a pRL3 vector (Promega). The N vector was then used to generate two mutant constructs by mutating complementary seed sequences in the miR-494, miR-221, or miR-222 binding region. Using site-directed mutagenesis of the KIT 3′-UTR sequence in the N vector, both the M vector for miR-494, which had changes from nucleotides 1899 to 1902 (GTTT→CCGG), and the O vector for miR-221/miR-222, which had changes from nucleotides 1961 to 1964 (GTAG→CAGA), were generated. We also constructed three additional vectors from the M vector for the identification of additional miR-494 binding sites.

Additional mutagenesis (GTTT→CCGG) of the potential miR-494 binding sites was performed at positions 1222–1228 (TGGTTTCT), 1758–1765 (GTGTTTCT), and 1918–1923 (ATGTTT). The vectors were named Ma, Mb, and Mc, respectively. The pGL3 luciferase reporter vector was used as a control vector for the dual luciferase assay (Promega). The oligonucleotide sequences used for vector construction are listed in Supplementary Table 1.

Every dual luciferase assay was performed by co-transfecting a control vector with the N, M, O, Ma, Mb, or Mc vector. All miRNA mimics were transfected at a concentration of 5 nM. Two days after transfection, the luciferase activity was measured according to the manufacturer’s instructions.

Cell proliferation assay

The GIST882 cells and DLD-1 cells were transfected with 50 nM non-targeting miRNA or miR-494. The morphology of the two cells was examined daily and the cells were manually counted. The DLD-1 cells were washed with PBS and SCF containing media (10 ng / ml) with 2 % FBS added to the cells after 48 hours of transfection. The number of the cells were counted two days after SCF stimulation. Every sample was duplicated, and the mean result was used for further analyses. A cell proliferation assay was independently conducted in triplicate.

Cell cycle analysis

GIST882 cells were transfected with 50 nM non-targeting miRNA or miR-494 in 60-mm dishes. On the fourth day after transfection, cells of each sample were stained in a solution of PBS, propidium iodine (Abcam, Cambridge, MA, USA), and RNase A. All samples were analyzed by a FACS Calibur (BD Biosciences, San Jose, CA, USA). We also analyzed apoptosis after miR-494 transfection in GIST882. For annexin V staining, GIST882 cells were harvested on the sixth day after transfection of 50nM non-targeting miRNA or miR-494, and then a FITC Annexin V Apoptosis Detection Kit I (BD biosciences) was used according to the manufacturer’s instructions. All samples were analyzed by a FACS Calibur. Each experiment was conducted in triplicate.

Results

Identifying miR-494 as a negative regulator of KIT
Our previous microarray data were used to evaluate the effect of five candidate miRNAs on KIT expression. Five candidate miRNAs were chosen because their expression levels had a statistically meaningful relationship with KIT expression in GISTs (13). To confirm the microarray data, 25 nM of each of the five candidate miRNAs (miR-9, miR-142-5p, miR-370, miR-494, and miR-510) were transfected into KIT-overexpressing GIST882 cells. Western blot analysis of the transfected samples revealed that only miR-494 overexpression consistently reduced KIT protein expression (Supplementary Fig. S1). We validated the inverse correlation between miR-494 and KIT expression in GISTs by performing qRT-PCR to measure miR-494 expression and western blotting to assess KIT protein expression. For these analyses, we used 31 fresh-frozen GIST samples consisting of 25 GISTs with a KIT mutation and 6 GISTs without a KIT mutation (Table 1). The expression of miR-494 was analyzed using the mean values from three independent qRT-PCR experiments for each sample. The expression of KIT and miR-494 for each tissue was presented as a fold change (log scale) relative to the mean value of KIT and miR-494 expression, respectively, to compare the expression levels among the tumor samples (Fig. 1A and Supplementary Fig. S2). We found an inverse relationship between expression of KIT and miR-494 (Spearman’s correlation coefficient, $r = -0.490$, P = .005).

