The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: A critical review of the literature

*†Ronald J. deLeeuw, †Sara E. Kost, *Juzer A. Kakal, and †‡Brad H. Nelson

*Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria BC, Canada
† Department of Biochemistry and Microbiology, University of Victoria, Victoria BC, Canada
‡ Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada

Running title: Prognostic significance of FoxP3+ T cells in human carcinoma

Corresponding author:

Dr. Brad Nelson,
Trev and Joyce Deeley Research Centre,
British Columbia Cancer Agency,
2410 Lee Avenue, Victoria, British Columbia,
V8R 6V5, Canada
Tel: 250-519-5700 Fax: 250-519-2004
bnelson@bccancer.bc.ca

Funding: British Columbia Cancer Foundation, Canadian Institutes of Health Research, and National Science and Engineering Research Council of Canada.
Statement of Translational Relevance

Although FoxP3+ T cells are conventionally thought to suppress tumor immunity, this idea has been challenged by recent studies showing that, in some patient cohorts, tumor-infiltrating FoxP3+ T cells are associated with favorable prognosis. To investigate this apparent discrepancy, we performed a comprehensive review of the literature concerning the prognostic significance of tumor-infiltrating FoxP3+ T cells in human cancer. We conclude that FoxP3 is inadequate as a single functional or prognostic marker. Moreover, the prognostic significance of FoxP3+ T cells can vary according to tumor site. Thus, the original view that FoxP3+ T cells invariably suppress tumor immunity is oversimplified. We require better understanding of the functional subtypes of FoxP3+ T cells, and their biological properties in different tumor microenvironments, if we wish to rationally modulate their behavior to enhance tumor immunity.
Abstract

CD8+ tumor-infiltrating lymphocytes (TIL) are associated with survival in a variety of cancers. A second subpopulation of TIL – defined by FoxP3 expression – has been reported to inhibit tumor immunity, resulting in decreased patient survival. Based on this premise, several groups are attempting to deplete FoxP3+ T cells to enhance tumor immunity. However, recent studies have challenged this paradigm by showing that FoxP3+ T cells exhibit heterogeneous phenotypes and, in some cohorts, are associated with favorable prognosis. These discrepant results could arise from differences in study methodologies or the biological properties of specific cancer types. Here we conduct the first systematic review of the prognostic significance of FoxP3+ T cells across non-lymphoid cancers (58 studies from 16 cancers). We assessed antibody specificity; cell scoring strategy; multivariate modeling; use of single versus multiple markers; and tumor site. Two factors proved important. First, when FoxP3 was combined with one additional marker, double positive T cells were generally associated with poor prognosis. Second, tumor site had a major influence. FoxP3+ T cells were associated with poor prognosis in hepatocellular cancer and generally good prognosis in colorectal cancer, while other cancer types were inconsistent or understudied. We conclude that FoxP3+ T cells have heterogeneous properties that can be discerned by the use of additional markers. Furthermore, the net biological effects of FoxP3+ T cells appear to depend on tumor site, perhaps reflecting microenvironmental differences. Thus, depletion of FoxP3+ T cells might enhance tumor immunity in some patient groups but be detrimental in others.
Introduction

Many studies across a wide variety of human cancers have demonstrated a clear association between the presence of tumor infiltrating lymphocytes (TIL) and patient survival (1-4). To further understand this phenomenon, additional immune markers have been used to subdivide CD3+ T cells into functional subsets, with special emphasis on cytotoxic (e.g., CD8+, nucleolysin TIA-1 isoform p40 (TIA-1)+) and regulatory (e.g., CD4+, IL-2 receptor subunit alpha (CD25)+, FoxP3+) phenotypes (3, 5). Whereas TIL expressing cytotoxic markers are generally associated with favorable prognosis, TIL expressing regulatory markers (referred to as Tregs) were initially reported to correlate with poor prognosis (5). This fit with the general notion that Tregs suppress adaptive immune responses and lead many groups to pursue strategies to deplete Tregs from cancer patients as a means to enhance tumor immunity (6-8).

