Cancer Therapy: Preclinical

Anti-EGFR Antibody Cetuximab Enhances the Cytolytic Activity of Natural Killer Cells toward Osteosarcoma

Jens H.W. Pahl1, S. Eriaty N. Ruslan1, Emilie P. Buddingh1, Susy J. Santos1, Karoly Szuhai2, Massimo Serra5, Hans Gelderblom3, Pancras C.W. Hogendoorn4, R. Maarten Egeler1, Marco W. Schilham1, and Arjan C. Lankester1

Abstract

Purpose: Osteosarcoma and Ewing’s sarcoma are the most common bone tumors in children and adolescents. Despite intensive chemotherapy, patients with advanced disease have a poor prognosis, illustrating the need for alternative therapies. Sarcoma cells are susceptible to the cytolytic activity of resting natural killer (NK) cells which can be improved by interleukin (IL)-15 stimulation. In this study, we explored whether the cytolytic function of resting NK cells can be augmented and specifically directed toward sarcoma cells by antibody-dependent cellular cytotoxicity (ADCC).

Experimental Design: Epidermal growth factor receptor (EGFR) expression was examined on osteosarcoma and Ewing’s sarcoma cell lines by flow cytometry and in osteosarcoma biopsy and resection specimens by immunohistochemistry. Cetuximab-mediated ADCC by NK cells from osteosarcoma patients and healthy controls was measured with 4-hour 51Cr release assays.

Results: EGFR surface expression was shown on chemotherapy-sensitive and chemotherapy-resistant osteosarcoma cells (12/12), most primary osteosarcoma cultures (4/5), and few Ewing’s sarcoma cell lines (2/7). In the presence of cetuximab, the cytolytic activity of resting NK cells against all EGFR-expressing sarcoma cells was substantially increased and comparable with that of IL-15–activated NK cells. Surface EGFR expression on primary osteosarcoma cultures correlated with EGFR expression in the original tumor. The cytolytic activity of osteosarcoma patient-derived NK cells against autologous tumor cells was as efficient as that of NK cells from healthy donors.

Conclusion: Our data show that the cytolytic potential of resting NK cells can be potentiated and directed toward osteosarcoma cells with cetuximab. Therefore, cetuximab-mediated immunotherapy may be considered a novel treatment modality in the management of advanced osteosarcoma.

Clin Cancer Res; 18(2); 1–10. ©2011 AACR.

Introduction

Osteosarcoma and Ewing’s sarcoma most frequently arise in adolescents and young adults and represents the majority of all malignant primary bone tumors in this patient group (1–3). The current treatment consists of a combination of systemic multidrug chemotherapy and complete surgical resection (3–5). In cases with localized disease, up to 70% of the patients achieve persistent remission. In contrast, patients with advanced, metastatic, and recurrent disease experience a very poor prognosis, which has not improved during the last decades despite intensification of chemotherapy regimens. Therefore, novel treatment strategies with a favorable toxicity profile are warranted. In this perspective, we and others have recently reported on the potential exploitation of cellular immunotherapy against sarcomas by natural killer (NK) cells (6–8).

NK cells can respond to and kill cells undergoing cellular stress due to virus infection or malignant transformation. The cytotoxic activity of NK cells is regulated by the equilibrium of inhibiting and activating signals conveyed by target cells. On tumor cells, MHC class I expression (NK cell inhibitory signal) may be downregulated to evade cytotoxic T-cell recognition. Conversely, the expression of stress ligands (NK cell–activating signal) may be upregulated on tumor cells. Both of these processes may lead to increased sensitivity of tumor cells to NK cells (9, 10). In addition, the interplay with other immune cells and the pro- or anti-inflammatory microenvironment may modulate the function and activity of NK cells (10, 11).

