NKX3.1 Haploinsufficiency Is Prognostic for Prostate Cancer Relapse following Surgery or Image-Guided Radiotherapy

Jennifer A. Locke1,2, Gaetano Zafarana1,2, Adrian S. Ishkanian1,2, Michael Milosevic1,2, John Thoms1,2, Cherry L. Have1, Chad A. Malloff4, Wan L. Lam4, Jeremy A. Squire3, Melania Pintilie1,2, Jenna Sykes2, Varune Rohan Rammarine1,2, Alice Meng1,2, Omer Ahmed1,2, Igor Jurisica1,2, Theo van der Kwast1,2, and Robert G. Bristow1,2

Abstract

Background: Despite the use of prostate specific antigen (PSA), Gleason-score, and T-category as prognostic factors, up to 40% of patients with intermediate-risk prostate cancer will fail radical prostatectomy or precision image-guided radiotherapy (IGRT). Additional genetic prognosticators are needed to triage these patients toward intensified combination therapy with novel targeted therapeutics. We tested the role of the NKX3.1 gene as a determinant of treatment outcome given its reported roles in tumor initiating cell (TIC) renewal, the DNA damage response, and cooperation with c-MYC during prostate cancer progression.

Methods: Using high-resolution array comparative genomic hybridization (aCGH), we profiled the copy number alterations in TIC genes using tumor DNA from frozen needle biopsies derived from 126 intermediate-risk patients who underwent IGRT. These data were correlated to biochemical relapse-free rate (bRFR) by the Kaplan–Meier method and Cox proportional hazards models.

Results: A screen of the aCGH-IGRT data for TIC genes showed frequent copy number alterations for NKX3.1, PSCA, and c-MYC. NKX3.1 haploinsufficiency was associated with increased genomic instability independent of PSA, T-category, and Gleason-score. After adjusting for clinical factors in a multivariate model, NKX3.1 haploinsufficiency was associated with bRFR when tested alone (HR = 3.05, 95% CI: 1.46–6.39, P = 0.0030) or when combined with c-MYC gain (HR = 3.88, 95% CI: 1.78–8.49, P = 0.00067). A similar association was observed for patients following radical prostatectomy with a public aCGH database. NKX3.1 status was associated with positive biopsies post-IGRT and increased clonogen radioresistance in vitro.

Conclusions: Our results support the use of genomic predictors, such as NKX3.1 status, in needle biopsies for personalized approaches to prostate cancer management. Clin Cancer Res; 18(1); 1–9. ©2011 AACR.

Introduction

Men with localized prostate cancer are placed in low-, intermediate-, and high-risk groups that predict for biochemical failure and disease-free survival with clinical prognostic factors. These include pathologic Gleason-score (GS), pretreatment serum prostate specific antigen (PSA; ng/mL), and tumor—node—metastasis staging (1–3). One third of all prostate cancer cases diagnosed present as intermediate-risk disease (i.e., T1-T2; PSA < 20 ng/mL and GS < 8). This category exhibits great variability in outcome as 5-year PSA-based biochemical failure rates range from 9% to 44% following radical prostatectomy or image-guided radiotherapy (IGRT; ref. 2). One third of all prostate cancer cases diagnosed present as intermediate-risk disease (i.e., T1-T2; PSA < 20 ng/mL and GS < 8). This category exhibits great variability in outcome as 5-year PSA-based biochemical failure rates range from 9% to 44% following radical prostatectomy or image-guided radiotherapy (IGRT; ref. 2). Additional biological or genetic subclassifiers of this group could be used to improve outcome with novel combined modality therapies using molecular-targeted agents (4, 5).