In the past decade, much effort has been devoted to finding molecular markers that uniquely define Tregs. Initially, these cells were characterized as CD4+ and CD25 high (9). Further investigation revealed that Tregs express and functionally depend on the transcription factor forkhead box protein P3 (FoxP3) (10). Indeed, humans and mice that lack an intact FOXP3 gene suffer a severe autoimmune syndrome known as immune dysregulation/ polyendocrinopathy/ enteropathy/ X-linked syndrome (IPEX) in humans or the Scurfy phenotype in mice (10, 11). Given its essential role in Treg development and function, FoxP3 became a popular single marker for Treg studies in cancer. Intriguingly, studies of the prognostic value of FoxP3+ T cells have lead to highly discrepant findings. In some studies, tumor-
infiltrating FoxP3+ T cells have been associated with poor prognosis, consistent
with the initial hypothesis that FoxP3+ Tregs inhibit anti-tumor immunity. In
contrast, other studies have found that FoxP3+ T cells are associated with a
favorable prognosis.

How can these widely discrepant prognostic claims be explained? On the one
hand, they could reflect technical differences between studies, including the specific
FoxP3 antibody used, scoring strategy, and statistical methods. Alternatively, the
differing claims could reflect biological factors. For example, it is conceivable that
FoxP3+ T cells exhibit conventional regulatory (i.e., inhibitory) properties in some
contexts but not others. Alternatively, FoxP3+ T cells may be consistently regulatory
in nature but appear as favorable prognostic markers in some cancers due to their
association with tumor-infiltrating CD8+ T cells or other effectors(12, 13). Others
have suggested that, in colorectal and gastric cancers, FoxP3+ T cells may inhibit
tumor-promoting inflammatory responses to microbes, which could explain their
association with favorable outcomes in these and similar contexts(14). Finally,
emerging evidence indicates that FoxP3 expression encompasses a heterogeneous
population of cells that contain both regulatory T cells, which produce cytokines
such as transforming growth factor beta-1 and interleukin 10, and non-regulatory T
cells, which may express interferon gamma and interleukin 17 (15-19) (reviewed
in(20)). Given these various possibilities, it seems reasonable to question whether
depletion of Tregs based on FoxP3 expression is likely to be beneficial or
detrimental to cancer patients.
To investigate this controversy, we performed a comprehensive and critical review of the literature concerning tumor-infiltrating FoxP3+ T cells and prognosis in human cancer. Articles for review were identified during a PubMed search using the terms “FoxP3” and “cancer” and vetted by title and abstract by an author (RJD). Several selection criteria were applied. First, we excluded studies of lymphoid cancers, because the immunological nature of these malignancies makes it difficult to assess whether FoxP3+ T cells are acting directly on tumor cells or indirectly on anti-tumor effector lymphocytes. Second, we excluded studies that only correlated FoxP3+ T cells with late-stage disease as opposed to patient survival. Third, we included only those studies that measured FoxP3 expression by immunohistochemistry (IHC) or immunofluorescence to ensure that the intratumoral location of FoxP3+ cells was known. Finally, we reviewed a given data set only once, excluding secondary or tertiary studies that referred to a previously published data set.

In the end, we reviewed 58 studies encompassing 16 different cancer types (Table 1), including bladder(19), breast(21-28), cervical(29, 30), colorectal(12, 31-39), endometrial(40-42), gastric(14, 43-46), head and neck(47), hepatocellular(48-52), lung(53, 54), melanoma(55-58), mesothelial(59), oral(4, 60-63), ovarian(2, 3, 13, 64-67), pancreatic(68), renal(69, 70), and vulvar cancers(71) (Supplementary Table 1). The reported prognostic value of FoxP3+ T cells in these 58 studies ranged from poor (n=23) to neutral (n=23) to good (n=12). To better understand why the prognostic value of FoxP3+ T cells varies so widely, we assessed each study for technical factors (including the specific FoxP3 antibody used, scoring strategy, and...
the use of multivariate modeling) and biological factors (including the use of
additional markers to define Tregs, and the tumor site studied).

Antibody specificity

Different FoxP3 antibodies can yield different staining patterns, indicating
that some antibodies may have suboptimal sensitivity or specificity(72, 73). While
18 of the 58 reviewed studies failed to state which specific FoxP3 antibody was
used, within the remaining 40 studies a total of 11 different FoxP3 antibodies were
used (Table 1). The most commonly used antibody was a monoclonal designated
236A/E7. In the 23 studies that used 236A/E7, the prognostic significance of
FoxP3+ T cells ranged from poor (n=10) to neutral (n=8) to good (n=5). Given that a
single FoxP3 antibody can yield prognostic results this disparate, it appears that
FoxP3 prognostic variability is not solely attributable to antibody selection.

