Limited Induction of Tumor-cross-reactive T Cells without a Measurable Clinical Benefit in Early Melanoma Patients Vaccinated with Human Leukocyte Antigen-Class I-Modified Peptides

Paola Filipazzi1*, Lorenzo Pilla1,§*, Luigi Marian2, Roberto Patuzzo3, Chiara Castelli1, Chiara Camisaschi1, Andrea Maurichi3, Agata Cova1, Gianluigi Rigamonti1, Felicetta Giardino1, Annabella Di Florio3, Marco Asoli1, Paola Frati1, Gloria Sovena1,§, Paola Squarcina1, Michele Maio4,§, Riccardo Danielli4,§, Vanna Chiarion-Sileni6, Antonello Villa7, Claudia Lombardo8, Gabrina Tragni9, Mario Santinami3, Giorgio Parmiani1,§, and Licia Rivoltini1

1Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; 2Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; 3Melanoma and Sarcoma Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; 4Division of Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy; 5Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy; 6Medical Oncology Unit, Istituto Oncologico Veneto-IRCCS, Padova, Italy; 7Microscopy and Image Analysis, Department of Neurosciences and Biotechnology, Università degli Studi di Milano, 20052 Milan, Italy; 8Immunohematology and Transfusion Division, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; 9Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.

*PF and LP contributed equally to this work.

§Present affiliations:
Lorenzo Pilla, Unit of Medical Oncology 2, Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
Gloria Sovena, Cytogenetics Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy.
Giorgio Parmiani, Immuno-biotherapy of Melanoma and Solid Tumors, San Raffaele Foundation Scientific Institute, Milan, Italy.

Running title
Limited antitumor T cells upon APL vaccine in early melanoma

Keywords
Altered peptide ligands, TCR affinity, immunomonitoring, tumor recognition, adjuvant treatment.

Financial support
This work was supported by grants from the Italian Association for Cancer Research (AIRC), the European Community, and the Istituto Superiore di Sanità (Rome).

Corresponding author
Licia Rivoltini, M.D., Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, via G. Venezian 1, 20133, Milan, Italy.
Tel. +39.02.2390.3245, Fax +39.02.2390.2154, e-mail: licia.rivoltini@istitutotumori.mi.it

Conflicts of interest
The authors have no potential conflicts of interest to disclose.
Manuscript notes

Word count (excluding references): 4939

Total number of figures: 5
Statement of translational relevance

Cancer vaccines are frequently based on modified peptides, or altered peptide ligands (APL), to enhance their immunogenicity. Despite the large clinical application, this strategy has rarely shown convincing clinical efficacy in advanced cancer patients. To assess whether modified tumor peptides could be more successful in early disease, we designed a randomized phase II trial to test adjuvant vaccination in stages IIB/C-III melanoma patients. These patients showed no significant improvement in disease-free survival or overall survival when undergoing immunization compared with controls. An extensive immunomonitoring revealed that patients’ T cells that had been efficiently primed by the modified peptides were only marginally reactive in the presence of cognate native epitopes and showed low or absent cross-recognition of melanoma cells. Our results underline the importance of monitoring true anti-tumor activity in vaccine-induced immune responses and suggest that APL-based vaccines require serious and definitive reconsideration as a treatment strategy.
Abstract

Purpose: The progressive immune dysfunctions that occur in advanced melanoma patients make them unlikely to efficiently respond to cancer vaccines. A multicenter randomized phase II trial was performed to test whether immunization with modified HLA-class I tumor peptides in the context of adjuvant therapy results in better immunological responses and improved clinical outcomes in early melanoma patients (stages IIB/C-III).

Experimental Design: 43 patients were enrolled to undergo vaccination (n=22) or observation (n=21). The vaccine included four HLA-A*0201-restricted modified peptides (Melan-A/MART-1_{[27L]}, gp100_{[210M]}, NY-ESO-1_{[165V]}, and Survivin_{[97M]}) emulsified in Montanide ISA51 and injected subcutaneously in combination with cyclophosphamide (300 mg/m²) and low dose IL-2 (3×10⁶ IU). The immune responses were monitored using ex vivo IFNγ-ELISpot, HLA/multimer staining, and in vitro short-term peptide sensitization assays.

Results: Vaccination induced a rapid and persistent increase in specific effector memory CD8⁺ T cells in 75% of the patients. However, this immunization was not associated with any significant increase in disease-free or overall survival as compared to the observation group. An extensive immunological analysis revealed a significantly reduced cross-recognition of the corresponding native peptides and, most important, a limited ability to react to melanoma cells.