Authors’ Affiliations: Departments of 1Pediatrics, 2Molecular Cell Biology, 3Clinical Oncology, and 4Pathology, Leiden University Medical Center, Leiden, the Netherlands; and 5Laboratorio di Oncologia Sperimentale, Istituto Ortopedico Rizzoli, Via di Barbiano Bologna, Italy

Corresponding Author: Arjan C. Lankester, Department of Pediatrics, Leiden University Medical Centre, Albinusdreef 2, 2300 RC Leiden, the Netherlands. Phone: 31-71-526-4871; Fax: 31-71-526-6876; E-mail: a.lankester@lumc.nl

doi: 10.1158/1078-0432.CCR-11-2277
©2011 American Association for Cancer Research.

www.aacrjournals.org
Recently, we and others have shown that sarcoma cell lines are moderately susceptible to the cytolytic potential of resting NK cells (6–8). The cytolytic activity of NK cells can be directly potentiated by activating cytokines, such as interleukin (IL)-15, leading to increased lysis of sarcoma cells (6–8). In this study, we set out to explore whether the cytolytic activity of resting NK cells can be improved and directed specifically toward sarcoma cells. Therefore, we intended using a monoclonal antibody (mAb) of the human IgG1 subtype which recognizes an antigen expressed on sarcoma cells and is able to induce antibody-dependent cellular cytotoxicity (ADCC) by NK cells. Osteosarcoma has previously been shown to express the epidermal growth factor receptor (EGFR, erbB1/Her1; ref. 12), which is recognized by the clinically approved, chimeric IgG1 type mAb cetuximab (13). So far, the application of anti-EGFR mAb–targeted therapy in bone sarcomas has not been reported. We focused on exploring whether the cytotoxic potential of allogeneic and autologous NK cells can be specifically directed toward sarcoma cells with cetuximab.

Materials and Methods

Patient samples

Formalin-fixed, paraffin-embedded tumor samples were obtained from one biopsy (obtained at the time of diagnosis, prechemotherapy) and 4 resections of local recurrent or metastatic tumors (postchemotherapy) from 4 high-grade osteosarcoma patients (diagnosed between 2008 and 2010) by the Department of Pathology, Leiden University Medical Center. Five short term grown primary osteosarcoma cell cultures (between passage 2 and 13) were generated from the tumor material as previously described (6, 14). Clinicopathologic details of these patients and samples are summarized in Table 1. Peripheral blood samples from these patients were collected prior to the initiation of chemotherapy after written informed consent approved by the Review Board on Medical Ethics of the Leiden University Medical Center and used for cytotoxicity experiments (Table 1). Tumor specimens were obtained and analyzed according to the ethical guidelines of the national organization of scientific societies (FEDERA, http://www.federa.org/gedragscodes-codes-conduct-en).

Cell lines

The following extensively characterized sarcoma cell lines were included in this study: osteosarcoma cell lines OHS, OSA (SJA-1), SAOS-2, U2-OS, ZK-58 (15) and the Ewing’s sarcoma cell lines A673, CADO-ES, SK-ES-1, SK-N-MC, STA-ET2.1, TC71 (15) and L1062 (14). All sarcoma cell lines were obtained from the EuroBoNeT cell line repository (by 2007) and were confirmed for their identity by short-tandem repeat DNA fingerprinting in 2011. The cell line TC71 was maintained in IMDM medium (Invitrogen). All other cell lines were grown in RPMI-1640 medium (Invitrogen). Both media were supplemented with 10%
fetal calf serum (FCS), 100 U/mL penicillin, and 100 µg/mL streptomycin (all Invitrogen). All Ewing's sarcoma cell lines were grown in 0.1% gelatin-coated tissue culture flasks. The chemotherapy-resistant variant cell lines of SAOS-2 and U2-OS (16–18) were cultured in IMDM medium with 10% FCS and penicillin/streptomycin and maintained in chemotherapeutic drugs as follows: SAOS-2-DX580 and U2-OS-DX580 with 580 µg/mL of doxorubicin (DX); SAOS-2-MTX1000 and U2-OS-MTX300 with 1,000 and 300 ng/mL of methotrexate (MTX), respectively; SAOS-2-CDDP6 (SAOS-2-CDDP6µg) and U2-OS-CDDP4 (U2-OS-CDDP4µg) with 6 and 4 µg/mL of cisplatin (cis-diaminedichloroplatinum, CDDP), respectively. Drug sensitivities of each cell line were calculated from the drug dose–response curves and expressed as IC_{50} (drug concentration resulting in 50% inhibition of cell growth after 96 hours of in vitro treatment). Fold increases in drug resistance, quantified as the ratio between IC_{50} of each drug-resistant variant to that of its corresponding parental cell line, were as follows: 315 for U2-OS-DX580, 580 µg/mL of doxorubicin (DX); 1,000 for SAOS-2-MTX1000 and U2-OS-MTX300, 281 for SAOS-2-MTX1µg, 63 for U2-OS-CDDP4µg, and 112 for SAOS-2-CDDP6µg.

