Molecular Profiling Reveals Low- and High-Grade Forms of Primary Melanoma

Katja Harbst1,2, Johan Staaf1,2, Martin Lauss1,2, Anna Karlsson1, Anna Måsbäck3, Iva Johansson3, Pär-Ola Bendahl1, Johan Vallon-Christersson1,2, Therese Törngren4, Henrik Ekedahl1, Jürgen Geisler4, Mattias Höglund1, Markus Ringnér1,2, Lotta Lundgren1, Karin Jirström3, Håkan Olsson1, Christian Ingvar5, Åke Borg1,2, Hensin Tsao6,7,*, Göran Jönsson1,2,*

1. Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
2. CREATE Health Strategic Center for Clinical Cancer Research, Lund University, Lund, Sweden
3. Department of Pathology, Lund University, Lund, Sweden
4. Department of Oncology, Akershus University Hospital, University of Oslo
5. Department of Surgery, Lund University, Lund, Sweden
6. Department of Dermatology, Harvard Medical School, Boston, USA
7. Wellman Center for Photomedicine, MGH Cancer Center; Massachusetts General Hospital, Boston, USA

* co-senior authors

Corresponding authors:
Göran Jönsson, PhD
Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
Tel: +46 46 222 1444
Fax: +46 46 147327
Email: goran.b.jonsson@med.lu.se

Hensin Tsao, MD PhD
Wellman Center for Photomedicine/Department of Dermatology, Harvard Medical School, Boston, USA
Tel: 617-726-9569
Fax: 617-726-1206
Email: htsao@partners.org

Running head: Molecular classification of primary malignant melanoma

Keywords: Melanoma, gene expression, prognosis, WG-DASL, BRAF

Disclaimers: No disclosures

3,725 words, 4 figures, 1 table
Supplementary methods and figures
STATEMENT OF TRANSLATIONAL RELEVANCE

Over the years, clinical markers of melanoma behavior have been slowly unveiled through rounds of phenotypic analyses. However, the molecular composition of lethal melanomas remains an unsolved problem in the field. In this study, we begin to address this question. Through molecular profiling, we identified “low” and “high” grade forms of primary melanoma that were (i) recognizable at the earliest stages of melanoma, (ii) reproducible across independent data sets, (iii) significantly associated with known prognostic indicators and (iv) highly predictive of disease outcome. In recovering these fossilized signatures from formalin-fixed paraffin-embedded tissue, this study represents the deepest exploration of the expression space within primary melanomas and provides a technical roadmap for overcoming the major stumbling block in melanoma genomics - the lack of frozen primary tumors for RNA profiling. In short, we believe that these findings will create new avenues of clinical diagnostics and open up previously-obscured vistas in melanoma biology.
ABSTRACT

Purpose: For primary melanomas, tumor thickness, mitotic rate and ulceration are well-laid cornerstones of prognostication. However, a molecular exposition of melanoma aggressiveness is critically missing. We recently uncovered a four-class structure in metastatic melanoma that predicts outcome and informs biology. This raises the possibility that a molecular structure exists even in the early stages of melanoma and that molecular determinants could underlie histophenotype and eventual patient outcome.

Experimental design: We subjected 223 archival primary melanomas to a horizontally-integrated analysis of RNA expression, oncogenic mutations at 238 lesions, histomorphometry and survival data. Results: Our previously described four-class structure that was elucidated in metastatic lesions was evident within the expression space of primary melanomas. Since these subclasses converged into two larger prognostic and phenotypic groups, we used the metastatic lesions to develop a binary subtype-based signature capable of distinguishing between “high” and “low” grade forms of the disease. The two-grade signature was subsequently applied to the primary melanomas. Compared to low-grade tumors, high-grade primary melanomas were significantly associated with increased tumor thickness, mitotic rate, ulceration (all P<0.01) and poorer relapse-free (HR=4.94; 95%CI 2.84-8.59) and overall (HR=3.66; 95%CI 2.40-5.58) survival. High-grade melanomas exhibited elevated levels of proliferation and BRCA1/DNA damage signaling genes while low-grade lesions harbored higher expression of immune genes. Importantly, the molecular grade signature was validated in two external gene expression datasets.

Conclusions: We provide evidence for a molecular organization within melanomas that is preserved across all stages of disease.
INTRODUCTION

One fundamental observation in melanoma that has withstood decades of epidemiologic scrutiny is the inverse relationship between tumor thickness and prognosis (1). Despite widespread replication and clinical adoption, the etiologic basis for this correlation is largely unknown. Although time-to-diagnosis represents one possible explanation, recent analyses challenge the notion that primary melanomas strictly abide by volumetric rules and that lesions progress monotonically towards fatality due to detection failure. Alternative views include the possibility that lethal melanomas may reflect a class of aggressive tumors that are unrecognizable by microscopic means. For instance, the mitotic rate - an index of proliferative activity - is significantly higher in thick compared to thin melanomas and directly correlated with the presence of ulceration - a negative predictor of outcome (1, 2). Taken together, these long-held observations suggest that there may in fact be a “high-grade” form of melanoma that is thick, mitogenic and ulcerated and that reflects a context of aggression rather than time in corpus. The biologic basis of such aggressive (i.e. lethal) melanomas represents a major conceptual gap that remains unfilled.