Conclusions: Adjuvant setting is an appealing approach for testing cancer vaccines because specific CD8⁺ T cells can be efficiently induced in most vaccinated patients. However, the marginal antitumor activity of the T cells induced by modified peptides in this study largely accounts for the observed lack of benefit of vaccination. These findings suggest to reconsider this immunization strategy, particularly in early disease.
Introduction

Evidence suggests that only a small subset of patients entering cancer vaccine trials may actually benefit from treatment (1,2). This remains a major limitation and underscores the need for more effective immunization strategies. The limited success of vaccine trials has been associated with mechanisms that interfere with immunization as tumors progress, implying that tumor vaccines cannot reach their maximal potency in the presence of metastatic/bulky cancers (3). Indeed, patients with advanced melanoma display systemic accumulation of CD14⁺CD11b⁻HLA-DRneg/low myeloid-derived suppressive cells (MDSCs) that are associated with impaired immune responses to cancer vaccines (4,5). We previously reported that regulatory T cells (Tregs) expressing LAG-3, which potentiates immune suppressive activity, also accumulate in the peripheral blood and tumor lesions of metastatic melanoma patients (6). Correspondingly, patients with earlier forms of cancer may be more likely to display proper immune responses, resulting in more effective tumor control upon vaccination. Thus, we designed a phase II randomized trial comparing multipeptide vaccination to observation alone in stage IIB/C and stage III melanoma patients to determine whether a cancer vaccine could induce T-cell responses capable of preventing or delaying recurrence after radical surgery. To maximize the effect of vaccination, different immunological features of the vaccine schedule were carefully addressed. Because immunization with multiple epitopes is more effective than single-epitope vaccines (7) and reduces the risk of antigen loss due to tumor immunoselection (8,9), we chose a cocktail of four human leukocyte antigen (HLA)-A*0201-restricted peptides that were derived from highly expressed tumor antigens (e.g., MelanA/MART-1, gp100, and NY-ESO-1), including molecules involved in neoplastic transformation (e.g., survivin) (10). Because of the poor immunogenicity of tumor self proteins due to immune tolerance (8), the peptides were utilized as altered peptide ligands (APLs), which contain single amino-acid substitutions that improve the peptides’ affinity for the HLA peptide-binding site and increase immunogenicity (11–13). The
vaccine was administered in combination with low-dose cyclophosphamide to negatively affect Treg cell function (14,15) and a later low-dose IL-2 to promote T-cell expansion (16).

This study reports the end-of-study immunological and clinical data showing that the administration of an APL-based vaccine to early melanoma patients induces rapid and persistent specific T-cell responses in vaccinated individuals compared with those of controls but does not result in any measurable clinical benefit. Systematic and detailed analyses of vaccine-induced immune responses showed that only a small number of T lymphocytes effectively cross-recognized melanoma cells. This limitation is likely the major factor responsible for the lack of benefit from APL vaccination.

Patients and Methods

Study design and endpoints
This report describes an open-label phase II randomized study of a multipeptide vaccination in HLA-A*0201 patients with early melanoma (stages IIB/C and stage III) that compared APL vaccination with observation alone. The treatment schedule is shown in Supplementary Fig. S1. The enrollment of 160 patients was calculated to provide more than 80% power (83%) to detect a gain in 3-year disease-free survival (DFS) from 60% in the observation arm to 80% in the experimental arm (a difference that reflects a hazard ratio [HR] of 0.43). However, the trial was formally closed on July 21st, 2008, because the manufacturer (Clinalfa Merck Biosciences AG, Läufeligen, Switzerland) that initially provided the peptide batches with a 3-year validity GMP certificate pending yearly retesting was sold and discontinued any further certificate release.

Patients were selected after their primary tumor removal and were enrolled at the Istituto Nazionale dei Tumori of Milan (n = 37), Azienda Ospedaliera Universitaria Senese (n = 4), and the Istituto Oncologico Veneto of Padova (n = 2). The protocol was conducted in compliance with the Declaration of Helsinki and was approved by the ethical committees of each institution. Written
informed consent was obtained. The primary endpoint was to evaluate specific T-cell immunity against vaccine peptides and against HLA-A*0201 allogeneic melanoma cell lines expressing vaccine antigens. Secondary endpoints were to evaluate DFS and overall survival (OS) at 2 years and the potential association between immune responses and clinical outcome.

Patients and inclusion criteria

Patients with histologically confirmed (American Joint Committee on Cancer) stage IIB/C and stage III resectable melanoma (Eastern Cooperative Oncology Group score 0–1) and normal hematopoietic, liver, and renal function were eligible. Patients were checked for HLA-A*0201 expression using the OLERUP SSP HLA kit (Qiagen S.p.A, Milan, Italy). The patient demographic and clinical data are shown in Supplementary Table S1. Of the 22 patients randomized to the vaccine arm, 20 completed the two treatment cycles, while one patient (INT-030) dropped out due to noncompliance, and a second patient (INT-021) died before the second vaccination. These latter patients were included in the DFS and OS evaluations but were excluded from the immunological analyses.