Our group is interested in the role of novel DNA-based genetic prognostic and predictive factors that could predict for local radioresistance or occult systemic metastases (4, 5). We have used high-resolution array comparative genomic hybridization (aCGH) to characterize genetic changes in intermediate-risk patients based on tumor DNA derived
Intermediate-risk prostate cancers show heterogeneity in treatment response. Novel biologic and genetic prognosticators could further subcategorize patients and help individualize therapy. We determined allelic loss or gain in 44 genes thought to be associated with tumor initiating cell (TIC) status using DNA derived from pretreatment biopsies. We found significant genetic alterations in c-MYC, PSCA, and NKX3.1. After adjusting for clinical factors in a multivariate model, NKX3.1 haploinsufficiency was significantly associated with brRFR in image-guided radiotherapy patients when tested alone, or when combined with c-MYC gain. A similar trend for NKX3.1 status as a novel prognostic factor was observed in patients following radical prostatectomy. Our results support the use of genomic predictors, such as NKX3.1 status in needle biopsies, for personalized approaches to prostate cancer management. Future work should focus on whether NKX3.1 haploinsufficiency is a surrogate for differential TIC fraction and validating our finding in prospective prostate cancer treatment cohorts.
prior to, and 2 month concurrent, with radiotherapy. None of the patients received adjuvant hormonal treatment. Patients were followed at 6 monthly intervals after completing treatment with clinical examination and PSA. Additional tests and the management of patients with recurrent disease were at the discretion of the treating physician. The median follow-up of surviving patients was 6.7 years following the end of treatment.

aCGH analysis
Frozen biopsies were embedded in optimum cutting temperature at −80°C and cut into 10 μm sections for manual microdissection and preparation of DNA samples as previously described (4). DNA labeling and hybridization was carried out with slight modifications to that described previously (4). In brief, 300 ng of sample and reference DNA were differentially labeled in a random priming reaction (4). In brief, 300 ng of sample and reference DNA were differentially labeled in a random priming reaction (4). The reaction was incubated in the dark at 37°C for 16 to 18 hours. DNA samples were then combined and mixed with 100 μg of Human Cot-1 DNA (Invitrogen) followed by removal of unincorporated nucleotides using micro con YM-30 columns (Millipore). The mixture was then applied onto arrays containing 26,819 bacterial artificial chromosome–derived amplified fragment pools spotted in duplicate on aldehyde coated glass slides (SMRT v.2; BC Cancer Research Centre Array Facility). Slides were scanned with a dual laser array scanner (Axon) and spot signal intensities determined by the SoftWoRx Tracker Spot Analysis software (Applied Precision). The log2 ratios of the Cyanine 3 to Cyanine 5 intensities for each spot were assessed. Data were filtered based on both SDs of replicate spots (data points > 0.075 SD were removed) and signal to noise ratio (data points with a signal to noise ratio < 3 were removed). Resulting data set was normalized using a stepwise normalization procedure (23). Areas of aberrant copy number were identified using a robust Hidden Markov Model (24) and classified as either loss, neutral, or gain for all clones processed. Pre/postprocessed log2 ratios of intensities for clone regions were visualized with SeeGH software (25, 26). The genomic positions of clones are mapped to the National Center for Biotechnology Information’s Genome Build 36.1, released in March 2006. Percentage Genome Alteration (PGA) is defined as the cumulative size of the genetic alterations found in each patient DNA sample divided by the total size of the human genome. PGA is a general measure of genetic instability and was used in the analyses of this study as a surrogate for DNA ploidy.

FISH hybridization
Three color interphase FISH was applied to formalin-fixed paraffin-embedded (FFPE) prostate cancer biopsies to validate the genomic imbalances associated with c-MYC allelic gain and NKX3.1 allelic loss in tumors by aCGH analysis, as previously described by our group (4). Loss of NKX3.1 was defined as one copy of NKX3.1 in the majority of tumor nuclei whereas gain of c-MYC was defined as more than 2 copies of c-MYC in the majority of tumor nuclei (see detailed methods in Supplementary Table 3).