All cell lines were negative for Mycoplasma infection as regularly checked by PCR. The primary osteosarcoma cultures were maintained in RPMI-1640 medium supplemented with 20% FCS and penicillin/streptomycin in gelatin-coated tissue culture flasks.

Cell isolations and stimulations
Peripheral blood mononuclear cells (PBMC) were isolated from osteosarcoma patients' blood samples (autologous) or buffy coats of healthy adult donors (allogeneic; Sanquin Blood bank, Region Southwest, Rotterdam, the Netherlands) by Ficoll-Hypaque density gradient centrifugation. NK cells were purified by negative selection, depleting non-NK cells through a combination of biotin-conjugated monoclonal anti-human antibodies and MicroBeads using the "Human NK cell Isolation Kit" (Miltenyi Biotech); NK cell purity was more than 95% as determined by flow cytometry, analyzing NK cells as CD56^+ CD3^− CD14^− CD19^−. NK cells were depleted from PBMCs (NKD PBMCs) by positive selection using anti-CD56 MicroBeads (Miltenyi Biotech); NKD PBMCs contained less than 0.1% of NK cells as analyzed by flow cytometry. IL-15–activated NK cells were obtained by incubating purified NK cells in AIM-V medium with 2 mmol/L of glutamine (Invitrogen) supplemented with 10% of pooled human AB serum (Sanquin), penicillin/streptomycin and 10 ng/mL of IL-15 (Peprotech) for 2 to 3 weeks in 24-well format tissue culture plates without feeder cells.

To measure NK cell activation after cetuximab cross-linking, upregulation of CD69 expression on NK cells (300,000) was measured after coculture with STA-ET2.1 (150,000), L1062 (80,000), and OSA (75,000) cells for 48 hours in 24-well plates in the absence or presence of cetuximab (10 µg/mL).

Flow cytometry
Determination of NK cell percentages in PBMCs, validation of NK cell purity, and expression of the NK cell activation marker (CD69) was analyzed phenotypically by staining with fluorescein-labeled antibodies followed by fluorescence-activated cell sorting (FACS). The following antibodies were applied according to the manufacturer's instructions: anti-CD3FITC (SK7), anti-CD3PerCP-Cy5.5 (SK7), anti-CD14PerCP-Cy5.5 (M5E2), anti-CD19PE (4G7), CD69FITC (L78; Becton Dickinson); anti-CD56APC (N901 NKH1), anti-NKG2DPE (ON72; IOTEST Immunotech). Expression of EGFR on the surface of sarcoma cell lines and primary osteosarcoma cultures was measured using the anti-EGFR mAb cetuximab (Erbitux; Merck KGaA) followed by the Alexa Fluor 647 goat anti-human IgG secondary antibody (A21445; Invitrogen). The anti-CD20 mAb rituximab (MabThera; Roche) was used as an IgG1 isotype–matched negative control for cetuximab. FACS measurements were carried out with the FACScalibur (BD Biosciences) and analyzed with the "BD Cell Quest Pro" software (version 5.2.1).