After we validated the relationship between KIT and miR-494 expression in GISTs, we compared the efficiency of KIT downregulation of miR-494 with two previously reported KIT targeting microRNAs, miR-221/miR-222 (17). The ability of miR-494 to induce KIT downregulation was confirmed by transfecting GIST882 cells with 25 nM non-targeting miRNA, miR-494, miR-221, or an miR-494 inhibitor. The non-targeting miRNA was used as a negative control, whereas miR-221 served as a positive control for comparisons with miR-494. The induction of miR-494 after transfection was determined by qRT-PCR. When we transfected GIST882 cells with 25 nM miR-494, miR-494 expression was increased approximately 25-fold compared to that in non-transfected cells (Supplementary Fig. S3A). The results of western blotting demonstrated significant downregulation of KIT expression when the cells were transfected with miR-494 or miR-221, with miR-494 having greater efficacy than miR-221. qRT-PCR analysis revealed the same expression pattern as the western blot analysis, except for slightly increased KIT mRNA levels in the cells transfected with an miR-494 inhibitor (Fig. 1B). There were no remarkable differences in the efficacy of miR-221 and miR-222 in downregulating KIT (data not shown). Then, we measured miR-494 expression in four gastric cancer cell lines, GIST882 cells and HeLa cells to determine why miR-494 inhibition did not affect KIT expression in GIST882 cells. As expected, GIST882 cells exhibited very low miR-494 expression (less than 10% of that in the other cell lines; Supplementary Fig. S4). These results indicate that KIT expression is regulated by miR-494.

Identifying two seed match sites in the 3' UTR of KIT

We confirmed that KIT mRNA is a direct target of miR-494 by identifying miR-494 binding sites in the 3' UTR of KIT. Searching the Target Scan 3.0 database (http://www.targetscan.org/) to find algorithm-based binding sites of miR-494 in the 3' UTR of KIT mRNA, one binding site was predicted at nucleotide positions 1897–1903 (site 3, Fig. 2A). We first generated the N vector, which contained the coding sequences for Renilla luciferase and the entire wild-type 3' UTR sequences of the KIT mRNA. Then, we performed a reporter assay in which 5 nM non-targeting miRNA, miR-494, miR-221, or miR-222 was transfected with the N, O, or M into HeLa and SNU216 cells. Similar results were obtained in
both cell lines and the figure shows representative data from HeLa cells. To confirm the induced expression of exogenous miR-494, we extracted RNA from separately collected small amounts of cells used for the DLR assay. Compared to that of the negative control, an approximate 10-fold increase in miR-494 expression was observed in HeLa cells transfected with 5 nM miR-494 (Supplementary Fig. S3B). The reporter assay revealed that cells transfected with the N vector and miR-494 exhibited approximately half of the luciferase activity compared to cells transfected with the N vector and non-targeting miRNA and more severe decreases in luciferase activity than cells transfected with miR-221 and miR-222. The results also showed that the luciferase activity in cells transfected with the O vector and miR-221 or miR-222 was fully recovered compared to that in the negative control (cells transfected with the N vector and non-targeting miRNA), indicating that miR-221 and miR-222 directly target KIT mRNA. However, samples transfected with the M vector and miR-494 only had slightly recovered luciferase activity compared to that of the negative control (Fig. 2B). Based on this result, we hypothesized that 1) miR-494 may not directly target the 3'-UTR of KIT or 2) additional miR-494 binding sites may exist.