Surviving fraction determination and Western blot analysis of various prostate cancer cell lines
Clonogenic assay data on surviving fraction after 3 Gy for LNCaP, PC-3, DU-145, and 22RV1 were previously published from our laboratory and others (27, 28). Data for all the cell lines were available for extraction at 3 Gy and used in the analysis. The surviving fraction of the BPH-1 cell line was generated anew using the same methodology (27). For each cell line, protein was quantified (BioRad protein assay) before Western blot analyses for NKX3.1 (Lifespan Biosciences; LS-B3435) and KU-70 (Santa Cruz Biotechnology; SC-5309) and visualized using an Odyssey 3.0 system. All cell lines were obtained from American Type Culture Collection and authenticated by short tandem repeat DNA profiling (March 2011).

Statistical methods
The primary outcome was time to biochemical failure as defined by Roach and colleagues to be a PSA rise of at least 2 ng/mL above postirradiation nadir value (29). Differences in PGA between genetically altered groups were compared using the Mann–Whitney–Wilcoxon test. Five-year biochemical relapse-free rates (bRFR) were calculated using the Kaplan–Meier method. The log-rank test was used to
evaluate the association of NKX3.1 status (loss or normal), PSCA (gain or normal), and c-MYC status (gain or normal) with bRFR. Multivariate NKX3.1 and c-MYC were also tested adjusting for known clinical factors [T-category (T1 versus T2), pretreatment PSA (continuous), and GS (6 versus 7)] with the Cox proportional hazards model. The proportional hazards assumptions of each model were checked by looking at scaled Schoenfeld residuals. The Fisher exact test was used to investigate statistical associations between NKX3.1, c-MYC, and PSCA. A 2-sided \(P = 0.05 \) was used to assess statistical significance.

Results

NKX3.1 allelic loss and c-MYC allelic gain are common events in intermediate-risk prostate cancer

As NKX3.1 may be a putative TIC marker in prostate cancer (14), we determined whether NKX3.1 and other TIC-related genes showed allelic gains or losses in our cohort (see Supplementary Table 2). Allelic changes were observed predominantly at loci containing the NKX3.1, c-MYC, and PSCA genes. c-MYC and PSCA are located on chromosome site 8q24 whereas NKX3.1 is located on chromosome site 8p21 (Fig. 1A). Upon evaluation of 126 biopsies by aCGH, 59 of 126 or 47% of the intermediate-risk patients displayed an allelic loss in chromosome site 8p21 (NKX3.1) whereas 29 of 126 or 23% and 23 of 126 or 18% of the intermediate-risk patients displayed an allelic gain in chromosome site 8q24 corresponding to c-MYC and PSCA, respectively. A c-MYC gain was rarely observed in absence of a NKX3.1 loss with 27 of 126 or 21% of the biopsies showing concomitant c-MYC gain and NKX3.1 loss and only 2 of 126 (2%) of the biopsies showing c-MYC gain alone. As c-MYC and NKX3.1 have been shown to cooperate in animal models, we audited in secondary FISH analyses 3 patients exhibiting NKX3.1 loss and c-MYC gain based on aCGH analysis and confirmed associated copy number changes within multiple nuclei (Fig. 1A, Supplementary Table S3).

NKX3.1 allelic loss and c-MYC allelic gain are correlated with increased genomic instability

We calculated the relative genetic instability within each tumor DNA specimen using PGA. Tumor specimens with an allelic loss of NKX3.1 were associated with significantly higher PGA (1.2 vs. 6.9, \(P < 0.0001 \)) than tumor specimens without NKX3.1 loss (Fig. 1B). Tumor specimens with NKX3.1 altered/c-MYC altered had significantly higher PGA (10.3 for both altered vs. 1.1 for both normal, \(P < 0.0001 \))
than specimens without such alterations; tumors with NKX3.1 altered/c-MYC normal also had significantly higher PGA than NKX3.1 normal/c-MYC normal (3.9 versus 1.1, \(P = 0.00066 \); Fig. 1C). When subgrouping patients by GS and NKX3.1/c-MYC status, we observed that specimens with alterations in both NKX3.1 and c-MYC were associated with higher PGA in both GS 6 and GS 7 cancers than those with normal NKX3.1 and c-MYC status (\(P < 0.01 \); Fig. 1D).