^51^Cr release assay
The cytolytic activity of PBMCs, NKD PBMCs, and purified NK cells against sarcoma cell lines and primary osteosarcoma cultures was measured in 4-hour ^51^Cr release assays. Target cells were labeled with 100 µL Na-chromate (^51^Cr, 3.7 MBq) for 1 hour. After washing, 2.5 × 10^3^ target cells were added to the effector cells in duplicate or triplicate at the indicated effector–target (E:T) ratios and incubated in the presence or absence of cetuximab (10^{-7} to 10 µg/mL as indicated) or the control mAb rituximab (10 µg/mL) for 4 hours at 37°C. Supernatants were collected, and the release of ^51^Cr was measured with a beta-counter (Wallac/PerkinElmer). Spontaneous and total release were obtained by incubation with medium and Triton X-100 (2.5%; Merck Chemicals), respectively. The specific lysis was calculated by the following formula: percentage of specific lysis = 100 × (experimental release–spontaneous release/total release–spontaneous release).

Immunohistochemistry
Sections of 4 µm of representative tumor sections were deparaffinized and pepsin antigen retrieval was done. Expression of EGFR was assessed using a mouse monoclonal anti-EGFR antibody (31G7, 1:10; Zymed; Invitrogen) followed by a polyclonal goat anti-mouse/rabbit/rat IgG HRP linker antibody conjugate (DPVO-110HRP; Immunologic) and DAB+ Substrate Chromogen System (Dako) detection. The sections were examined with a Leica DM5000 fluorescence microscope and LAS-AF acquisition program (Leica).

Statistical analysis
Statistical analyses were carried out with GraphPad Prism version 5.04 or SPSS version 16.0 (IBM) using paired student t tests, comparing means between groups of samples and linear regression analysis. Error bars represent the
SEM. A P value less than 0.05 was considered statistically significant. ns, not statistically significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Results

EGFR is expressed on the surface of osteosarcoma cell lines

ADCC by NK cells requires antibody binding to an antigen expressed on the tumor cell surface. Therefore, surface expression of EGFR, as detected by cetuximab, was measured on a panel of osteosarcoma (n = 12) cell lines by flow cytometry. All osteosarcoma cell lines expressed EGFR on the cell surface, with the highest expression on the cell lines HOS, OHS, and OSA (Fig. 1). The chemoresistant variants of SAOS-2 and U2OS also expressed EGFR. Previously, EGFR has been reported undetectable in Ewing’s sarcoma cell lines (n = 3; ref. 19). To extend these findings, surface EGFR expression was assessed on a panel of Ewing’s sarcoma cell lines (n = 7). EGFR expression was not detectable on 5 of 7 Ewing’s sarcoma cell lines. Correspondingly, EGFR expression was not detectable in Ewing’s sarcoma biopsy and resection specimens, as determined by immunohistochemistry (data not shown).

Cetuximab enhanced cytolysis of EGFR-expressing osteosarcoma cell lines by NK cells

To investigate whether cetuximab can enhance cytolysis of EGFR-expressing osteosarcoma and Ewing’s sarcoma cell lines by NK cells, resting NK cells were incubated with one EGFR+ and several EGFR cell lines in the presence of cetuximab or the isotype-matched, nonbinding anti-CD20 control mAb in a 4-hour 51Cr release assay. As compared with cytolysis in the absence of mAb, the negative control mAb did not alter killing of sarcoma cells by NK cells (data not shown). In contrast, the addition of cetuximab increased the lysis of EGFR-expressing sarcoma cells but not of EGFR-negative cell lines (Fig. 2, panel A and B; i; data not shown). The lysis of the chemotherapy-resistant variant cell lines of SAOS-2 and U2OS was equally enhanced by cetuximab. Cetuximab-enhanced lysis by resting NK cells was comparable with the lysis by IL-15–activated NK cells (Fig. 2, panel A and B, ii). The addition of cetuximab to IL-15–activated NK cells hardly led to a further increase of the cytolytic activity. As an alternative parameter for NK cell activation, it was observed that the percentage of CD69-expressing NK cells increased after coculture of NK cells with EGFR-expressing sarcoma cells in the presence of cetuximab (Fig. 3, panel A).

Thus, the cytotoxic function of resting NK cells toward EGFR-expressing sarcoma cell lines as well as their activation status was substantially augmented in the presence of cetuximab.