Cell scoring strategy

We investigated four aspects of the scoring strategies used to categorize
tumors as positive or negative for FoxP3+ T cells: cutoff points, intratumoral
location, use of tissue microarrays versus whole sections, and computerized versus
manual counting (Table 1). Although there is no standard cutoff point for TIL
studies, 32/58 of the reviewed studies used the median number of FoxP3+ T cells as
the cutoff point. Within these 32, the distribution between poor, neutral, and good
prognostic claims was 16, 11, and 5 studies, respectively. The remaining studies
used a variety of scoring strategies, including the presence versus absence of
FoxP3+ T cells, the mean number of FoxP3+ T cells, or other criteria. A fairly even
distribution between poor, neutral or good prognostic claims were observed
regardless of the cutoff point used (Table 1). Thus, differing scoring strategies do
not account for the variable claims of FoxP3 prognostic significance.

TIL can reside in tumor epithelium, stroma or both, and this may influence
their prognostic significance. Among the 58 reviewed studies, 15 did not
discriminate between the epithelial or stromal location of FoxP3+ T cells and
instead provided a general count; 19 counted only FoxP3+ T cells in the epithelium;
and 24 counted FoxP3+ T cells from both epithelial and stromal compartments
independently (Table 1). Regardless of the location of enumerated FoxP3+ T cells, a
fairly even distribution was seen between poor, neutral and good prognostic claims.

We next examined the use of tumor tissue microarrays (TMAs) versus whole
sections (Table 1). TMAs were used in 18 of the 58 studies and prognostic claims
ranged from poor (n=7) to neutral (n=6) to good (n=5). A similar range of
prognostic claims was seen with studies using whole tissue sections. Regarding cell
counting, 38 studies used manual counting by one or more investigators, 6 studies
used a computer based quantification method, and 14 studies did not state the
counting method (Table 1). Studies that utilized manual counting showed an
unbiased spread between poor (n=16), neutral (n=14) and good (n=8) prognostic
claims, regardless of the number of investigators who performed cell counting.
Definitive conclusions could not be drawn regarding the use of computerized
counting, as only six studies used such methods, three of which involved colorectal
cancer (see below).
Multivariate correction for stage or grade of disease

In principle, the density of FoxP3+ T cells could reflect the stage and/or grade of disease, which could influence prognosis. Of the 45 studies that correlated FoxP3+ T cells to stage and/or grade, 25 found a significant association between FoxP3+ T cells and the stage and/or grade of disease, with 11 reporting a P-value of ≤0.001 (Supplementary Table 1). A potential confounding effect is that the quantity of TIL can influence nodal staging, especially in colorectal cancer (74). Nonetheless, these studies support the possibility that FoxP3+ T cells could simply serve as a marker of more advanced disease.

This issue was addressed in 42 studies by use of multivariate models that included stage, grade and other clinicopathologic features (Table 1). Among these studies, the prognostic significance of FoxP3+ T cells ranged from poor (n=20) to neutral (n=11) to good (n=11). Notably, in four studies, FoxP3+ T cells were a significant univariate prognostic indicator only to be removed during multivariate analysis. Of the 16 studies that did not use multivariate analysis, the potentially confounding effects of stage and grade were mitigated in most by the fact that (a) FoxP3+ T cells showed no prognostic significance even in univariate analysis, or (b) only specific stages or grades of disease were included in the study. In summary, even though FoxP3+ T cells are frequently associated with the stage and/or grade of disease, we found that this factor was well controlled in most studies and does not account for the variability of FoxP3 prognostication.
Multivariate correction for other TIL subsets

FoxP3+ T cells are usually found together with other TIL subsets, which can make it difficult to discern their independent prognostic effect. While multivariate analysis can solve this problem, it requires that all TIL subtypes significant in univariate analysis be included in the multivariate model. In the eight studies that included all TIL subsets in multivariate analysis, the prognostic value of FoxP3+ T cells ranged from poor (n=2) to neutral (n=3) to good (n=3) (Table 1). Thus, although the number of studies is low, it appears that the prognostic significance of FoxP3+ T cells is not solely attributable to the presence of other TIL subpopulations. Several studies made prognostic claims based on the ratio of FoxP3+ T cells to other lymphocyte subsets, including CD3+/FoxP3+ (n=2), CD4+/CD25+FoxP3+ (n=1), CD68+/FoxP3+ (n=2), CD8+/FoxP3+ or FoxP3+/CD8+ (n=18), CD8+/CCR4+FoxP3+ (n=1), FoxP3+/CD4+ (n=2), FoxP3+/CD3+/CD45RO+ (n=1), and Granzyme-B+/FoxP3+ (n=1) (Supplementary Table 1). Among these 28 studies, prognostic claims for FoxP3+ TIL ranged from poor (n=12) to neutral (n=11) to good (n=5). Thus, the use of lymphocyte ratios has been inconsistently applied and yielded inconsistent prognostic claims.