Vaccine preparation and administration

The APLs (MelanA/MART-1[27L], gp100[210M], NY-ESO-1[165V], and Survivin[97M]; 250 µg of each peptide) were emulsified in Montanide ISA51 (0.5 mL, Seppic, Franklin Lakes, NJ) and injected subcutaneously (s.c.) close to the inguinal or axillary lymph nodes (LN). The peptides (> 95% pure) were synthesized under GMP conditions by Merck Biosciences AG Clinalfa (Läufelingen, Switzerland). The vaccine, cyclophosphamide, and IL-2 schedules are detailed in Fig. 1. Toxicity was documented according to the World Health Organization common toxicity criteria. The vaccine was generally well tolerated (17). Mild nausea was observed upon cyclophosphamide administration, while IL-2 administration was occasionally associated with transient fever (invariably of low grade), headache, fatigue, and arthralgia.

Peripheral blood mononuclear cells and immunomonitoring

The authors acknowledge the Minimal Information About T-cell Assays (MIATA) framework. Blood (50 mL) was obtained from each patient at the time points indicated in Supplementary Fig. S1. Peripheral blood mononuclear cells (PBMCs) were isolated within 3 hours after blood draw by Ficoll gradient centrifugation using 50-mL Leucosep tubes (Greiner Bio-One GmbH, Germany) without whole blood dilution followed by cryopreservation. The cells were stored in the vapor phase of a liquid nitrogen vessel until further use.

Immunomonitoring was performed at the Istituto Nazionale dei Tumori using an ex vivo INFγ-ELISpot assay (1-D1K, Mabtech AB, Nacka, Sweden) according to our Standard Operating Procedure (SOP) (18). Briefly, after incubating thawed PBMCs overnight at 37°C, the cells were washed, resuspended in complete medium (RPMI + 10% FCS), and seeded in four replicate wells at a density of 3×10^5 cells per well in a Multiscreen 96-well plate (MAIPS Wu10, Millipore, MA, USA) coated with the anti-IFNγ antibody (1-D1K, Mabtech). Further antibody incubations and development of the ELISpot assay were performed according to the manufacturer’s instructions (Mabtech). As a positive control, the PBMCs were incubated with an HLA-1-restricted CEF peptide pool (Cytomegalovirus, Epstein-Barr virus and Flu virus) (3615-1, Mabtech).

To assess interassay variability, the melanoma-specific T-cell clone A42 (18) was cultured on a large scale, aliquoted (1000 cells/vial), and stored in liquid nitrogen. An aliquot was thawed and tested in each ELISpot plate. The number of spots/well obtained in the presence of the autologous melanoma cells was highly reproducible (102 ± 11). In addition, all of the ELISpot reagents utilized for the entire immunomonitoring analysis belonged to the same production lots. The spots were counted with an ELISpot Reader Instrument (Aelvis-Tema, Germany). Results are presented as the number of APL-reactive cells per 2×10^5 CD8+ cells (measured by double CD3/CD8 immunostaining on the same aliquot of cryopreserved cells). The ELISpot assay was considered positive when three criteria were met: (1) the number of APL-reactive CD8+ T cells in the postvaccine PBMC population was > 10; (2) the number of spots was at least two times higher than...
the number of spots detected using an HIV-derived control peptide (NEF[180-189]); and (3) statistically significant (Student t test; $P \leq 0.05$).

HLA-A*0201 multimers, including the irrelevant HLA-A*0201/HIV-p24 peptide (HIVgag24; TLNAWVKVV), were provided by Proimmune (Ltd, Oxford, UK). Fluorochrome-conjugated anti-CD3, anti-CD8, anti-CD45RA, anti-CCR7, anti-CXCR3, and anti-CXCR1 monoclonal antibodies (mAbs) were from BD Biosciences (San Jose, CA). The staining was performed according to the manufacturer’s instructions. Cell samples were acquired (range, 2 to 3×10^5 CD8$^+$ cells) on a BD FACSCalibur flow cytometer (BD Biosciences) and analyzed using FlowJo software (TreeStar Inc., Ashland, OR, USA).