Significant relationships between genetic instability in specimens with both allelic changes were independent of pretreatment PSA (\(\leq 10 \) and >10 ng/mL) and T-category (T1 and T2; Supplementary Fig. S2). Alteration in PSCA was also associated with a significantly higher PGA than normal PSCA (data not shown).

Patients with NKX3.1 allelic loss are more likely to relapse following IGRT

We next examined the impact of allelic loss of NKX3.1 in our clinical cohort of 126 patients with intermediate-risk prostate cancer on brRFR following treatment with a DSB-inducing agent: IGRT (mean dose 76.4 Gy). The clinical characteristics of this cohort with 6.7 years median follow-up (range 0.8–10.3) are shown in Table 1. Forty-seven patients in this cohort experienced a biochemical relapse; 42 as defined by the Phoenix definition and an additional 5 who were preemptively treated with salvage hormones because of a rising PSA by their attending physician. Univariate analysis showed that patients whose tumors displayed NKX3.1 loss had increased failure at 5 years compared with patients with normal NKX3.1 status (brRFR 87% vs. 58%, \(P = 0.00015 \); Fig. 2A). The HR associated with NKX3.1 loss alone was 3.03 (95% CI: 1.66–5.52). Patients whose tumors displayed a c-MYC gain also had increased biochemical failure at 5 years compared with patients with normal c-MYC (brRFR 80% vs. 49%, \(P = 0.00093 \); Fig. 2B). The HR associated with c-MYC gain alone was 2.77 (95% CI: 1.48–5.18). Patients with combined allelic changes in c-MYC and NKX3.1 had a poor prognosis when compared with patients with normal c-MYC and NKX3.1 status (brRFR 89% vs. 51%, \(P = 0.00017 \); Fig. 2C). The HR associated with c-MYC gain and NKX3.1 loss was 3.98 (95% CI: 1.92–8.26) as compared with normal c-MYC and NKX3.1. Last, patients whose tumors displayed a PSCA gain also had increased biochemical failure at 5 years compared with patients with normal PSCA (brRFR 79% vs. 46%, \(P = 0.00058 \); Supplementary Fig. S1). The HR associated with PSCA gain was 3.26 (95% CI: 1.6–6.63).

On a multivariate analysis, NKX3.1 allelic loss alone was a significant independent predictor after correcting for PSA, GS, T-category, c-MYC gain, and PSCA gain (HR = 3.05, 95% CI: 1.46–6.39, \(P = 0.0030 \); Table 2). This effect was also observed when NKX3.1 loss and c-MYC gain were combined and tested against PSA, GS, and T-category with both normal (HR = 3.88, 95% CI: 1.78–8.49, \(P = 0.00067 \)). The significance for these effects was preserved when factoring in the model prehormone treatment, PGA, and radiation therapy dose in addition to the pretreatment PSA, T-category, and the GS (Zafarana and colleagues; In Press, 2011). In contrast, c-MYC and PSCA were significant on multivariate analysis when controlling for PSA, GS, and T-category independently but were no longer significant when NKX3.1 was added to the model (Table 2B).