Early efforts to resolve melanoma into molecular profiles were fraught with challenges (reviewed in (3, 4)). First generation platforms required robust RNA, which was only derivable from frozen tissue and thus inaccessible to formalin-fixed archival specimens. Since primary melanomas are largely fixed and paraffinized for diagnosis, the vast majority of studies utilized metastatic melanoma tissue. Thus, early molecular subtyping was not fully validated on primary melanomas. Winnepenninckx et al. (5) successfully performed unsupervised hierarchical clustering and recovered a two-class structure that was marginally associated with prognosis. Though the study was informative, it was limited by the availability of frozen specimens and the inclusion of stage III and IV patients, which made it impossible to test for preservation of the
molecular classifier across different stages of disease. With advent of the DASL (cDNA mediated annealing, selection, extension and ligation) technique, formalin-fixed paraffin embedded (FFPE) archival tissue became viable substrates for analysis. Several recent studies using DASL and a fixed cancer panel microarray led to the identification of osteopontin, \textit{RAD51}, \textit{RAD52} and \textit{TOP2A} as prognostic biomarkers in primary melanomas (6, 7). What is critically needed in primary melanoma is a horizontally-integrated analysis which incorporates molecular and genetic exposition with known pathological indicators and annotated outcomes. Furthermore, if molecular forms of melanoma exist and are innate to the tumor, the distinct signatures should be recoverable from various stages of melanoma.

In order to explore unrecognized structures within the melanoma expression space, we recently performed an unsupervised analysis of stage IV melanoma and delineated four distinct molecular subtypes. Superimposition of these signatures upon available outcomes data showed that an “immune response” gene signature was associated with a significantly better prognosis than a “proliferative” gene signature (8). Furthermore, the four-class organization was also validated in an independent set of stage III melanoma samples (8, 9). Here, we applied whole genome-DASL to a fully annotated set of 223 FFPE primary melanomas and provide evidence for high- and low-grade forms of the disease that are derived from the four-class structure and that are marked by differences in molecular profile and level of aggressiveness.
PATIENTS AND METHODS

Clinical samples and RNA extraction from FFPE tissue blocks

This study was approved by the local ethics committee of the Lund University (Dnr 191/2007).

Formalin-fixed paraffin embedded (FFPE) tissue blocks from primary cutaneous melanomas (CM, \(\geq 0.8 \) mm) diagnosed from 1995 to 2002 were collected from the Department of Pathology at Skåne University Hospital (\(n=205 \)) along with available acral lentiginous melanomas (ALM) and mucosal melanomas (\(n=18 \)) from the archives at the Department of Pathology (Table 1). Conventional clinical and clinicopathological parameters were retrieved from clinical chart records. Hematoxylin-eosin sections were confirmed to contain at least 70% tumor cells by a pathologist (A.M.). On average, 3x10µm sections were cut from each block and subjected to macro dissection. The RNA was extracted using High Pure RNA Paraffin Kit (Roche Diagnostics) and genomic DNA using the QiAmp DNA FFPE kit (Qiagen). Tumor infiltrating lymphocytes (TILs) were determined according to Clark et al. (10) and mitoses were calculated according to the AJCC staging system (1).

Gene expression analysis of melanoma

Four molecular subtypes in stage IV melanomas were recently identified (8). In the current study, we refined the subtype-specific centroids corresponding to the pigmentation, proliferative, normal-like and high immune response groups in the stage IV melanomas. Primary melanomas were analyzed using the WG-DASL assay (Illumina, San Diego) (herein referred to as the WG-DASL set). Further details on data processing and the four-class and two-grade SAM analyses are provided in Supplementary Methods. A flowchart describing the analysis is provided in Supplementary Figure 1.
Mutation screening using the Sequenom Oncocarta Panel v1

We used the Oncocarta Panel v1 (Sequenom, San Diego) to determine the mutation frequency of 19 oncogenes (238 mutations) including \textit{BRAF} and \textit{NRAS} in 129 melanomas. Briefly, we used 500ng FFPE DNA for the complete analysis of 24 primer mixes and 32 samples were analyzed for 12 primer mixes for each 384-well plate. Genomic DNA (100ng) from FFPE tissue was amplified using BioScore (Enzo Life Sciences, New York) and 500ng amplified DNA was subsequently used in the Sequenom analysis. Comparison between amplified and unamplified FFPE DNA were checked and revealed identical results. Results were analyzed using the Typer v1.4 software using an allele mutation frequency of 10% as cutoff. Manual inspection of suggested mutations was performed.