In vitro short-term peptide sensitization was performed by stimulating the thawed PBMCs with vaccine APLs (2 μM) plus 60 IU/mL IL-2 (Proleukin; Chiron, Milan, Italy). The cells were tested after 10–14 days using an IFNγ-ELISpot assay in the presence of APL-pulsed (2 μM) T2 cells, HLA-A*0201$^+$ melanoma lines (MelanA/MART-1$^+$gp100$^+$NY-ESO-1$^+$Survivin$^+$), or C1R-A2-survivin$^+$ cells (an HLA-A/B-deficient B-lymphoblastoid cell line transfected with HLA-A*0201 and survivin). HLA-blocking experiments required target preincubation with anti-HLA-ABC (immunoglobulin-M) or anti-HLA-DR (L243) mAbs (hybridomas from American Type Culture Collection, Manassas, VA). Post-vaccination T-cell cultures were enriched for CD8$^+$HLA-A*0201/multimer$^+$ cells using positive immunomagnetic selection (CD8 MicroBeads, Miltenyi Biotec GmbH, Germany) or with a BD FACSAria Cell Sorting System (BD Biosciences). Granzyme B secretion levels were determined using a PeliSPOT human GRANZYME B kit (Sanquin Reagents, Amsterdam, NL). The laboratory of the Unit of Immunotherapy of Human Tumors at the Istituto Nazionale dei Tumori of Milan is a research laboratory in which the assays are performed by well-trained personnel according to SOP that include predefined criteria for positive responses. The MDSCs were identified according to the phenotype recently described (4), while the frequency and function of the Tregs were also monitored and will be described elsewhere (Camisaschi et al., submitted for publication).
Confocal microscopy analysis

T2 target cells were pulsed with 2 µM of either APL or wild-type peptides (NY-ESO-1 and survivin) for 1 hour at 37°C and were washed twice in PBS (BioWhittaker Europe). Sorted CD8^+NY-ESO-1^{[165V]} and CD8^+Survivin^{[97M]} T-cell cultures were mixed 1:1 or 5:1 with their target cell lines: T2 and 624.38mel, respectively. After 1 hour at 37°C, the cells were treated with Brefeldin-A (10 µg/mL; Sigma-Aldrich, Deisenhofen, Germany), cultured for an additional 4 hours, plated on glass multiwell slides (Lab-Tek II CC^2, Nalgene Nunc International, Naperville, IL, USA), and fixed with 4% paraformaldehyde for 14 minutes at room temperature. The cells were then treated with 0.1 M glycine in PBS (pH 7.4) followed by 0.3% Triton X-100 buffer and double labeled overnight at 4°C with rabbit anticathepsin D Ab (1:200; Calbiochem, San Diego, CA, USA) and mouse anti-IFNγ Ab (1:50; Genzyme Co., Cambridge, MA, USA). Binding of the primary antibodies was monitored by the addition of Alexa Fluor 488-conjugated donkey anti-mouse (1:200; Invitrogen, Carlsbad, CA, USA) and rhodamine-conjugated donkey anti-rabbit (1:100; Rockland, Gilbertsville, PA, USA) Abs. TOTO-3 iodide 642/660 (Invitrogen, Carlsbad, CA, USA) was used for nuclei staining. The slides were mounted in PBS containing 95% glycerol. The samples were examined using a Radiance 2100 laser scanning confocal microscope (Biorad Laboratories) equipped with a krypton/argon laser and a red laser diode. To reduce bleed through, the confocal images were acquired sequentially. Noise reduction was achieved by using a Kalman filter during acquisition.

Bead-based multiplex immunoassay

In some experiments (see Supplementary data), the supernatants were tested for cytokine release (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-12p70, TNFα, and TNFβ) using a bead-based multiplex immunoassay for the flow cytometer (Bender MedSystems, Vienna, Austria), which allows for the simultaneous detection of multiple analytes in a single sample.

Statistics
Differences between the ELISpot and HLA-multimer assay values obtained at the indicated times were compared using the nonparametric two-tailed Wilcoxon matched pairs test (confidence interval [CI] 95%). Statistical analyses for the other in vitro functional assays (Figs. 3–5) were performed using an unpaired Student t test. The probabilities of DFS and OS were estimated using the Kaplan-Meier method and tested for differences by the log-rank test. Values of $P \leq 0.05$ were considered statistically significant. Statistical calculations were performed using Prism5 (GraphPad Software, La Jolla, CA, USA) and SAS software.

Results

Early melanoma patients develop rapid and persistent T-cell responses to the APL vaccine

This multicenter phase II randomized study enrolled 43 HLA-A*0201$^+$ stage IIB/C and stage III melanoma patients (Supplementary Table S1) who underwent vaccination ($n = 22$) or observation ($n = 21$) (Supplementary Fig. S1).