We manually searched for additional potential miR-494 binding sites with Vector NTI software (Invitrogen) (Fig. 2A). The 3'-UTR of KIT had three additional putative miR-494 binding sites that harbor six to seven seed match sequences with miR-494. The putative miR-494 binding sites were TGT TTC (site 1, nucleotide positions 1222–1227), GTGTTTC (site 2, 1758–1764), and ATGTTT (site 4, 1918–1923, Fig. 3A). These findings led us to create three additional vectors, Ma, Mb, and Mc, which were derived from the M vector by additional mutagenesis (GTTTC >CCGG) of the potential miR-494 binding sites. The reporter assay was conducted by transfecting the M, Ma, Mb, or Mc vector with miR-494 into HeLa and SNU216 cells. Only the cells transfected with Mb and miR-494 had fully recovered luciferase activity compared to that in the negative control (Fig. 2C). Because the G (1753) of the GTGTTTC sequence (1753–1760) can hydrogen bond with U via a wobble match, this site worked nearly as well as the same original binding site suggested by Target Scan 3.0. We also found that only the Mb vector fully restored luciferase activity in GIST882 cells when it was co-transfected with miR-494 (Supplementary Fig. S5). Based on these results we concluded that two different sites are important for miR-494 to bind the 3'-UTR of KIT.

Restoring KIT expression after miR-494 inhibition in the cell lines with high miR-494 expression

We determined the ability of endogenous miR-494 to bind to the 3'-UTR of KIT by designing a reporter assay using the N vector and an miR-494 inhibitor. Prior to this inhibition assay, we selected three cell lines (HeLa, SNU216, and GIST882) based on their endogenous miR-494 expression levels. HeLa and SNU216 cells had relatively high miR-494 expression, but miR-494 expression was barely detectable in GIST882 cells. These three cell lines were each transfected with the N vector and non-targeting miRNA (for negative control) or with the N vector and an miR-494 inhibitor. The cells were harvested after 2 days, and the DLR assay was performed. SNU216 and HeLa cells transfected with an miR-494 inhibitor had approximately 2-fold higher luciferase activities than their respective negative controls. As expected, no changes in luciferase activity were observed in GIST882 cells because these cells express very low levels of miR-494 (Fig. 2D). These results indicate that KIT expression is directly regulated by endogenous miR-494 even in cell lines that do not express KIT, such as HeLa and SNU216 cells. We also performed a
reporter assay to determine whether the M or Mb vector is affected by miR-494 inhibition. As expected, whereas the M vector was affected by both miR-494 overexpression and miR-494 inhibition, the Mb vector was not affected by either condition. These results confirmed that two different binding sites are important for binding between miR-494 and the KIT 3’-UTR. Both M and Mb vectors were affected by miR-221 overexpression, thus indicating that the constructs worked properly (Supplementary Fig. S6).

Signaling perturbed after miR-494 treatment

The KIT downstream molecular pathway is known to be related to cell proliferation, differentiation, and apoptosis. The regulation of KIT expression affects critical pathways including AKT, ERK, and JACK-STAT pathways, as suggested by many studies (6). The effects of miR-494 on those pathways were demonstrated by analyzing the status of p-AKT, p-ERK, p-KIT, and p-STAT3 after miR-494 transfection. GIST882 cells were transfected with 50 nM non-targeting miRNA, miR-494, miR-221, or an miR-494 inhibitor. Transfection with miR-494 significantly reduced KIT expression in these cells. Transfection with miR-221 also reduced KIT expression but to a lesser extent than miR-494 transfection. As expected, miR-494 inhibition did not influence KIT expression due to the very low endogenous miR-494 expression level in the GIST882 cell line. Expression of phospho-KIT (pY703) was examined with a phospho-specific antibody and found to significantly decrease in cells transfected with miR-494. The active forms of the three downstream molecules in KIT signaling pathways, AKT, ERK, and STAT3, were then analyzed. The expression of phospho-AKT, as measured by a phospho-AKT-specific antibody, was decreased by miR-221 and miR-494 overexpression, with the downregulation of phospho-AKT being much larger after miR-494 overexpression than after miR-221 overexpression. The pattern of changes in phospho-STAT3 expression was similar to that of phospho-AKT expression after miR-221 and miR-494 overexpression and the decreases were larger after miR-494 overexpression. No significant change in phospho-ERK expression was observed (Fig. 3).