Outcome analysis and prognostic model in melanoma

Univariate and multivariate Cox survival analyses were performed using overall survival (OS) or relapse-free survival (RFS) as endpoints. Proportional hazards assumptions were checked graphically. Kaplan-Meier curves were compared with the log-rank test using full-time follow-up. The prognostic value of molecular grading was compared to subgroups stratified by age (≤ or > 50 years), Breslow thickness (≤ or > 2mm), gender, mitotic rate (≤ or > 6 mitoses/mm²), tumor infiltrating lymphocytes (TILs: absent or present) and type of melanoma (nodular melanoma (NM) or superficial spreading melanoma (SSM)). For the subgroup analysis of melanomas >2mm, thickness was stratified ≤ or > 4mm. Multivariate analysis was adjusted for AJCC stage (stage I and II) and molecular grade (high- and low-grade). All statistical analyses were performed using R software.

Pathway analysis
Gene ontology analysis was performed using the web-based software DAVID (11). Standard default settings were used in the Ingenuity Pathway Analysis (IPA®) software. Gene expression centroids used to predict high- and low-grade melanomas were used as input gene list.

Array CGH and genomic imbalance calculation

Array CGH and calculation of genomic imbalances were performed as described earlier (8).
RESULTS

Molecular subtypes in primary melanoma

We previously performed unsupervised global hierarchical clustering of stage IV melanomas and uncovered a hidden four-class molecular structure that was also evident in stage III melanomas upon independent validation (8). We thus set out to determine if these molecular signatures are retained in primary CMs by WG-DASL analysis of a cohort of 223 cases (Table 1). Of the 223 primary melanomas (N=210 cutaneous, N=13 mucosal) analyzed in the WG-DASL set, 26% were high-immune response, 28% were normal-like, 37% were pigmentation, 7% were proliferative; only 2% were unclassified (Figure 1A; Table 1). These findings indicate that the four molecular classes are preserved across all stages of melanoma.

Also consonant with our previous analysis of stage III and IV tumors, the high-immune and normal-like subtypes were associated with significantly better OS ($P=2.32\times10^{-8}$, log-rank test) and RFS ($P=1.98\times10^{-7}$, log-rank test) than the pigmentation and proliferative subtypes (Figure 1B and 1C). However, closer examination of the distribution of histologic parameters (Table 1) and the similarities in survival (Figure 1A and 1B) points at a potential convergence of the four-class structure into two distinct forms of the disease - a “high-grade” class of aggressive tumors (proliferative/pigmentation) and a “low-grade” class of more indolent lesions (high-immune/normal-like). This is further supported by investigation of specific gene expression patterns. Specifically, cell cycle associated genes were upregulated in both pigmentation and proliferative subtypes, while in the normal-like and high-immune response subtypes immune-response associated genes were upregulated (Figure 1A). This raised the possibility of creating a two-class “molecular grading” system which could be both biologically informative and clinically predictive of outcome. Another reason for constructing a two-class signature is due to statistical
power, which is increased when dividing the cohort in low- and high-grade melanomas instead of the four-group structure.

High- and low-grade forms of primary melanoma

To construct the binary classifier (i.e. “high-grade” and “low-grade”), we used the original high-immune/normal-like classes and the pigmentation/proliferative classes from the 57 stage IV melanomas (GSE22155). SAM analysis identified 1,864 genes distinguishing the combined high-immune/normal-like group from the pigmentation/proliferative group in the stage IV melanoma set. When this two-group signature was applied to the 223 primary melanomas using nearest centroid classification, we found that 103 cases belonged to “low-grade” category, 93 cases to “high-grade” group and 27 cases belonged to neither group (Table 1; Figure 1D). Thus, in subsequent analyses, we focused on the 196 classifiable cases.