First-line monitoring of vaccine-induced T cells was performed ex vivo using IFNγ-ELISpot assays and HLA-A*0201/peptide multimer (HLA-multimer) staining. As shown in Fig. 1A (left panel), the initial mean pre-vaccination frequency of CD8$^+$ T cells responding to each APL was below the detection threshold but progressively increased after immunization (for details, see Supplementary Table S2). The mean spot numbers per 2×10^5 CD8$^+$ T cells achieved after six vaccinations were 78 ± 92 for MelanA/MART-1, 37 ± 53 for gp100, 144 ± 268 for NY-ESO-1, and 184 ± 332 for survivin. This increase was lower for the gp100 peptide than for the other peptides. No change in the recognition of the irrelevant peptide NEF$^{[180-189]}$ was observed, demonstrating the specificity of the immune responses induced by APL immunization. The frequency of APL-specific T cells in the PBMCs from control patients did not change (Fig. 1A, right panel). As shown in Fig. 1B, T-cell responses developed rapidly in the vaccinated patients (beginning after the second or third injection).
and were detectable in circulation throughout the treatment period (12 months as the latest time-point tested in the majority of the patients; see Supplementary Table S2).

Although between-patient variability was observed in the frequency and magnitude of the immune response, an estimated 75% of the patients responded to at least one epitope, while 65% responded to two or more peptides when evaluated according to the response criteria described in Patients and Methods. Expansion of APL-specific CD8+ T cells in vaccinated subjects was confirmed by HLA-multimer staining, and the frequencies after six vaccine injections were 0.29 ± 0.26% for MelanA/MART-1, 0.1 ± 0.12% for gp100, 0.13 ± 0.24 for NY-ESO-1, and 0.08 ± 0.09 for survivin (Fig. 1C). The baseline values (all below the assay detection limit of \(\leq 0.01\% \)) observed in the control patients remained the same (data not shown).

The remarkable immune responses induced by APL immunization indicated that early melanoma patients may be more suitable for immunization compared with patients with advanced disease (2,19). Indeed, parallel analyses performed during the study showed that the baseline frequencies of CD4+CD25+Foxp3+ Tregs and MDSCs, identified according to the CD14+CD11b+HLA-DRneg/low phenotype recently described (4), were significantly lower among the PBMCs of stage IIB/C and stage III patients than the frequencies detected in stage IV patients recruited for a separate trial (20) (data not shown).

The frequency of either Treg cells or MDSCs did not change significantly upon the administration of low-dose cyclophosphamide. As expected, the late administration of low-dose IL-2 caused a rapid and transient increase in Treg frequencies that did not interfere with the ability of the vaccine to induce peptide-specific CD8+ T cells (Camisaschi et al., manuscript submitted for publication).

APL immunization does not affect DFS or OS in vaccinated patients compared with control patients
As of December 2010, the median follow-up duration was 46 months. Of the 22 patients in the vaccine arm, 10 showed disease recurrence, and five eventually died. In the control arm, 10 of the 21 patients showed disease recurrence, and three eventually died.

The DFS and OS curves are shown in Fig. 2. For both endpoints, the log-rank test failed to show any significant difference between the two arms (\(P = 0.7877 \) for DFS and \(P = 0.4803 \) for OS). A mild survival advantage was apparent for the control arm of up to approximately 40 months but was no longer evident beyond that time. At 60 months, the DFS and OS estimates were 50% and 77%, respectively, in the vaccination arm and 42% and 79%, respectively, in the control arm. The HR estimate (95% CI) for comparing the two arms was 1.25 (0.53–2.94); notably, the lower confidence limit excluded the target value (0.43) around which the study was designed, as described in Patients and Methods.

Despite the small number of enrolled patients, we assessed whether the course of the disease could have been influenced by immune-related parameters. As depicted in Supplementary Fig. S2, no significant correlation was detected at baseline between DFS and the frequencies of MDSC, Treg, or anti-CEF T cells (in both vaccinated and control patients), although patients with increased MDSCs and Tregs or decreased CEF-specific CD8\(^+\) T cells tended to have a worse disease course. Interestingly, a more favorable DFS trend was evident in the vaccinated patients who mounted a more pronounced immune response, as defined by a response against at least three antigens. These data suggest that the ability to respond to self and foreign antigens represents a potential prognostic factor in early melanoma and might play a key role in disease control.

Peptide vaccination promotes in vivo expansion of effector memory T cells with limited affinity for wild-type epitopes and poor melanoma cross-recognition

Because the lack of clinical benefit may be due to functional defects in the vaccine-induced immune response, phenotypic analysis of post-vaccine PBMCs was performed, and the analysis showed that the APL-specific T cells were mostly confined to the effector memory compartment, with CD45RA\(^-\)
CCR7 cells representing about 40% of the MelanA/MART-1 and gp100 + T cells, 70% of the NY-ESO-1 + T cells, and 60% of the Survivin + T cells (Fig. 3A). These cells were also able to infiltrate the tumor lesion in vivo, as suggested by the expression of the CXCR1 and CXCR3 chemokine receptors (Supplementary Fig. S3). In addition, the post-vaccine PBMCs behaved in vitro as secondary immune responsive cells with prompt expansion following short-term exposure to APLs. No significant peptide specificity was detected in either the T-cell cultures from pre-vaccine PBMCs or control patient samples obtained at equivalent time-points (Supplementary Fig. S4), demonstrating that the detected APL-immune memory was specifically induced by immunization.