NKX3.1 allelic loss and relapse following radical prostatectomy

We next interrogated the publically available Memorial Sloan Kettering Prostate Cancer aCGH database (http://www.cbiportal.org/public-portal/) consisting of 131 intermediate-risk patients who underwent radical prostatectomy. The clinical characteristics of this surgical cohort were compared with the clinical cohort of 126 patients with intermediate-risk prostate cancer who underwent IGRT with differential NKX3.1/c-MYC status (A), c-MYC status (B), or combined NKX3.1/c-MYC (C) status in biopsies are displayed.
are shown in Supplementary Table 1. In this cohort, 49 of 131 or 37% of the intermediate-risk patients displayed an allelic loss of chromosome 8q21 (NKX3.1) and 16 of 131 or 12% displayed an allelic gain of chromosome site 8q24 (c-MYC). Univariate analysis showed that patients whose tumors displayed NKX3.1 loss had a trend toward increased failure at 5 years as compared with patients with normal NKX3.1 status (bRFR 89% vs. 72%; \(P = 0.07 \); Fig. 3A). The HR associated with NKX3.1 loss alone was 2.07 (95% CI: 0.93–4.63). Patients whose tumors displayed c-MYC gain did not have a statistically significant difference in failure at 5 years as compared with patients with normal c-MYC status (bRFR 83% vs. 78%, \(P = 0.62 \); Fig. 3B). The HR associated with c-MYC gain alone was 1.36 (95% CI: 0.4–4.57). Furthermore, patients whose tumors displayed NKX3.1 loss and/or c-MYC gain had a trend toward increased failure at 5 years as compared with patients with normal loci status (bRFR 90% vs. 73%; \(P = 0.054 \); Fig. 3C). The HR associated with NKX3.1 loss and c-MYC gain was 2.17 (95% CI: 0.97–4.86). On multivariate analysis of the surgical cohort, allelic loss of the NKX3.1 loci and/or gain of the c-MYC loci seemed to be a prognosticator after modeling with GS, although not statistically significant (HR = 2.19, 95% CI: 0.98–4.91, \(P = 0.057 \); Supplementary Table 5B).

Discussion

Using high-resolution aCGH of tumor DNA obtained from 126 prostate cancer biopsies, we show for the first time that NKX3.1 haploinsufficiency in pretreatment biopsies is an independent prognostic factor in intermediate-risk prostate cancer treated by IGRT. Furthermore, combined NKX3.1 loss and c-MYC gain was prognostic for radiotherapy relapse with an approximately 4-fold decrease in bRFR. Although not significant, a similar trend was observed in a surgical cohort of 131 intermediate-risk patients obtained through the Memorial Sloan Kettering Prostate Cancer aCGH database. Given the latter observation, it is not clear that NKX3.1 status represents a predictive factor, rather than prognostic factor, for radiotherapy relapse. Indeed, the

Table 2. Multivariate results of the association of NKX3.1, c-MYC, PSCA, and c-MYC/NKX3.1 alterations on T-category, GS, and pretreatment PSA with the time to recurrence in the 126 intermediate-risk patients

<table>
<thead>
<tr>
<th>(A) Clinical model</th>
<th>HR (95% CI)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-category: T2 vs. T1</td>
<td>0.76 (0.41–1.41)</td>
<td>0.39</td>
</tr>
<tr>
<td>Pretreatment PSA (continuous)</td>
<td>1.11 (1.04–1.2)</td>
<td>0.0036</td>
</tr>
<tr>
<td>GS: 7 vs. 6</td>
<td>1.1 (0.54–2.22)</td>
<td>0.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(B) Effect of NKX3.1 alone, c-MYC alone, and PSCA alone when adjusting for the clinical factors and each other</th>
<th>HR (95% CI)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-category: T2 vs. T1</td>
<td>0.76 (0.40–1.43)</td>
<td>0.40</td>
</tr>
<tr>
<td>Pretreatment PSA (continuous)</td>
<td>1.12 (1.03–1.21)</td>
<td>0.0049</td>
</tr>
<tr>
<td>GS: 7 vs. 6</td>
<td>0.82 (0.41–1.67)</td>
<td>0.59</td>
</tr>
<tr>
<td>NKX3.1</td>
<td>3.05 (1.46–6.39)</td>
<td>0.0030</td>
</tr>
<tr>
<td>c-MYC</td>
<td>0.79 (0.23–2.66)</td>
<td>0.70</td>
</tr>
<tr>
<td>PSCA</td>
<td>2.06 (0.61–6.97)</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(C) Effect of NKX3.1 and c-MYC when adjusting for the clinical factors</th>
<th>HR (95% CI)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre–T-category: T2 vs. T1</td>
<td>0.72 (0.39–1.36)</td>
<td>0.32</td>
</tr>
<tr>
<td>Pretreatment PSA (continuous)</td>
<td>1.12 (1.03–1.21)</td>
<td>0.005</td>
</tr>
<tr>
<td>GS 7 vs. 6</td>
<td>0.8 (0.39–1.62)</td>
<td>0.54</td>
</tr>
<tr>
<td>Either c-MYC or NKX3.1 vs. both normal</td>
<td>3.46 (1.67–7.2)</td>
<td>0.00087</td>
</tr>
<tr>
<td>Both c-MYC and NKX3.1 vs. both normal</td>
<td>3.88 (1.78–8.49)</td>
<td>0.00067</td>
</tr>
</tbody>
</table>