The median follow-up duration for our cohort was ten years (range 0.1-14.5 years). As shown in Figure 1E-F, there were highly significant differences between the low- and high-grade melanomas both in OS (HR=3.66; 95%CI 2.40-5.58; p=2.48x10^{-11}) and in RFS (HR=4.94; 95%CI 2.84-8.59; p=9.16x10^{-10}). As outlined in Table 1, high-grade tumors were significantly associated with thicker tumors, increased AJCC stage, higher mitotic rates (>6 mitoses/mm²), a lower prevalence of tumors with brisk TILs and a greater frequency of nodular melanomas. In other words, primary melanomas with the high-grade signature possess many of the known phenotypic indicators of poor outcome. Having applied the two-grade signature to the WG-DASL set, we also externally validated the two-grade signature on two independent public data sets. Reassuringly, high-grade tumors were associated with poorer outcomes (Figure 2) in both stage III melanomas (N=29; \(P=0.003, \text{log-rank test}\)) (9) as well as primary melanomas (N=79; \(P=0.04, \text{log-rank test}\)) (5). In the primary melanoma dataset (5), we also observed a significant correlation between ulceration and
thickness and the molecular grade (p=0.04 and p=0.02, Fisher’s Exact Test and Mann-Whitney Test, respectively). Taken together, high and low-grade forms of melanoma appear to be recoverable from all stages of disease, to be consistently predictive of survival and to be reproducible across technical platforms and independent data sets.

We next determined if the high and low-grade forms were recognizable within clinical subgroups of melanoma in the WG-DASL set. Among the various features examined (CM, subtype and gender, Figure 3), high-grade melanomas consistently exhibited worsened RFS and OS compared to their low-grade counterparts. For the most established prognostic indicators, high-grade tumors appeared to be more mitotically active, thicker and more ulcerated than low-grade tumors (Figure 4A). Because of the apparent relationship between tumor grade and thickness, we next assessed only melanomas ≥2mm and found that both the molecular forms were still preserved and that a high-grade signature still predicted worse RFS (HR=2.59; 95%CI 1.09-6.16, Figure 4C) and OS (HR=3.10; 95%CI 1.40-6.85, Figure 4D). We proceeded by investigating this observation in the Winnenpeninckx data set that includes 83 primary melanomas (5). Importantly, we could confirm the prognostic impact of molecular grade in thick melanomas (HR=2.56; 95%CI 1.08-6.07) (Figure 4E). Notably, tumor thickness, mitoses, TILs and ulceration were not predictive of prognosis in melanomas ≥2 mm in the Winnenpeninckx data set (P>0.05, log-rank test). Thus, tumor thickness is unlikely to account for the entire discriminatory capabilities of molecular grading.

Having established the prognostic power of the grade signature and its association with conventional clinical parameters, we next set out to compare the grade signature with other prognostic factors (Table S1). For the entire cohort, univariate analysis (RFS) revealed that molecular grading (HR=4.94; 95%CI 2.84-8.59) was one of the most significant determinants of outcome along with tumor thickness (HR=5.30; 95%CI 2.99-9.41), mitotic rate (HR=2.93; 95%CI
For melanomas ≥2mm, only molecular grade retained its discriminatory power (HR=3.10; 95% CI=1.4-6.85). The same kind of analysis was not possible in tumors <2mm due to the low number of events in this group.

Finally, we adjusted for molecular grading and staging (stage I vs. II) in a Cox multivariate model and found that the two-grade signature adds independent prognostic value in the whole cohort (HR=2.51, 95% CI=1.11-5.67), as did the AJCC staging system (HR=2.96, 95% CI=1.12-7.38). Taken together, these results indicate that molecular tumor grade is an independent prognostic factor in primary melanoma.

Mutation screening of low- and high-grade melanomas

The presence of recurrent oncogenic mutations in melanoma may further influence the molecular structure clarified from RNA profiling. Consequently, we analyzed 238 somatic mutations (19 oncogenes) in 129 of the 223 primary melanomas (N=52, high-grade tumors; N=62, low-grade tumors). In this cohort, 38 cases (30%) harbored **BRAF** mutations (29 were V600E, six were V600K, one was V600R, one was K601E and one case was L597S), 23 tumors (18%) had **NRAS** mutations (all Q61 changes) and 6 specimens (5%) contained **MET** mutations; there were also single cases of **CDK4**, **KIT** and **EGFR** mutations.

We found a higher frequency of **BRAF** mutations among low-grade compared to high-grade melanomas (39% vs. 19%; \(P=0.03 \), Fisher’s Exact Test; Table 1) and an inverse relationship, though not statistically significant, for **NRAS** mutations (11% vs. 25%; \(P=0.06 \), Fisher’s Exact Test). **BRAF** mutations were more common in melanomas <2mm compared to those ≥2mm (38% vs. 23%, \(P=0.06 \), Fisher’s Exact Test) - a finding that is consistent with a previous report (12). After adjusting for Breslow thickness in a logistic regression model, no significant difference in **BRAF** or **NRAS** mutation frequency was observed between low- and high-grade melanomas (\(P=0.18 \) and
However, even among BRAF-mutated melanomas, the grade signature is still predictive of outcome (Figure S2; $P=0.05$, log-rank test). Although the number of cases was small, the overall picture suggests that low-grade tumors tend to harbor BRAF mutations and that the high-grade tumors were associated with both NRAS and BRAF mutations. These findings do indicate, however, that the molecular grades are unlikely to be driven by BRAF and NRAS mutations alone.