To systematically address the ability of the APL-sensitized T lymphocytes to actually recognize tumor cells, the CD8 + T cells were sorted from post-vaccine APL-sensitized PBMCs and first tested for wild-type-peptide cross-reaction. The MelanA/MART-1- and gp100-specific CD8 + T cells secreted comparable IFNγ levels upon exposure to APLs and wild-type peptides saturating doses (> 1 μg/mL), although significantly lower levels of IFNγ were produced upon exposure to wild-type epitopes at medium and low concentrations (< 100 ng/mL) (mean EC50 APL vs. wild-type: 3.98 ± 6.84 vs. 150 ± 254 and 0.06 ± 0.04 vs. 1.77 ± 0.92 for MelanA/MART-1 and gp100, respectively) (Fig. 3B, panels a–b). NY-ESO-1- and survivin-specific CD8 + T cells efficiently recognized the cognate APLs (mean EC50 values: 9.3 ± 5.8 and 25 ± 38.7, respectively) but displayed reduced affinity for the wild-type epitopes, even at saturating doses (mean EC50 values: 521 ± 518 and 426 ± 387, respectively) (Fig. 3B, panels c–d).

The limited cross-recognition of wild-type peptides implied that the APL vaccine-induced T cells displayed poor affinity for tumor cells expressing the cognate antigens. Because no melanoma recognition was detected in the ex vivo post-vaccine PBMCs (data not shown), APL-sensitized T cells were used as effectors in the presence of a melanoma cell line that expressed high levels of HLA-A*0201 and all of the relevant melanoma antigens (624.38mel) (data not shown). MelanA/MART-1- and gp100-specific T cells produced detectable levels of IFNγ in response to 624.38mel, but this reactivity represented only a small percentage of the cytokines secreted in the
presence of the APLs (Fig. 4A). The limited cross-reactivity with tumor cells was even more pronounced with the anti-NY-ESO-1 and anti-survivin T lymphocytes, which did not react to 624.38mel (Fig. 4A) or to a large panel of melanoma lines or HLA-A*0201 Ag-transfected cells (Fig. 4B). In agreement with these results, none of the APL-specific T cells released IL-2 or TNFα in the presence of 624.38mel unless previously pulsed with exogenous APL (Supplementary Fig. S5). These findings, in addition to confirming the lack of tumor cross-recognition by APL-specific T cells, also rule out any potential immunosuppressive effect exerted by the 624.38mel cells on the T lymphocytes.

To further examine the potential melanoma recognition by the anti-NY-ESO-1 and anti-survivin CD8+ T cells, these effectors were sorted for their HLA/multimer binding to reach > 95% purity. However, no substantial improvement of the wild-type epitope or melanoma cell recognition was achieved (Fig. 5A). By contrast, the melanoma cells triggered IFNγ secretion when pulsed with saturating doses of exogenous wild-type peptides, confirming the intrinsic low affinity of the TCRs expressed by the APL-specific T cells for naturally expressed tumor epitopes. As shown in Fig. 5B and C, comparable data were obtained when anti-NY-ESO-1 and anti-survivin CD8+ T lymphocytes were assessed for granzyme B secretion and for intracellular localization of cytotoxic granules and IFNγ in T cell-APC conjugates. Indeed, when APL-pulsed T2 cells were co-incubated with anti-NY-ESO-1 and anti-survivin CD8+ T cell cultures, lytic granules and IFNγ polarized at the immunological synapse in the majority of the detected T cell/target conjugates (63% and 68%, respectively). By contrast, the ability of anti-NY-ESO-1 and anti-survivin CD8+ T cell cultures, to polarize at the contact zone with tumor cells was drastically reduced (11.3% and 13.3%, respectively).

Discussion

The multicenter randomized phase II trial presented here was designed to test whether a vaccine
consisting of a cocktail of APLs from MelanA/MART-1, gp100, NY-ESO-1, and survivin antigens could reduce recurrence risk in stage IIB/C and stage III surgically resected melanoma patients. Modified peptides were chosen to maximize the immunogenicity and clinical efficacy of vaccination, according to a strategy commonly applied in clinical trials using HLA class I-restricted tumor peptides (13,21–22).

In this patient setting, we observed that APLs emulsified in Montanide and administered in association with low-dose cyclophosphamide and IL-2 promoted a consistent and selective increase in circulating antigen-specific CD8\(^+\) T cells in most immunized patients compared with controls. The immunological responses achieved were significantly superior to those observed in our previous experience with antitumor vaccines in stage IV melanoma patients (2,19), thus demonstrating that individuals with early disease have more suitable immunological conditions and that the APL strategy shows stronger immunogenicity. However, despite the remarkable induction of peptide-specific T-cell responses, no evident improvement in DFS or OS was observed in the vaccinated arm compared with the control patients as evaluated during the end-of-study analysis.

