CCR Translations Commentary for (CCR-12-2627) Kong et al., Suppression of Human glioma Xenografts with 2nd Generation IL13R-Specific Chimeric Antigen Receptor-Modified T cells

Corresponding author: Laura A Johnson, PhD

Assistant Professor, Brain Tumor Immunotherapy Program

Neurosurgery Division, Department of Surgery,

Duke University Medical Center, Box 3050, Durham NC 27710

Email: laura.a.johnson@duke.edu

The author has no conflict of interest to report.

Title: Model T muscle CARs can treat brain tumors

Summary: Despite standard treatment with resection, radiation and chemotherapy, glioblastoma (GBM) remains a deadly disease with a dismal prognosis. Redirecting patient T cells to target the GBM-associated antigen, IL13Ra2, offers a promising translational immunotherapy with the potential to make a meaningful impact for patients with this disease.

Text: In this issue of Clinical Cancer Research, Kong et al. (1) demonstrate use of a second generation chimeric antigen receptor (CAR) modified to retarget autologous T cells to the interleukin 13 receptor alpha 2 (IL13Ra2), preferentially expressed on glioma tumors.

Malignant primary brain tumors account for more deaths than cancer of the kidney or melanoma, and now represent the most common cause of cancer death in children and young adults. Current therapy for glioblastoma (GBM), the most common and malignant of these tumors consists of surgical resection followed by radiation and chemotherapy, which is limited by toxicity to systemic tissues and surrounding eloquent brain. Despite aggressive therapy, these tumors remain universally fatal; therefore, it is important to develop alternate therapies for this deadly disease.

In contrast to current non-specific therapies, immunotherapy, which has recently been shown to be effective in several Phase III clinical trials for patients with metastatic melanoma and prostate cancer, offers a specific targeted approach for the eradication of tumors (2, 3). Natural selection and evolution have provided us with an immune system capable of responding to cancerous cells, and destroying them so long as they can be identified as ‘dangerous’. However, an ongoing evolutionary arms race driven by mutations in rapidly dividing cancerous cells has also resulted in tumors with the ability to ‘hide’ from the immune system, by suppression of the major-histocompatibility complex (MHC) and various antigen-presentation mechanisms associated with this pathway, and to attenuate the immune response against them. Additionally, many tumor associated antigens are overexpressed ‘self’ antigens, shared between
tumors and normal tissues. Due to the basic immunological process of thymic selection, most T cells equipped with receptors that would otherwise recognize and destroy these antigens have already been eliminated to prevent autotoxicity. Thus, the remaining pool of potentially tumor-reactive T cells tend to be fairly infrequent in number, and of low avidity and reactivity for the selected antigen, so mount a poor endogenous anti-tumor immune response.

One particular type of immunotherapy can overcome each of these problems. It involves adoptive transfer of genetically re-directed T cells, and stands out as a promising treatment able to eliminate brain tumor deposits in patients with metastatic cancer (4, 5). Chimeric antigen receptors (CAR), combine ex vivo engineered antigen recognition regions with T cell signaling molecules that induce T cell activation upon encounter of target antigen (6). Expressing CARs in T cells results in T cell activation very similar to that observed by triggering the endogenous T cell receptor (TCR). However, unlike TCR, CAR receptors are not MHC-restricted, therefore, the same CAR receptor can be used for any patient regardless of haplotype, and can additionally circumvent tumor-mediated T cell escape mechanisms such as the loss of MHC molecules. Additionally, CARs can be further engineered, adding co-stimulatory and anti-apoptotic molecules to such as CD28 and 4-1BB, resulting in 2nd and 3rd generation constructs, respectively, conferring improved activity and survival to T cells.

Early clinical trials using CARs have generally used 1st generation vector designs whereby T cells didn’t persist (7), or showed high potency against shared self-tissue antigens (HER2/ERBB2) resulting in severe toxicity (8). However, recent clinical trials using improved 2nd and 3rd generation CAR vectors targeting CD19 to treat patients with disseminated lymphoma have been safe and produced dramatic clinical responses in patients with advanced disease (9-11). As CARs are remarkably powerful, demonstrated by the elimination of all target antigen-expressing cells, including those in non-malignant tissues in patients receiving CAR transduced cells (9), the target antigen must be carefully selected to reduce the risk of life-threatening autoimmunity.

While tissues outside the CNS may undergo collateral damage without causing death, in the brain this toxicity would likely be fatal. To avoid CNS toxicity while targeting brain tumors, selected antigenic targets must be present only on tumors and these must be recognized with exquisite specificity by the immune system. Brain tumors are known to express tumor-specific antigens, including IL13Ra2; in comparison, normal tissues tend to express IL13Ra1.

In this issue, Kong et al. have built upon previous works using ‘zetakine’ CARs to target IL13Ra2 (12). Here, the authors have generated a 2nd generation IL13 ‘zetakine’ CAR, incorporating CD28 co-stimulation, with dual IL13 mutations specifically designed to decrease binding to IL13Ra1, while increasing avidity for IL13Ra2 (Figure 1) (1). They show specificity and function against IL13Ra2 expressing gliomas in vitro, resulting in Type 1 immune cytokine production, T cell proliferation, and target cell lysis. In vivo, using direct intratumoral CAR T cell injection, this translates into increased T cell infiltration of tumor, and treatment of 6 day established intracranial glioma in a nude rat xenograft model, demonstrated by brain scan imaging, immunohistochemistry, and increased animal survival.
Many potentially active therapeutic agents for brain tumors are ineffective by systemic administration because they are unable to cross the blood-brain barrier (BBB). As intracerebral administration bypasses the BBB, it increases the amount of treatment that can be successfully delivered into the brain, while minimizing the potential for systemic toxicity and improving treatment effect. In their experiments, Kong et al. deliver CAR T cells directly to the tumor bed in vivo. This is clinically relevant, as intracavitary bolus injection and convection–enhanced delivery (CED) are regularly used clinically to deliver therapeutic agents directly intratumorally to patients with brain tumors.

Although such potent therapeutic intervention should be undertaken with caution, this type of gene-engineered tumor immunotherapy has the potential to be translated into meaningful treatment for patients with brain tumors.

Figure Legend:

Figure 1. Chimeric antigen receptor (CAR) gene engineered tumor immunotherapy. Autologous T cells present in patient peripheral blood leukocytes (PBL) are gene engineered to express an antigen specific receptor, double mutant IL13 (E13K.R109K), with increased binding to IL13Rα2 on tumors, while minimizing binding to IL13Rα1 on normal tissues. *Ex vivo* PBL are transduced with mutated IL13 encoding retrovirus, incorporating an additional CD28 co-stimulatory motif tied to CD3ζ T cell signaling chain. Resulting IL13Rα2 reactive T cells are then expanded prior to intratumoral injection into GBM tumor-bearing hosts, specifically destroying IL13Rα2+ tumors, while sparing IL13Rα12− normal brain tissues.
Figure 1
Model T muscle CARs can treat brain tumors
Laura A. Johnson

Clin Cancer Res Published OnlineFirst September 27, 2012.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-12-2627

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2012/10/31/1078-0432.CCR-12-2627.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.