NOTE: Results are displayed as HR, 95% CI, and \(P \) value.

 patients with loss of NKX3.1, 14 patients had a post-RT biopsy and 9 (64%) of these were associated with local recurrence. This suggests that a component of biochemical failure could be associated with tumor cell radioresistance. We therefore determined whether there was any correlation between endogenous NKX3.1 expression and radioresistance in vitro in a panel of 5 prostate cancer cell lines for which clonogenic radiation survival data were available (Fig. 4; see Methods for details). We observed an inverse correlation between the relative protein expression of NKX3.1 and clonogenic survival at 3Gy (\(r^2 = 0.9079, P = 0.0122 \)). When taken together, our limited clinical biopsy data and radiation clonogenic survival data, suggest that decreased expression of NKX3.1 may associate with the intrinsic radioresistance of prostate cancer cells.

NKK3.1 status and expression may associate with clinical local control and/or radioresistance in vitro

Given our clinical findings, we explored a potential relationship between NKX3.1 loss and radiotherapy response using a small subgroup of 37 patients that had post-IGRT biopsies at the time of PSA failure. Of the 59
observation of increased HRs in both treatment groups could be explained by NKX3.1 allelic loss heralding the presence of occult metastases at the time of any local treatment and biochemical failure due to systemic disease. However, our limited data using post-IGRT–positive biopsies and preclinical data on relative clonogenic survival support the concept that NKX3.1 allelic loss and decreased expression associates with prostate cancer cell radioresistance. Future studies should focus on validating our results and discerning whether NKX3.1 is a prognostic or predictive factor of biochemical failure following modern era IGRT.

In our prostate cancer biopsy cohort, combined NKX3.1 loss and c-MYC gain was significantly associated with an increased genetic instability as measured by PGA. c-MYC's central roles in prostate cancer initiation and progression are well established (12, 13). Recently, Iwata and colleagues showed using transgenic models that overexpression of c-MYC is crucial for prostatic intraepithelial neoplasia development from luminal epithelial cells and responsible for repressed NKX3.1 expression in these prostatic intraepithelial neoplasia lesions (18). The significant frequency of NKX3.1 loss and c-MYC gain observed in 21% of biopsies in our study supports the interaction between c-MYC and NKX3.1 for prostate cancer progression and agression. Most genomic-based predictors in prostate cancer to date have been based on tissues derived post hoc from radical prostatectomies (5, 30). Our study is clinically significant in that we used tumor DNA derived from a single biopsy from the putative index lesion. This is not dissimilar to the material and information acquired through diagnostic biopsies that undergo FFPE in many clinics today. Our data suggest that biopsy-derived DNA could be useful in stratifying clinically heterogeneous intermediate-risk cancers specifically planned for IGRT treatment into subcategories for improved patient management.

The efficacy of radiotherapy is dependent on the eradication of all clonogenic TICs (21, 22). Wang and colleagues recently showed using a genetic-lineage approach that NKX3.1 is a marker and regulator of a rare, normal prostate epithelial neoplasia lesions (18). The significant frequency of NKX3.1 loss and c-MYC gain observed in 21% of biopsies in our study supports the interaction between c-MYC and NKX3.1 for prostate cancer progression and agression. Most genomic-based predictors in prostate cancer to date have been based on tissues derived post hoc from radical prostatectomies (5, 30). Our study is clinically significant in that we used tumor DNA derived from a single biopsy from the putative index lesion. This is not dissimilar to the material and information acquired through diagnostic biopsies that undergo FFPE in many clinics today. Our data suggest that biopsy-derived DNA could be useful in stratifying clinically heterogeneous intermediate-risk cancers specifically planned for IGRT treatment into subcategories for improved patient management.
be proven experimentally. We also focused on NKX3.1 as a key TIC mediator in prostate cancer relapse/progression possibly through altered DNA repair (16, 17). Recently, Bowen and colleagues used a NKX3.1–siRNA approach in LNCaP cells to show that NKX3.1 protein triggers recruitment of phosphorylated-ATM and γH2AX to sites of DNA damage in response to radiation (16). We speculate that NKX3.1 expression may regulate TICs through differential DDR and play a role in the response of prostate cancer to radiotherapy (21). Until explicit DDR and stem cell studies with models isogenic for NKX3.1 are used, this hypothesis remains unproven.