Although the study is based on a relatively small number of patients, these clinically negative results suggest the need to perform detailed immunomonitoring and related functional profiling to identify the potential defects in the vaccine-induced immune responses. In terms of the kinetics, APL-specific T-cell induction in the peripheral blood was prompt and persistent (up to 12 months) in the majority of the immunized patients. Anti-APL T lymphocytes in post-vaccine PBMCs showed effector memory features, expression of the tumor-homing receptors CXCR1 and CXCR3, polyfunctional properties in terms of cytokine release (IL-2 and TNF\(_\alpha\)), and no functional or phenotypic signs of exhaustion, such as upregulated expression of PD-1, Tim-3, or LAG-3 co-inhibitory receptors (23,24) (data not shown). However, when analyzed for their direct anti-tumor potential, APL-specific CD8\(^+\) T cells recognized their respective wild-type epitopes in a suboptimal fashion and reacted poorly in the presence of melanoma cells, despite the expression of high levels of HLA-A2 and cognate antigens. The degree of cross-reactivity varied with the different APLs and
even reached undetectable values for NY-ESO1 and survivin. This immunological scenario clearly suggests that APL-primed T cells were endowed with low-affinity TCRs that were likely unable to efficiently engage the low levels of HLA-peptide complex usually expressed on the tumor cell surface (25,26). The finding that the tumor cells could instead trigger T-cell reactivity when exogenously preloaded with excess wild-type peptides supports this hypothesis.

The use of APLs is widely considered a suitable and effective strategy for peptide-based cancer vaccines, and it is one of the most prevalent approaches in clinical trials (27–30). Indeed, since the time of their discovery by Allen et al. in studies focused on TCR flexibility (i.e., the ability of the same TCR to cross-recognize diverse but structurally similar HLA-peptide ligands) (31), APLs have been extensively exploited to improve the immunogenicity of tumor peptides by modifying TCR- (32,13) or HLA-contact residues (33–35). Studies performed in vitro, often involving ex vivo analyses of representative T-cell clones, or those conducted in HLA-A2 transgenic mice globally confirmed the immunological advantage of APLs over native peptides. However, inconclusive evidence has been previously reported for the in vivo expansion of T cells with heterogeneous levels of cross-reactivity for the natural epitopes in melanoma patients vaccinated with APLs from the MelanA/MART-1, gp100, and NY-ESO-1 antigens (36,37). Yet, to our knowledge, no systematic analysis of the actual tumor recognition has ever been introduced or considered mandatory in the immunomonitoring of APL-based vaccine trials. For this reason, the comprehensive analysis of the anti-tumor potential we applied in our study provides crucial insights into the functional properties of immunization with APLs, potentially elucidating why this vaccine strategy has often failed to show major clinical benefits (27–29,37). Because in vitro comparable data were generated with the APLs from different tumor peptides, such as those derived from the colon cancer-related carcinoembryonic antigen (38), the activation of T cells with poor antitumor potential might not be the prerogative of the melanoma-derived APLs included in this study.

The findings from our monitoring suggest that the use of APLs as an antigenic source for cancer vaccines should be seriously reconsidered in the clinical setting. Recently, Schwartzentruber et al.
reported that the gp100 APL (209-2M) improves survival in stage IV melanoma patients when administered in combination with high-dose IL-2 (22). Although no analysis of the anti-tumor potential of gp-100 (209-2M)-induced T cells was included in the study, the clinical benefit of the APL+IL-2 combination may be attributed in part to the presence of potent proliferative stimuli and an altered cytokine/chemokine milieu (39). Together, these may have favored the expansion of the gp100-specific tumor-reactive T cells and/or promoted the antigen-spreading phenomena with local activation of truly antitumor T cells (40).

Nevertheless, under the schedule applied in our adjuvant vaccine trial, the APLs did not support the sufficient generation of tumor cross-reactive T cells, which is a defect that in our opinion represents the principal reason for the undetectable clinical benefit. However, some specific characteristics of the patients or the treatment settings may have influenced the immunological or clinical outcomes of the study.

For example, our analysis was confined to circulating T cells and did not permit any evaluation of the immune processes ongoing at the tumor site because of the lack of macroscopic disease in these patients. However, the subcutaneous lesions recurring during or after vaccination, once surgically removed and histologically analyzed, displayed no signs of immune selection (such as down-regulation or loss of antigen and HLA expression) or significant changes in T-cell infiltration compared with pre-vaccine lesions (Carbone A., personal communication). Such findings demonstrate the poor affinity of the APL-specific T lymphocytes for melanoma cells. In addition, we cannot exclude the possibility that the administration of low-dose cyclophosphamide and IL-2 may have influenced, for unknown reasons, the TCR affinity of the vaccine-induced T-cell responses and their subsequent clinical efficacy.