Induced miR-494 overexpression inhibits GIST cell proliferation

The effect of miR-494 on the proliferation of GIST882 cells was determined by a cell proliferation assay. During the assay, the normalcy of cell morphology was regularly confirmed. No remarkable changes occurred after 3 days. However, the cells transfected with miR-494 had markedly reduced numbers of cells and cell clusters 6 days after the first transfection, and these changes became more severe on the 12th day of the assay. Whereas GIST882 cells normally exhibit a spindle shape with pin-point end structure, GIST882 cells transfected with miR-494 had altered cell morphology on the 12th day of the assay (Fig. 4A), and their cell numbers were reduced to approximately 37% of the number of control group cells (Fig. 4B). In addition, we found increased numbers of dead cells floating in the culture media after miR-494 transfection. Sustained KIT downregulation was confirmed by western blotting of the same samples used in a proliferation assay (Fig. 4C).

We used another cell model to verify the biological effects of miR-494 that is not cell line specific and common to the other cells with activated KIT. Wild type KIT is activated by stem cell factor (SCF), while mutant KIT is constantly activated without SCF (6, 22). We selected DLD-1, which overexpresses wild type KIT, to validate the effect of miR-494 treatment. By using this SCF–KIT signaling model, we tried to confirm the biological effects of miR-494 on the cells with activated KIT (23). We demonstrated that DLD-1 cell line overexpresses KIT by RT-PCR and western blotting (Supplementary Fig. S7A). In DLD-1 cell line, the level of p-
AKT and the level of p-ERK were not detectable before SCF stimulation. SCF stimulation in the DLD-1 cell line induces large amounts of both p-KIT, p-AKT and a small amount of p-ERK. Based on these results, we firstly demonstrated that miR-494 transfection reduces the KIT protein expression to approximately 40% of the expression of the negative control at both mRNA and protein levels (Supplementary Fig. S7B). When the DLD-1 cell line stimulated with SCF was treated with miR-494, the levels of p-KIT, p-AKT, and p-ERK were markedly decreased (Supplementary Fig. S7C). Also, the enhanced cellular proliferation of the DLD-1 cell line with SCF treatment was markedly inhibited after miR-494 treatment (Supplementary Fig. S7D).

Apoptosis and cell cycle analysis after miR-494 overexpression in GIST882 cells

Changes in the cell cycle distribution of GIST882 cells after miR-494 transfection was assessed by flow cytometry. Cells transfected with miR-494 had a 6% increase in the number of G0-G1 phase cells and a 5% decrease in the number of S phase cells compared to cells transfected with non-targeting miRNA (Fig 5A). These findings indicate that miR-494 inhibits GIST882 cell proliferation by modulating the cell cycle. We also examined apoptotic changes after miR-494 transfection by using a combination of annexin V and PI. The result indicated that approximately 25% of cell populations undergo early or late apoptotic changes after miR-494 transfection (Fig 5B). Reduced KIT expression was confirmed by western blotting during the experiment. These data indicate that miR-494 treatment induces both cell cycle arrest and apoptosis in GIST882 cells.

Discussion

MicroRNAs can posttranscriptionally regulate target genes and components of target gene regulatory pathways, thus affecting signal transduction both directly and indirectly. These findings suggest that miRNAs play major regulatory roles in signal transduction pathways and tumorigenesis (15, 16). Mutations of \(KIT \) and KIT overexpression are interrelated with KIT-induced tumorigenesis, and dysregulated miRNA expression might explain KIT overexpression and the resulting tumorigenesis (12, 13). MiR-221 and miR-222 have been reported to negatively regulate erythroleukemic cell growth by targeting KIT (17). However, no miRNAs involved in GIST tumorigenesis by targeting KIT have been reported. We herein proposed that miR-494 directly targets KIT by demonstrating that exogenous miR-494 induces KIT downregulation, and miR-494 inhibition induces KIT overexpression. Downregulation of KIT occurs more potently in vitro with miR-494 than with miR-221 and miR-222, the previously reported KIT-targeting miRNAs. Moreover, the expression level of miR-221 and miR-222 was not related to KIT expression in GISTs (13).