Cetuximab-mediated lysis is independent of EGFR expression intensity

Despite different sensitivities to NK cell killing, the magnitude of cetuximab-enhanced lysis by resting NK

![Figure 1](https://example.com/figure1.png)

Figure 1. EGFR is expressed on the surface of sarcoma cell lines. Surface expression of EGFR on osteosarcoma and Ewing’s sarcoma cell lines was measured by flow cytometry using the anti-EGFR mAb cetuximab followed by the Alexa Fluor-647 goat anti-human IgG secondary antibody. A, representative FACS overlay plots, detecting EGFR by cetuximab (bold solid line) and CD20 by the isotype-matched, negative control mAb rituximab (solid line), both followed by secondary antibody and secondary antibody only (grey area). The indicated fold expression of EGFR was calculated by dividing the geometric mean fluorescence intensity of EGFR by the geometric mean fluorescence intensity of the control CD20. B, combined data of the fold change of EGFR expression on all tested sarcoma cell lines of multiple experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
cells was comparable among most EGFR-expressing cell lines (Fig. 2, panel B, i). This increase did not correlate significantly with EGFR surface densities (Fig. 3, panel B). Thus, even the minimal EGFR expression levels on some of the sarcoma cells were sufficient for the induction of ADCC.

Cetuximab-mediated lysis is dependent on NK cells

In the absence of effector cells, cetuximab did not elicit cytolytic effects on EGFR-expressing cell lines during the 4-hour cytotoxicity assay (Fig. 4). FcRⅢa/CD16 expression is required to elicit ADCC by NK cells. Because FcRⅢa/CD16 can also be expressed by monocytes, it was studied whether cetuximab-mediated ADCC by PBMCs is dependent on NK cells. In the presence of cetuximab, lysis of EGFR-expressing sarcoma cells by PBMCs was comparable with the cetuximab-enhanced lysis by purified NK cells (Fig. 4, panel A). In contrast, NK cell depletion abolished killing by PBMCs both in the absence and presence of cetuximab, indicating that in this in vitro system cetuximab-mediated killing was strictly dependent on NK cells present in the PBMCs.

Next, the dependence of cetuximab-mediated lysis on the concentration of cetuximab was investigated in a serial dilution experiment. The lysis induced by cetuximab was comparable between 10 and 1 g/mL of cetuximab, but it was reduced by at least 50% at a concentration of 0.01–0.1 g/mL (Fig. 4, panel B). Lower cetuximab concentrations failed to enhance lysis. Hence, 0.01 g/mL of cetuximab must be the minimal concentration required to elicit ADCC by NK cells.

Figure 2. Cetuximab-enhanced killing of sarcoma cell lines by NK cells. Lysis of EGFR+ and EGFR sarcoma cell lines by purified, resting NK cells and IL-15-activated NK cells was measured in triplicate in a 4-hour 51Cr release assay in the presence of cetuximab or the isotype-matched, negative control mAb rituximab. The specific lysis (%) of sarcoma cells in the presence of the control mAb was comparable with killing without mAb addition. A, representative data of the specific lysis of sarcoma cell lines (ranked by increasing EGFR density) by resting NK cells (squares) and IL-15-activated NK cells (triangles) in the presence of cetuximab (filled symbols) and the control mAb (open symbols). B, combined data of the specific lysis of sarcoma cells by resting NK cells (i, no pattern) and IL-15-activated NK cells (ii, horizontal pattern) calculated at a 10:1 E:T ratio. Data represent 3 independent experiments done in triplicate, showing lysis in the presence of the control mAb (open bars) and the respective extra lysis induced by the presence of cetuximab (filled bars, ± SEM). Significance of cetuximab-induced lysis was calculated by comparing whether the total lysis in the presence of cetuximab (filled bar plus open bar) was statistically different to the lysis in the presence of the control antibody (open bar). ns, not significant. *, P < 0.05; **, P < 0.01; †††, P < 0.001.
membranous, as determined by immunohistochemistry,
1). EGFR expression in these osteosarcoma samples was
m embrane derived from 4 different osteosarcoma patients (Table