Defining biological characteristics of the predictive gene signature

In order to obtain a more comprehensive view of the biological systems underlying the molecular grade signature, we performed gene ontology analysis of the predictive genes. This approach highlighted wound response, immune response, DNA repair and cell cycle as biological processes (Figure 1D). It is worth noting that the observed expression of immune signature genes is supported by an association between a brisk pattern of TILs and the low-grade form of melanoma (Table 1, Figure 5).

Beyond ontology, Ingenuity Pathway Analysis (IPA®) identified DNA damage/repair and cell cycle processes as important pathways (Table S2). Notably, “Hereditary Breast Cancer signaling” and “BRCA1 DNA Damage Response” emerged as the two most significant networks ($p=10^{-10}$ and $p=10^{-8}$, respectively) associated with high-grade tumors. In contrast, there were no strong pathway links to low-grade melanomas though upregulation of the NOTCH pathway was detected by IPA®.

There are several potential biologic rationales for the relationship between high-grade melanomas and the BRCA1/DNA damage response. One possibility is that high-grade melanomas harbor more genomic derangements thereby stimulating an ongoing damage response. To test this hypothesis, we analyzed available array CGH data from the GSE22155 data collection and
indeed found a significantly increased level of genomic imbalance among high-grade metastatic melanomas (Figure 5A; \(P < 0.01 \), Mann-Whitney test). Although we had array CGH data only on a small fraction of the primary cases (\(n = 12 \)), a trend towards greater genomic instability among high-grade primary melanomas was observed (\(P = 0.16 \), Mann-Whitney test). Since an acral melanoma (a subtype known to be particularly affected by chromosomal imbalances (13)) was classified as low-grade and was the single outlier among the low-grade melanomas, we performed a sensitivity analysis and subsequently found a significant difference in genomic instability (\(P = 0.02 \), Mann-Whitney test). However, these data should be interpreted with caution, since the number of tumors with complementary array CGH data was small.

Another possibility for the connection between DNA damage response and high-grade melanomas reflects coordinated transcriptional. When the 196 samples were ranked by signature correlation from low to high grade, there was an increasing gradient of expression for \(MITF \), its upstream regulator \(SOX10 \) and its downstream targets, \(TYR \) and \(MLANA \) (Figure 5B). Expression levels of \(BRCA1 \) DNA damage response pathway genes, such as \(BRCA1 \), \(ATM \) and \(FANCA \), showed a similar trend with \(MITF \) and its targets. This finding is particularly intriguing given the recent report that \(BRCA1 \), \(FANCA \) and \(ATM \) are transcriptional targets of \(MITF \) (14, 15). As expected, immune-related genes, such as \(CD3E \), \(CD3D \) and \(LCK \), followed an inverse pattern of expression.
DISCUSSION

Through molecular profiling, we provide evidence of low- and high-grade forms of primary melanoma. Compared to low-grade melanomas, high-grade lesions are thicker, more mitotically active and more ulcerative - all of which are known features of worsened survival. There are several notable elements in this study. First, both the four-class structure and the molecular grading have now been recovered from melanomas in all stages of progression, and the two-grade signature was independently validated in two gene expression data sets. Thus, our current and previous study (8) point to a molecular architecture that is recognizable even at the earliest stages of melanomagenesis. Second, with 18,000 genes in our molecular palette, this is the broadest application of the WG-DASL technology for archival melanoma specimens to date. In addition, we cross-examined 238 mutations in 19 oncogenes to create a strong horizontally-integrated data platform. With continued optimization of more refined techniques, barriers to the molecular analysis of primary melanomas should be viewed as surmountable. Third, with over 200 primary melanomas analyzed, the study is of sufficient size to demonstrate the power of molecular grading in predicting outcome even after adjusting for AJCC staging. Furthermore, molecular grading has immediate clinical implications. In general, most thin melanomas eventuate into a benign course. However, the outcomes of melanomas ≥2mm remain less certain (1). The decision to administer potentially toxic and costly adjuvant therapies in patients with thick melanomas could be made more judiciously with these molecular signatures. In the current study, we demonstrate that the molecular grade signature is superior to tumor thickness in predicting prognosis among thick melanomas (≥2 mm). Although additional replication and refinement are required, one obvious possibility is to focus treatments on patients with high-grade melanomas.
Beyond the possible clinical applications of tumor grading, the molecular underpinnings of the subclassification are also provocative. The largest subgroup in primary melanomas is grounded in an MITF-based signature, suggesting that this subgroup is highlighted by a crucial biologic driver. It is interesting to note, for instance, that MITF and AKT3 are overexpressed in the high-grade melanomas, which are associated with proliferative tumors. Both genes have also been shown to be amplified or upregulated in melanoma (16, 17) and may play significant roles in melanoma mitogenicity along with other species revealed by these signatures. Even more exciting is the nexus between tumor grade, MITF and DNA damage response. In a smaller earlier series, Kaufmann et al. adopted a supervised approach and also identified DNA repair genes, including BRCA1, in metastasis-prone melanomas (18). Jewell et al. found that overexpression of DNA repair genes RAD51 and RAD52 were also associated with an increased risk of relapse (7). More recently, a report identified BRCA1 and ATM - two components of the signatory pathway in high-grade tumors - as targets of MITF (14). Furthermore, in ChIP-Seq experiments, BRCA1 and FANCA promoters (high-grade genes; Figure 5B) were shown to be occupied and regulated by MITF (15). Through this analysis and others recently published, a novel intersection is beginning to emerge between MITF and DNA repair, particularly the BRCA1 pathway, though the mechanisms are far from understood.