Clinical significance and publication bias

We next evaluated whether the magnitude of the prognostic effect was similar for studies claiming good versus poor prognosis. Of the 58 studies, 32 reported multivariate hazard ratios for overall survival. A funnel plot revealed no significant difference between the magnitude of hazard ratios for studies claiming
poor versus good prognosis (Figure 1). Furthermore, there was no evidence of publication bias, as the studies were evenly distributed throughout the plot.

Use of multiple markers to define FoxP3+ T cells

Although FoxP3 was originally thought to uniquely define conventional CD4+ Tregs(75), more recent studies indicate that, in some circumstances, FoxP3 can also be expressed by effector T cells(16, 18). We assessed whether studies that subdivided FoxP3+ T cells using a second marker yield more consistent prognostic results. Of the 58 reviewed studies, 50 used FoxP3 as a sole marker, which resulted in variable prognostic claims ranging from poor (n=19) to neutral (n=19) to good (n=12) (Table 1). The remaining eight studies measured at least one marker in addition to FoxP3, including CD4, CD8, CD25, and C-C chemokine receptor 4 (CCR4). Four of these eight studies showed that FoxP3+ T cells that co-expressed a second marker were associated with poor prognosis. The remaining four claimed that the identified subset did not have any prognostic significance. Of note, none of the eight studies claimed an association with good prognosis.

Based on the above, we investigated more closely which markers were used in addition to FoxP3. Shah et al. utilized two-color IHC to identify both CD4+FoxP3+ and CD8+FoxP3+ T cells in cervical cancer. Intriguingly, they found CD8+FoxP3+ T cells at a mean number of 3.32 per high-power field and CD4+FoxP3+ T cells at a mean number of 11.45 per high-power field(30). Thus, had they used FoxP3 as a single marker, only ~75% of the cells they measured would have been CD4+ T cells, which underscores the fact that not all FoxP3+ T cells are conventional Tregs.
another study, Watanabe et al. used co-expression of CCR4 to delineate a subset of FoxP3-expressing T cells in oral cancer (62). An average of 58% of FoxP3+ cells were found to co-express CCR4. Whereas total FoxP3+ T cells had no prognostic value (similar to 3 other studies of oral cancer (60, 61, 63)), CCR4+FoxP3+ T cells showed a highly significant association with survival. These studies highlight the importance of using additional markers to account for the heterogeneity of FoxP3+ T cells.

Tumor site and subtype

It is conceivable that the biological and prognostic effect of FoxP3+ T cells depends on microenvironmental context, in which case tumor site and histological/molecular subtype may be important factors. Indeed, when tumor site was taken into consideration, we found clear prognostic associations in some cases. For example, the five studies of hepatocellular cancer unanimously concluded that FoxP3+ T cells are associated with a poor prognosis (Table 1). Conversely, 4/10 studies investigating colorectal cancer concluded that FoxP3+ T cells correlated with a good prognosis, while the remaining six studies found no prognostic association. In considering colorectal cancer, Ladoire et al. recently hypothesized that the favorable prognostic effect of FoxP3+ T cells may reflect their ability to suppress tumor-promoting inflammatory responses to gut microbes (76).

In contrast to the above examples, the prognostic significance of FoxP3+ T cells remains controversial in several other cancers. In breast cancer, the reported prognostic effect of FoxP3+ T cells ranges from poor (n=5) to neutral (n=1) to good (n=2). Although ovarian cancer was one of the first tumor sites in which CD4+ Tregs
were associated with poor prognosis(5), subsequent studies utilizing FoxP3 as a
marker are split between poor (n=1), neutral (n=4) and good (n=2) prognostic
claims. Similarly, studies looking at gastric cancers show an equal split between
poor (n=2), neutral (n=1), and good (n=2) prognostic claims. For the remaining ten
tumor sites, the number of published studies is insufficient to make definitive
conclusions about the prognostic significance of FoxP3+ T cells.