There are several caveats to our study. First, the cause of relapse postradiotherapy (local versus systemic) is not known in our cohort as we did not have access to postradiotherapy biopsies in all treated patients. Given the fact that failures within this genetic group of patients were early (e.g., starting at 6 months post IGRT); our failure data may, in part, be due to sub occult metastases at the time of treatment. Second, in the assessment of allelic loss of NKX3.1 allele, we do not know whether some patients are homozygous null for NKX3.1 only a minority of tumor cells with biallelic loss of NKX3.1 were observed using FISH slides in 3 patients (see Fig. 1A). The observed heterogeneity could be due to the inherent limitation of the FISH technique, in that we could only assess part of the nuclear volume present within our 4 µm sections. We have addressed this issue by counting at least 100 nuclei in each gland to avoid counting artifacts, but we can not be sure that in some cases, there is loss of the second allele of NKX3.1 and whether this has further impact on clinical outcome. However, in genetically engineered mice, NKX3.1 haploinsufficiency is sufficient to drive prostate cancer progression (32, 33). A comprehensive FISH study on a large series of prostate biopsies needs to confirm relative significance of FISH-based allelic changes compared with aCGH-based allelic changes. Finally, the outcome analysis was based on only one biopsy taken using TRUS guidance to the index lesion prior to radiotherapy and has not addressed the known intraprostatic heterogeneity and biology of multi-focal disease. We cannot rule out that other important genetic changes are present within the gland pre- and postradiotherapy; however, clinical data suggests that the dominant lesion is location for recurrence postradiotherapy in approximately 80% of local failures (34).

In conclusion, our study using genetic data on frozen biopsies in a modern era cohort is the first report to show that an allelic loss in a TIC-associated gene is prognostic for relapse following IGRT in prostate cancer. We speculate that the interrogation of TIC-related gene loci within biopsies could alter treatment if future preclinical and clinical studies support this endpoint as a surrogate for relative TIC aggression and resistance. NKX3.1 status and other genetic features may be valuable information in triaging intermediate-risk patients to subgroups of patients who may benefit from the use of molecular-targeted agents in combination with IGRT and surgery.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors thank C. Sanders and N. Schulze for helpful comments on negotiating the MSKCC eBio portal for the validation of our results with surgical outcome data.

Grant Support

This work was supported by the Ontario Institute for Cancer Research through funding provided by the Government of Ontario, the Canada Foundation for Innovation (grant numbers CFI #12301 and CFI #203383), the Ontario Research Fund (grant number GL2-01-030), and IBM. Individuals were supported by the Canada Research Chair Program (I. Jurisica), the Comprehensive Research Experience for Medical Student program at the University of Toronto (J.A. Locke) and a Canadian Cancer Research Scientist Career Award (R.G. Bristow).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received August 22, 2011; revised October 18, 2011; accepted October 24, 2011; published OnlineFirst November 2, 2011.

References

NKX3.1 Haploinsufficiency Is Prognostic for Prostate Cancer Relapse following Surgery or Image-Guided Radiotherapy

Jennifer A. Locke, Gaetano Zafarana, Adrian S. Ishkanian, et al.

Clin Cancer Res Published OnlineFirst November 2, 2011.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-11-2147

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2011/11/02/1078-0432.CCR-11-2147.DC1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.