The physiologic determinants of low-grade melanomas are less well formulated than the high-grade ones. The positive survival impact of the immune-gene signature, which is a critical component of low-grade melanomas, was shown in earlier analyses (8, 9) and reproduced in the current study. In primary melanomas, the presence of TILs is an established favorable prognostic factor (19, 20) and is also closely associated with our high-immune subclass.

A higher frequency of NRAS mutations was found in high-grade melanomas though this was far from absolute. BRAF mutations were not related to RFS in a recent study (21) though there
have been reports of specific histomorphometric features associated with \textit{BRAF} mutations (22). It is possible that \textit{BRAF} and \textit{NRAS} define the nature of the proliferative apparatus but do not orchestrate the metastatic program that determines tumor grade and melanoma aggressiveness.

There are some limitations that are practically tied to this study. The case samples for this study were derived from a single institution in Sweden. Although it is imperative that the findings be replicated in other populations, one could also argue that there is greater consistency in terms of diagnosis and treatment and more reproducibility if a homogeneous population is analyzed. It is reassuring however, that our molecular grades were validated in other publicly available independent data sets. Also, despite a reasonable sample size, it has not been possible to correlate melanoma grade with all known pathologic features. Efforts are underway to enlarge the cohort size, to involve additional case sites and to further explore phenotype-genotype correlates.

In conclusion, we undertook a molecular approach to melanoma and uncovered a hidden structure that is technically reproducible, biologically-based and clinically relevant. The formulation of high- and low-grade melanomas represents a synthesis of various technological capabilities currently available in cancer profiling. Further replication in other populations will ideally lead to a more generalized molecular tool, which can be deployed to assist clinicians in both prognostic and therapeutic decision making.
ACKNOWLEDGEMENTS

Funding for the research was received from the Swedish Cancer Society, the Crafoord Foundation, the Mrs. Berta Kamprad Foundation, the Gunnar Nilsson Cancer Foundation, the Lund University Hospital Research Funds, Lund University Medical Faculty/ALF, BioCare and the Gustav Vth Jubilee Foundation. This activity was also supported in part by the United States National Institutes of Health (K24 CA149202 and P50 CA93683) and by the generous donors to the MGH Millennium Melanoma Fund.
REFERENCES

FIGURE LEGENDS

Figure 1. Gene expression patterns in primary melanomas. (A) Primary melanomas were classified in the four molecular subtypes using a nearest-centroid approach with a heat map displaying up and down regulated genes in their respective class. Kaplan-Meier analyses showing OS (B) and RFS (C) differences between the molecular subtypes. (D) Heat map of the ~1,500 genes that were used to distinguish “high” and “low” grade primary melanomas. Kaplan-Meier analyses demonstrating significant differences in OS (E) and RFS (F) using molecular grading.

Figure 2. Molecular grading and Kaplan-Meier analyses for (A) stage III melanomas (Bogunovic et al. (9)) and (B) primary melanomas (Winnepenninckx et al. (5)) using public data sets. Significant differences in survival rates were found for both cohorts corroborating the findings in the primary melanoma dataset.
Figure 3. Survival analysis in subgroups of primary melanoma. Differences in RFS (A-E) and OS (F-J) between high and low grade melanomas among various subgroups: cutaneous melanomas only (A, F); superficial spreading melanoma, SSM (B, G); nodular melanomas, NM (C, H); males (E, I) and females (E, J).

Figure 4. Features of high-grade melanomas. (A) High-grade primary melanomas were significantly associated with increased mitotic rate, thickness and ulceration. (B) Heat map showing that both molecular grades were evident in melanomas ≥2mm. (C, D) Among melanomas greater than 2mm, molecular grading was still predictive of survival. (E) Subset Kaplan-Meier analysis of the Winnenpeninckx data set including melanomas ≥2mm demonstrates significant difference in patient survival. Breslow thickness: black- >4mm, grey-2-4mm; ulcerated - darkgrey, no ulceration – lightgrey; TILs; brisk-lightgrey, nonbrisk-darkgrey and absent-black; white - absent data.