Until now, the role of miR-494 in GISTs and other diseases was poorly understood. No genes had been reported to be targeted by miR-494, excluding a report that miR-494 could downregulate PTEN expression in a chemically transformed cell line (24). However, we could not demonstrate significant changes in PTEN expression after miR-494 overexpression in GIST882 cells (Supplementary Fig. S8). Other studies reported the decreased expression of miR-494 in lymphoma and squamous cell carcinoma of the head and neck in miRNA microarray profiling studies (25, 26); however, the direct relationship between this decreased expression and tumor-related gene expression has not been reported. In addition to the inverse expression between KIT and miR-494 expression in
GISTs, we demonstrated that miR-494 directly downregulates KIT by binding two different seed match sites. We also demonstrated miR-494 inhibition induces KIT overexpression. Therefore, we conclude that miR-494 is a major miRNA that regulates KIT in GISTs.

The protein KIT is a highly oncogeneic tyrosine kinase that belongs to the RTK family and is involved in the major signal transduction pathways of PI3 kinase-AKT, Src family kinase, and Ras-ERK and in the minor signal transduction pathway of JAK-STAT. Wild type KIT is activated by stem cell factor (SCF), while mutant KIT is constantly activated without SCF (6, 22, 23). Mutations of the transmembrane domain constantly activate KIT receptor dimerization, leading to the activation of downstream signaling (27). Gain-of-function mutations are frequently found in exons 9, 11, 13, and 17 of the KIT gene and contribute to GIST tumorigenesis (3, 28). This study demonstrated that the downregulation of mutant KIT induced by miR-494 affects the expression of p-AKT and p-STAT3. These findings are consistent with previous reports indicating that p-AKT and p-STAT3 expression were decreased after GIST882 cells with activated KIT were treated with imatinib or KIT shRNA. Moreover, we also demonstrated that the induced p-AKT and p-ERK by SCF stimulation in the wild type KIT overexpressing cells are specifically decreased after miR-494 transfection.

Imatinib inhibits KIT through its ATP binding pocket, affecting KIT phosphorylation and subsequently inactivating downstream molecules (29-32). Our study demonstrated that miR-494 transfection has similar effects on GIST882 cells as imatinib, such as perturbing signaling pathways and suppressing cell proliferation. These findings indicate that miR-494 overexpression could be another alternative treatment option for GISTs. Our identification of two different seed match sites for miR-494 in the 3'-UTR of KIT further supports the concept of KIT mRNA as the direct target of miR-494 and creates more practical therapeutic possibilities for GISTs with KIT activation.

Oncoproteins can be inhibited posttranslationally or posttranscriptionally (33). The inhibition of KIT by imatinib is an example of posttranslational inhibition through competitively binding the ATP binding pocket of KIT. However, KIT inhibition by imatinib is imperfect because resistance can occur through putative mutations that can develop in the specific amino acid sequences during treatment. The resultant imatinib resistance occurs through the inhibition of imatinib binding to the ATP binding pocket of KIT (11). More therapeutic options are needed for resistance caused by these mutations. The therapeutic use of miR-494 to inactivate KIT will continue to be challenging because traditional RNA-based therapies are instable in blood and small interfering RNAs have paradoxically large molecular sizes. However, many of these problems are being solved by new delivery systems such as aptamers, nanoparticles, and liposomes (34-36). Applying these new delivery systems will allow miR-494 to be used as a novel therapeutic tool to treat GISTs.

In conclusion, miR-494 is a potent regulator of KIT in GISTs, and introducing miR-494 into GISTs may be a novel mechanism of reversing tumor progression.