Figure 3. Cetuximab-induced activation of NK cells. A, EGFR-expressing
(OSA and STA-ET2.1) and EGFR-negative cell lines (L1062) were
cocultured with purified NK cells in the presence of cetuximab for 48
hours and CD69 expression on NK cells was assessed. The percentage
of CD69-positive NK cells is indicated. B, the extra lysis induced by
cetuximab, as calculated by subtracting the lysis by the control mAb from
the lysis by cetuximab, was correlated with EGFR expression levels on
the cell lines. Lysis of EGFR+ sarcoma cell lines (n = 13) by resting NK
cells at a 10:1 E:T ratio was measured in the presence of cetuximab or the
negative control mAb (Fig. 2). The extra lysis was calculated by
subtracting the specific lysis in the presence of the control mAb from the
total lysis in the presence of cetuximab, and plotted against the log of the
fold change of EGFR expression (Fig. 1). The regression coefficient (r²) between extra lysis and EGFR expression was 0.14 (P = 0.21), as
calculated by linear regression analysis.

cetuximab was the minimal concentration to substantially
enhance cytosis by NK cells.

EGFR+ primary cultures derived from EGFR+ osteosarcoma tumors are highly susceptible to cetuximab-mediated lysis by autologous PBMCs

Primary tumor cell cultures (n = 5) were generated from
osteosarcoma biopsy (n = 1) and resection (n = 4) speci-

cimens derived from 4 different osteosarcoma patients (Table
1). EGFR expression in these osteosarcoma samples was
membraneous, as determined by immunohistochemistry,
and correlated to the EGFR densities on the corresponding
primary cultures, as determined by flow cytometry between
passages (p) 3 and 13.

Except for osteosarcoma patient 398, in which EGFR was
not detectable in the biopsy and only weakly detectable on
the corresponding primary culture L2635 p6, all osteosar-
comas patients (369, 404, and 407) presented EGFR expres-

Discussion

The identification of antigens specifically expressed on
tumor cells has fueled the development of tumor-specific,
mAb-based targeted therapies. The introduction of anti-
CD20 mAb (Rituximab, MabThera) and anti-Her2 mAb
(Trastuzumab, Herceptin) against B-cell malignancies and

direct NK cell–mediated killing to sarcoma cell lines (6–8). In this study, we
sought to explore whether this cytolytic activity can be more
specifically targeted toward sarcoma cells using a sarcoma-

reactive mAb, with a human Fc portion that can bind to
FrRIIa/CD16 on human NK cells. As several studies have
described surface EGFR expression in osteosarcoma tumors
and on osteosarcoma cell lines (12, 19, 28–31), we explored
the potential of the anti-EGFR mAb cetuximab to specifi-
cally direct NK cell–mediated killing to sarcoma cell lines.

In agreement with previous studies on other tumor types,
cetuximab induced NK cell–dependent ADCC against
EGFR-expressing sarcoma cells. Similar to previous studies
(32–35), we show that 0.01 μg/mL of cetuximab was the
minimal concentration to induce cetuximab-mediated lysis
by NK cells. These concentrations have been reported in sera
of patients treated with cetuximab and in the tumor envi-

ronment in a xenograft model (36, 37), indicating that
cetuximab-mediated ADCC could be a functional antican-
cer mechanism in vivo. Although in other studies the mag-
nitude of cetuximab-induced ADCC correlated with the
level of EGFR expression (34, 35, 38), this correlation was
not evident in osteosarcoma, despite the use of highly comparable methods to assess ADCC (32, 39). In fact, minimal EGFR densities were sufficient for the cetuximab-induced lysis of sarcoma cells (32, 39). Cetuximab-induced ADCC was comparable with the maximal killing achieved by IL-15–activated NK cells. In contrast to some other models (32, 34, 40, 41), we did not observe an additive effect of cetuximab on the lysis by cytokine (IL-15)-activated NK cells.

Multiple mechanisms may account for the antitumor effect of cetuximab in patients. Masking of the EGFR extracellular binding site from its natural ligand EGF inhibits the activation of the receptor tyrosine kinase and downstream signaling pathways (13, 42). EGFR blockage has been shown to arrest cell-cycle progression and lead to apoptosis (13). Cetuximab can inhibit tumor angiogenesis, neovascularization and invasion, and sensitizes tumor cells to radiation and chemotherapy-induced growth inhibition and apoptosis in vivo (13). Finally, cetuximab may induce complement-dependent cytotoxicity or cytolytic effects by immune cells via ADCC (13, 32, 38, 39, 43). An advantage of cetuximab-mediated ADCC is that it would be independent of the EGFR mutation status (34, 38) and persistently activated EGFR signaling pathways (13, 40).