Figure 5. Biologic correlates of molecular grading. (A) High-grade melanomas were associated with more genomic imbalance in both Stage IV and primary melanomas. (B) Ranking of specimens from low-to-high grade molecular profiles revealed parallel increases in MITF-related genes (MITF, TYR, SOX10 and MLANA) and BRCA-related genes (BRCA1, ATM and FANCA). Conversely, there was a diminution of immune-related genes CD3E, CD3D and LCK.
Table 1. Clinical characteristics and molecular classes.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Entire Cohort (N=223)</th>
<th>Molecular Class (N=220)</th>
<th>Low-grade (N=103)</th>
<th>High-grade (N=93)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (range)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤50 years</td>
<td>66 (14-101)</td>
<td>66 (15-92)</td>
<td>63 (15-91)</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>>50 years</td>
<td>177</td>
<td>47</td>
<td>24</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>Gender*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68</td>
</tr>
<tr>
<td>Male</td>
<td>114</td>
<td>29</td>
<td>49</td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>Female</td>
<td>109</td>
<td>28</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutation status*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAF mutation</td>
<td>38</td>
<td>12</td>
<td>25</td>
<td></td>
<td>0.17</td>
</tr>
<tr>
<td>NRAS mutation</td>
<td>23</td>
<td>3</td>
<td>7</td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>BRAF/NRAS wildtype</td>
<td>68</td>
<td>20</td>
<td>33</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>Median thickness* [mm(range)]</td>
<td>1.8 (0.6-25)</td>
<td>1.6 (0.7-14)</td>
<td>1.2 (0.7-14)</td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Breslow thickness, No.*</td>
<td>34</td>
<td>11</td>
<td>28</td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td><1 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>1-2 mm</td>
<td>69</td>
<td>20</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-4 mm</td>
<td>45</td>
<td>14</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>4 mm</td>
<td>48</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site, No.*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Head/Neck</td>
<td>30</td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunk</td>
<td>128</td>
<td>41</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extremities</td>
<td>37</td>
<td>9</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subungual</td>
<td>18</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanoma type, No.*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>SSM</td>
<td>102</td>
<td>33</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM</td>
<td>78</td>
<td>15</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMM</td>
<td>20</td>
<td>6</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALM</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

p-value indicates statistical significance.
<table>
<thead>
<tr>
<th>Mucosal</th>
<th>13</th>
<th>2</th>
<th>0</th>
<th>9</th>
<th>1</th>
<th><0.01</th>
<th>1</th>
<th>11</th>
<th><0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitotic rate, No. per mm²*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤6 mitoses per mm²</td>
<td>135</td>
<td>38</td>
<td>37</td>
<td>46</td>
<td>12</td>
<td><0.01</td>
<td>67</td>
<td>54</td>
<td><0.01</td>
</tr>
<tr>
<td>>6 mitoses per mm²</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>24</td>
<td>3</td>
<td></td>
<td>2</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Ulceration*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>68</td>
<td>10</td>
<td>5</td>
<td>42</td>
<td>10</td>
<td><0.01</td>
<td>10</td>
<td>11</td>
<td><0.01</td>
</tr>
<tr>
<td>Absent</td>
<td>95</td>
<td>29</td>
<td>34</td>
<td>26</td>
<td>5</td>
<td></td>
<td>59</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>AJCC stage, 2009 edition*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA/B</td>
<td>3/61</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td>50</td>
<td>7</td>
<td><0.01</td>
</tr>
<tr>
<td>IIA</td>
<td>21</td>
<td>19</td>
<td>40</td>
<td>21</td>
<td>4</td>
<td></td>
<td>9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>IIB</td>
<td>34</td>
<td>26</td>
<td>16</td>
<td>41</td>
<td>7</td>
<td></td>
<td>4</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>IIC</td>
<td>28</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td></td>
<td>3</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>TILs*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>54</td>
<td>3</td>
<td>14</td>
<td>29</td>
<td>6</td>
<td><0.01</td>
<td>15</td>
<td>33</td>
<td><0.01</td>
</tr>
<tr>
<td>Non-brisk</td>
<td>76</td>
<td>16</td>
<td>18</td>
<td>34</td>
<td>8</td>
<td></td>
<td>29</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Brisk</td>
<td>35</td>
<td>20</td>
<td>7</td>
<td>7</td>
<td>1</td>
<td></td>
<td>25</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Clark level*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td><0.01</td>
<td>4</td>
<td>0</td>
<td><0.01</td>
</tr>
<tr>
<td>III</td>
<td>83</td>
<td>19</td>
<td>40</td>
<td>21</td>
<td>4</td>
<td></td>
<td>52</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>92</td>
<td>26</td>
<td>16</td>
<td>41</td>
<td>7</td>
<td></td>
<td>37</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td></td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