References

2001;438: 1-12.
24. Liu L, Jiang Y, Zhang H, Greenlee AR, Han Z. Overexpressed miR-494 down-regulates PTEN gene expression in cells transformed by anti-benzo(a)pyrene-trans-7,8-dihydriodiol-9,10-

Legends

Figure 1. KIT expression is inhibited by miR-494 overexpression. A. KIT protein expression is inversely correlated with miR-494 expression. Western blotting and qRT-PCR was used to quantify the expression of KIT and miR-494, respectively. An inverse relationship between KIT protein expression and miR-494 expression was evident (r = -0.490, P = .005). B. Changes in KIT protein expression after miR-494 transfection. GIST882 cells were transfected with 25 nM non-targeting miRNA, miR-221, miR-494, or miR-494 inhibitor. KIT protein expression was reduced to approximately 57% of negative control (non-targeting miRNA transfection) levels after miR-494 transfection. qRT-PCR analysis indicated that KIT mRNA levels decreased in cells transfected with miR-494 and miR-221. N.C. denotes the negative control transfected with non-targeting miRNA. % denotes the relative intensity of protein expression.

Figure 2. Identification of two binding sites for miR-494 in the KIT 3’-UTR. A. Schematic diagram of vector constructs used in the reporter assay. The N vector contained the coding sequences for Renilla luciferase and the entire 3’-UTR sequence of KIT. The M construct included four mutated nucleotides (GTCT → CCGG) from the TargetScan3.0 expected binding seed sequences for miR-494. The Ma, Mb, and Mc constructs were generated from the M construct by substituting four nucleotides (every GTCT → CCGG) in putative miR-494 binding sites. The O vector was generated from N vector by substituting site 5 (GTAG → CAGA) to confirm that all constructs worked properly by demonstrating the proper targeting
of miR-221/miR-222 to the KIT 3'-UTR. B. Reporter assay for the identification of seed match sites. HeLa cells were transfected with either the M construct and miR-494 or the O construct and miR-221. Luciferase activity was rescued when the O vector was co-transfected with miR-221 or miR-222. Transfection of miR-494 and the M mutant vector resulted in only slight restoration, suggesting the site 3 is not the only effective seed match site. C. Reporter assay for the identification of additional binding sites. The Mb construct, which included additional mutated nucleotides in site 2 (positions 1760 to 1763) and was transfected together with miR-494, fully rescued the luciferase activity compared to that in the sample transfected with the M construct. These results indicate that site 2 is another effective seed match site for miR-494. D. Restoring KIT expression after miR-494 inhibition in cells with high miR-494 expression. The N vector and miR-494 inhibitor were co-transfected into HeLa, SNU216, and GIST882 cells. HeLa and SNU216 cells, which exhibit high miR-494 expression, exhibited restored KIT expression after miR-494 inhibition. N.C. denotes the negative control transfected with non-targeting miRNA.

Figure 3. Decreased expression of p-AKT and p-STAT3 in GIST882 cells transfected with miR-494. Transfection of miR-494 into GIST882 cells induced significant changes in the AKT and STAT signaling pathways. The expression levels of KIT and phospho-KIT were markedly reduced after transfecting GIST882 cells with miR-494. The expression of both phospho-AKT and phospho-STAT3, downstream molecules of KIT signaling pathways, was decreased. Little difference was found between control samples and those treated with the miR-494 inhibitor. % denotes the relative intensity of protein expression. N.C. denotes the negative control transfected with non-targeting miRNA.

Figure 4. GIST cell proliferation is inhibited by miR-494. A. The morphology of GIST882 cells is shown 12 days after transfection. GIST882 cells transfected with miR-494 had sparse cell clusters and irregular cell morphology on the 12th day. B. The number of GIST882 cells treated with miR-494. GIST882 cells exhibited markedly reduced numbers of cells and cell clusters 6 days after the first transfection, and these changes became more severe on the 12th day of the assay. C. Western blots of the samples in the proliferation assay revealed that the GIST882 cells transfected with miR-494 had reduced KIT expression. % denotes the relative intensity of protein expression. N.C. denotes the negative control transfected with non-targeting miRNA.