The primary mode of action of cetuximab in vivo is difficult to determine. In a murine model, the anticancer effect of cetuximab was presumed to be mediated by NK cells (41). Depletion of NK cells in murine osteosarcoma xenograft models or in mice with syngeneic mesenchymal stem cell–induced osteosarcoma could address whether an antitumor effect of cetuximab or murine anti-EGFR mAb relies on the presence of NK cells (44–46). In humans, the relevance of ADCC has been suggested by the finding that FcγRIIIa/CD16 polymorphism of NK cells correlated with the survival of colorectal cancer patients (47, 48), as well as with the efficacy of cetuximab-mediated ADCC by NK cells in vitro (34). Interestingly, the intratumoral NK cells have recently been associated with improved survival when colorectal cancer patients had been treated with cetuximab (49). In this study, we used a unique combination of tumor
specimens, primary tumor cultures, and PBMCs from osteosarcoma patients. This allowed us to establish that cetuximab treatment can improve the lysis of EGFR-expressing, autologous primary osteosarcoma cells by patient-derived NK cells via cetuximab-mediated ADCC. Cetuximab treatment is associated with relatively mild adverse effects and has been approved for clinical usage by the FDA (37, 50). Therefore, in the treatment of osteosarcoma patients, cetuximab-mediated immunotherapy could be scheduled in the presence of endogenous or adoptively transferred NK cells. As such, cetuximab may provide an interesting treatment modality for patients with chemotherapy-resistant or metastatic EGFR⁺ sarcomas.

Disclosure of Potential Conflicts of Interest

P.C.W. Hogendoorn is a consultant and is on the advisory board of Amgen, Inc. The other authors disclosed no potential conflicts of interest.

Acknowledgments

The authors thank Els Jol-van der Zijde, Monique Ostaijen-ten Dam, Kitty Kwappenberg, and Danielle de Jong for technical contributions and helpful discussions, and Nicolette Leijerzapf and Jakob Anninga for the assistance in obtaining the patient samples.

Grant Support

This work was financially supported by a grant from the foundation “Quality of Life Gala 2007”, The Netherlands Organization for Health Research and Development (grant 920-03-399); and the European Commission (EuroBoNeT, grant No 01884). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received September 5, 2011; revised November 8, 2011; accepted November 9, 2011; published OnlineFirst November 16, 2011.

Figure 5. EGFR⁺ primary osteosarcoma cultures, derived from EGFR⁺ osteosarcoma specimens, are highly susceptible to cetuximab-mediated lysis by autologous PBMCs. A, EGFR expression in biopsies and resection specimens from osteosarcoma patients was detected using a mouse monoclonal anti-EGFR antibody followed by a polyclonal goat anti-mouse/rabbit/rat IgG HRP linker antibody conjugate. Brown-colored EGFR staining patterns and counterstaining with Mayer’s hematoxylin are displayed at a 40-fold magnification for the respective tumor origin and patient. B, primary osteosarcoma cultures were generated from EGFR⁺ and EGFR⁻ biopsies and resections of osteosarcoma patients as indicated. EGFR expression on the primary osteosarcoma cultures was measured as described in Fig. 1 at the indicated passage numbers. C, killing of primary osteosarcoma cultures by autologous PBMCs, derived from the same osteosarcoma patient, and allogeneic PBMCs (one representative result from 2 healthy donors) was analyzed in duplicate in the presence of cetuximab or the control mAb at the indicated E:T ratios. p, passage number; prim, primary.
References

Anti-EGFR Antibody Cetuximab Enhances the Cytolytic Activity of Natural Killer Cells toward Osteosarcoma

Clin Cancer Res Published OnlineFirst November 16, 2011.

Updated version

Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-11-2277

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.