*p-values were calculated using a Chi-square, Mann-Whitney test or ANOVA. Subungual site was excluded in the statistical analysis as were mucosal and Clark level II due to low number of patients in each group.
Figure 1
Figure 2

A) Low-grade, n=11
High-grade, n=18

Survival Fraction (%)

Time (Days)

B) Low-grade, n=39
High-grade, n=40

Survival Fraction (%)

Time (Years)

p=0.003

p=0.04
Figure 3

Relapse-free survival

A) Cutaneous, n=174

B) SSM, n=84

C) NM, n=67

D) Males, n=95

E) Females, n=89

Overall survival

F) Cutaneous, n=180

G) SSM, n=92

H) NM, n=68

I) Males, n=100

J) Females, n=96

Survival Fraction (%)

Time (Years)

Low-grade, n=102

High-grade, n=78

Low-grade, n=69

High-grade, n=23

Low-grade, n=18

High-grade, n=20

Low-grade, n=64

High-grade, n=49

Low-grade, n=47

High-grade, n=48

Low-grade, n=50

High-grade, n=49

Low-grade, n=54

High-grade, n=42

Survival Fraction (%)

Time (Years)

Low-grade, n=102

High-grade, n=78

Low-grade, n=69

High-grade, n=23

Low-grade, n=18

High-grade, n=20

Low-grade, n=64

High-grade, n=49

Low-grade, n=47

High-grade, n=48

Low-grade, n=50

High-grade, n=49

Low-grade, n=54

High-grade, n=42

Survival Fraction (%)

Time (Years)

Low-grade, n=102

High-grade, n=78

Low-grade, n=69

High-grade, n=23

Low-grade, n=18

High-grade, n=20

Low-grade, n=64

High-grade, n=49

Low-grade, n=47

High-grade, n=48

Low-grade, n=50

High-grade, n=49

Low-grade, n=54

High-grade, n=42

Survival Fraction (%)

Time (Years)

Low-grade, n=102

High-grade, n=78

Low-grade, n=69

High-grade, n=23

Low-grade, n=18

High-grade, n=20

Low-grade, n=64

High-grade, n=49

Low-grade, n=47

High-grade, n=48

Low-grade, n=50

High-grade, n=49

Low-grade, n=54

High-grade, n=42

Survival Fraction (%)

Time (Years)

Low-grade, n=102

High-grade, n=78

Low-grade, n=69

High-grade, n=23

Low-grade, n=18

High-grade, n=20

Low-grade, n=64

High-grade, n=49

Low-grade, n=47

High-grade, n=48

Low-grade, n=50

High-grade, n=49

Low-grade, n=54

High-grade, n=42

Survival Fraction (%)

Time (Years)
B) **Melanomas ≥2mm (N=79)**

Low-grade	High-grade

- Breslow thickness
- TILs
- Ulceration

AURKB	CDK6
ETV5 | FANCB
PCNA | EZH2
E2F1 | BRCA1
CDK4 | CXCL4
CXCL14 | IFNGR1
CXCL12 | CXCL14
CCL21 | TGFBR2
TGFRB | NOTCH3
PDGFRB |

Low Expression	High

C) **Relapse-free survival**

- Low-grade, n=19
- High-grade, n=60

D) **Overall survival**

- Low-grade, n=19
- High-grade, n=64

E) **Primary melanomas (>2 mm), Winnepenninckx et al.**

- Low-grade, n=22
- High-grade, n=30
Figure 5

A) Stage IV melanoma

- Fraction of the genome altered (%)
- Low-grade vs. High-grade

- p<0.01

Primary melanoma

- Fraction of the genome altered (%)
- Low-grade vs. High-grade

- p=0.16

B) Molecular Grade

Low | High

- Ulceration
- Breslow thickness
- TILs
- MITF
- TYR
- SOX10
- MLANA

- BRCA1
- ATM
- FANCA

- CD3E
- CD3D
- LCK

Low | Expression | High
MOLECULAR PROFILING REVEALS LOW- AND HIGH-GRADE FORMS OF PRIMARY MELANOMA

Katja Harbst, Johan Staaf, Martin Lauss, et al.

Clin Cancer Res Published OnlineFirst June 6, 2012.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-12-0343</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2012/06/06/1078-0432.CCR-12-0343.DC1</td>
</tr>
<tr>
<td>Author Manuscript</td>
<td>Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.</td>
</tr>
</tbody>
</table>

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/early/2012/06/06/1078-0432.CCR-12-0343.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.