Figure 5. Analysis of apoptosis and cell cycle distribution after miR-494 transfection. A. Cell cycle analysis after miR-494 transfection. GIST882 cells transfected with non-targeting miRNA (left) or miR-494 (right) were harvested on day 4 and stained with propidium iodine. miR-494 transfection resulted in a 5.6% increase in the number of G0-G1 phase cells and a 5.7% decrease in the number of S phase cells relative to the cell numbers for cells treated with non-targeting miRNA. B. Apoptosis analysis after miR-494 transfection. Six days after transfection with or without miR-494, GIST882 cells were stained with propidium iodine and annexin V. Approximately 25% of GIST882 cells treated with miR-494 undergo apoptosis. % denotes the relative intensity of protein expression. N.C. denotes the negative control transfected with non-targeting miRNA.
Fig. 1
Fig. 2

A

Vector
N
O
M
Ma
Mb
Mc

KIT 3' UTR
Site 1
5'... AUUAUUGUAUCUCUCUUUGUGUGU...3' 6 mer
Site 2
5'... CUGAAAACUUGCUUGCUUGACG...3' 6 mer (+ G)
Site 3
5'... UUUCUCUAGCCUGCUGUU...3' 7 mer (TargetScan)
Site 4
5'... CUUUCUCAGUGCUUAGUUUGAAA...3' 6 mer
mIR-494 3'
Site 1
5'... CCUCACAGGGCCCAACGUAAAGU...3' 7 mer (TargetScan)
Site 2
5'... UUUCUCUAGCCUGCUGUU...3' 7 mer (TargetScan)
mIR-211 3'