In addition to tissue of origin, tumors can be classified based on their
molecular features, as discussed recently by Ogino et al. (77). Hence, it is
conceivable that the variability of FoxP3+ T cell prognostication could be
attributable to the inherent molecular heterogeneity within tumor types. In support
of this idea, the prognostic value of FoxP3+ T cells is stronger in mismatch repair
proficient colorectal cancer compared to mismatch repair deficient colorectal
cancer(31). Similarly, FoxP3+ T cells are prognostically significant in estrogen
receptor (ER)+ but not ER- breast cancer(22, 27). In uveal melanoma, FoxP3+ T cells
provide prognostic significance in cyclooxygenase-2 positive cases(58). Although
few in number, these studies suggest that the molecular subtype of tumors may
influences the prognostic value of FoxP3 T cells.

Conclusions

Having critically reviewed the literature concerning the prognostic value of
FoxP3+ T cells, we can make several recommendations for future studies. 1) We
recommend that prognostic marker studies follow a standard reporting structure
such as the REMARK criteria(78). 2) In many cancers, FoxP3+ T cells are highly
correlated with the stage and grade of disease, therefore it is important to correct for these and other appropriate clinicopathological factors. 3) FoxP3+ T cells are invariably found together with other lymphocytes, therefore all TIL subsets with prognostic value should be included in multivariate models. 4) The use of multiple markers to identify functional subsets of FoxP3+ T cells can lead to greater clarity about their prognostic value. 5) The prognostic value of FoxP3+ T cells appears to depend significantly on tumor site and possibly molecular subtype, suggesting that the biological properties of FoxP3+ T cells are influenced by the tumor microenvironment in which they reside. Overall, this study provides a cautionary note for the concept of depleting FoxP3+ cells from cancer patients as a means to enhance tumor immunity. Our findings suggest that this strategy may be beneficial for some tumor sites (e.g., liver) but detrimental to others (e.g. colorectal). Improved understanding of the different FoxP3+ T cell subsets in human cancer will likely enable the development of more precise and effective immunotherapies.

Figure Legends

Figure 1: Analysis of clinical significance and publication bias. The figure shows a funnel plot of log transformed hazard ratios versus standard error for the reviewed studies. Each symbol represents one study: ▼ poor prognostic claim, ▲ good prognostic claim, and □ neutral prognostic claim. Bars represent 95% confidence intervals.

47. Sun DS, Zhao MQ, Xia M, Li L, Jiang YH. The correlation between tumour-infiltrating Foxp3+ regulatory T cells and cyclooxygenase-2 expression and their association with recurrence in resected head and neck cancers. Med Oncol 2011 Mar 22. [Epub ahead of print].

Table 1: Study characteristics

| # of studies | 58 |
| Study n: mean (range) | 219 (30-1445) |

<table>
<thead>
<tr>
<th>FoxP3 prognosis claim</th>
<th>Poor 23</th>
<th>Neutral 23</th>
<th>Good 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific antibody</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clone 42</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Custom</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BioLegend</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Abcam</td>
<td>6</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>mAbcam22509</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Novus Biologicals</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FJK-16s</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206D</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eBioscience</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>236A/E7</td>
<td>10</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>mAbcam22510</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PCH101</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>259D</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eBio7979</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221D/D3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scoring strategy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutoff point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absence/presence</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mean cutoff</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Median cutoff</td>
<td>16</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Other cutoff</td>
<td>5</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Counting location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General count</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tumor only</td>
<td>8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Tumor and stroma</td>
<td>10</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Tissue used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole sections</td>
<td>16</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>Tissue microarray</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Counting strategy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigator(s)</td>
<td>16</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>Computer program</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Not reported</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Multivariate correction for stage or grade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes - 42</td>
<td>20</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>No - 16</td>
<td>3</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Multivariate correction for other TIL subsets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes - 8</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>No - 50</td>
<td>21</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>Use of multiple markers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes - 8</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>No - 50</td>
<td>19</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>Tumor site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatocellular</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cervical</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head and neck</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renal</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Endometrial</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vulvar</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Gastric</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ovarian</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Bladder</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: A critical review of the literature

Ron J deLeeuw, Sara E Kost, Juzer A Kakal, et al.

Clin Cancer Res Published OnlineFirst April 17, 2012.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-11-3216

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2012/04/17/1078-0432.CCR-11-3216.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.