B

C

Luciferase activity

D

Relative mIR-494 level
<table>
<thead>
<tr>
<th>Protein</th>
<th>KIT</th>
<th>P-KIT</th>
<th>STAT3</th>
<th>P-STAT3</th>
<th>AKT</th>
<th>P-AKT</th>
<th>ERK</th>
<th>P-ERK</th>
<th>GAPDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td>100</td>
<td>62</td>
<td>30</td>
<td>110</td>
<td>100</td>
<td>60</td>
<td>114</td>
<td>109</td>
<td>114</td>
</tr>
<tr>
<td>MEF-2c</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>114</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>MEF-2r</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>114</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig. 3
Fig. 4
<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age/sex</th>
<th>Mutation status</th>
<th>Size (Cm)</th>
<th>Site</th>
<th>Mitotic count</th>
<th>Risk</th>
<th>Cell type</th>
<th>Immunohistochemistry</th>
<th>KIT</th>
<th>CD34</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76/F</td>
<td>V560 del wild</td>
<td>8</td>
<td>stomach</td>
<td>4</td>
<td>intermediate</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>56/F</td>
<td>V559A del wild</td>
<td>5.5</td>
<td>stomach</td>
<td>1</td>
<td>intermediate</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>64/F</td>
<td>D579 del wild</td>
<td>17</td>
<td>stomach</td>
<td>20</td>
<td>high</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>45/M</td>
<td>T574_R586 del</td>
<td>10</td>
<td>stomach</td>
<td>1</td>
<td>intermediate</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>68/F</td>
<td>V559D del wild</td>
<td>8</td>
<td>stomach</td>
<td>6</td>
<td>high</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>58/M</td>
<td>Y553_Q556 del</td>
<td>6</td>
<td>stomach</td>
<td>14</td>
<td>high</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>58/M</td>
<td>V550D del wild</td>
<td>16</td>
<td>stomach</td>
<td>2</td>
<td>high</td>
<td>mixed</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>74/F</td>
<td>D579 del wild</td>
<td>3</td>
<td>stomach</td>
<td>4</td>
<td>low</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>51/M</td>
<td>W557R del wild</td>
<td>3.5</td>
<td>stomach</td>
<td>1</td>
<td>low</td>
<td>spindle</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>67/F</td>
<td>K550-Q556 del</td>
<td>9</td>
<td>stomach</td>
<td>14</td>
<td>high</td>
<td>mixed</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>43/F</td>
<td>W557R del wild</td>
<td>9.8</td>
<td>stomach</td>
<td>5</td>
<td>intermediate</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>42/F</td>
<td>L556_D559 del</td>
<td>33</td>
<td>stomach</td>
<td>4</td>
<td>high</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>65/M</td>
<td>A504_Y505 ins</td>
<td>6.5</td>
<td>abdominal cavity</td>
<td>23</td>
<td>high</td>
<td>mixed</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>41/F</td>
<td>V559D del wild</td>
<td>3.5</td>
<td>stomach</td>
<td>5</td>
<td>low</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>49/F</td>
<td>V555_W557 del</td>
<td>13</td>
<td>small bowel</td>
<td>15</td>
<td>high</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>64/F</td>
<td>W557_K558 del</td>
<td>7.5</td>
<td>stomach</td>
<td>10</td>
<td>high</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>50/M</td>
<td>W557_K558 del</td>
<td>8</td>
<td>stomach</td>
<td>23</td>
<td>high</td>
<td>mixed</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>39/F</td>
<td>V559D del wild</td>
<td>6.3</td>
<td>stomach</td>
<td>8</td>
<td>high</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>69/F</td>
<td>V559D del wild</td>
<td>7</td>
<td>stomach</td>
<td>2</td>
<td>intermediate</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>74/M</td>
<td>Q556_V559 del</td>
<td>6</td>
<td>stomach</td>
<td>40</td>
<td>high</td>
<td>mixed</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>46/F</td>
<td>M552_N572 del</td>
<td>5</td>
<td>small bowel</td>
<td>74</td>
<td>high</td>
<td>mixed</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>61/F</td>
<td>F550_F511 ins</td>
<td>5</td>
<td>small bowel</td>
<td>0</td>
<td>low</td>
<td>mixed</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>79/F</td>
<td>W557_K558 del</td>
<td>6.5</td>
<td>small bowel</td>
<td>28</td>
<td>high</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>64/M</td>
<td>A504_Y505 ins</td>
<td>9.5</td>
<td>small bowel</td>
<td>0</td>
<td>high</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>47/M</td>
<td>A504_Y505 ins</td>
<td>9</td>
<td>small bowel</td>
<td>20</td>
<td>high</td>
<td>mixed</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>57/F</td>
<td>wild</td>
<td>15</td>
<td>stomach</td>
<td>1</td>
<td>high</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>78/F</td>
<td>wild</td>
<td>17</td>
<td>stomach</td>
<td>49</td>
<td>high</td>
<td>epithelioid</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>66/M</td>
<td>wild</td>
<td>3</td>
<td>stomach</td>
<td>0</td>
<td>low</td>
<td>mixed</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>44/F</td>
<td>wild</td>
<td>1.3</td>
<td>stomach</td>
<td>0</td>
<td>very low</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>38/F</td>
<td>wild</td>
<td>5.5</td>
<td>small bowel</td>
<td>0</td>
<td>high</td>
<td>spindle</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>26/M</td>
<td>wild</td>
<td>5.5</td>
<td>stomach</td>
<td>4</td>
<td>intermediate</td>
<td>spindle</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) +, Tumor cells express KIT; -, Tumor cells does not express KIT.
MicroRNA-494 down-regulates KIT and inhibits gastrointestinal stromal tumor cell proliferation

Won Kyu Kim, Misun Park, Young-Kook Kim, et al.

Clin Cancer Res Published OnlineFirst October 31, 2011.

Updated version
Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-11-0166

Supplementary Material
Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2011/10/31/1078-0432.CCR-11-0166.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.