In contrast to these results, a parallel trial in prostate carcinoma patients employing the same vaccine schedule but with HLA class I wild-type peptides, found T cells that recognized tumor cells and successfully generated clinical benefits (Rivoltini et al., manuscript in preparation). In addition, several preclinical studies have shown that Tregs might help to maintain immune tolerance and
restrain vaccine-induced tumor immunity by controlling suboptimal rather than high-affinity TCR-bearing T cells (41,42). Together with a recent report on the ability of cyclophosphamide to enhance the trafficking of high-avidity CTLs to tumor sites (43), this evidence suggests that cyclophosphamide should favor the expansion of high-avidity CTLs in a peptide-vaccine setting. Regarding the use of low-dose IL-2, we deliberately chose the “late” administration schedule (i.e., 3 months after the beginning of vaccination) based on a previous report by Slingluff and collaborators that showed a beneficial effect with such a schedule compared with that of early IL-2 administration for the induction of T-cell responses by a multipeptide melanoma vaccine (16). Nevertheless, extended and dedicated Treg monitoring to test the impact of cyclophosphamide and low-dose IL-2 was also performed in our vaccinated melanoma patients. Although these data will be described in detail elsewhere (Camisaschi et al., submitted for publication), we note here that cyclophosphamide had a markedly limited and transient effect on the function and frequency of circulating Tregs, while low-dose IL-2, although expanding these cells, played a crucial role in sustaining the development of vaccine-induced CD8+ T effectors.

Tumor vaccines continue to represent a potential therapeutic tool for cancer patients (21,22,44), although their use is still far from clinical practice. Because of the prevalence of immune inhibitory pathways, the high tumor burden and the onset of multiple escape mechanisms characterizing advanced cancer patients, the field is presently moving toward the use of vaccination as an adjuvant treatment for the prevention of disease relapse after surgery (45). However, unlike conventional cancer therapies, the identification of proper conditions to effectively trigger tumor immunity is a complex and not yet validated process. The present trial indicates several of the issues that need to be considered in this line of inquiry, such as the need to routinely monitor the antitumor properties of the vaccine-induced T cells, which was recently emphasized at the iSBTc/FDA/NCI Workshop on Immunotherapy Biomarkers (46,47). In addition, we now consider modified peptides as a potential “false ally” in cancer vaccines because their increased immunogenicity does not necessarily result in enhanced anti-tumor T-cell reactivity. Although the level of cross-recognition...
may vary among peptides, the unpredictability of T-cell function (48,49) makes this approach suboptimal for the effective enhancement of tumor immunity.

Acknowledgments

The authors are grateful to Dr. Giuseppe Lamorte and Dr. Stefania Citterio (Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy) for their invaluable contribution in cell separation and flow sorting and to Dr. AnnaMaria De Filippo (Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy) for English language review.

Grant support

This work was supported by grants from the Italian Association for Cancer Research (AIRC), the European Community, and the Istituto Superiore di Sanità (Rome).
References

Figure Legends

Figure 1. Ex vivo evaluation of immune responses. A, Unfractionated PBMCs from patients in both arms of the study (left panel, vaccination, n = 20; right panel, observation, n = 21) were tested at the indicated times by ELISpot for IFNγ release in response to vaccine peptides or the NEF[180-189] peptide as a negative control. Dots represent the results from individual patients (horizontal line, mean value). B, Immune response kinetics in three representative vaccinated patients as detected by IFNγ-ELISpot assay. C, Freshly thawed PBMCs originally obtained at the indicated times were tested ex vivo for binding to HLA-A*0201/peptide multimers and analyzed by flow cytometry. Background results with the HLA-A*0201/HIVgag24 multimer were below 0.01% (not shown). Dots represent results from 20 individual patients (horizontal line, mean value). The nonparametric two-tailed Wilcoxon matched pairs test was used to calculate the P values (95% CI).

Figure 2. Survival outcomes for the melanoma patients in the study. Kaplan-Meier DFS and OS curves for the 43 stage IIB/C and stage III melanoma patients enrolled in the study (solid line, vaccine, n = 22; dotted line, observation n = 21).

Figure 3. The APL vaccine mediates in vivo expansion of effector memory T cells with poor affinity for wild-type epitopes. A, Freshly thawed post-vaccine (sixth vaccination) PBMCs were gated for CD8+/HLA-multimer+ T cells and further investigated for CCR7 and CD45RA expression. Bars, box-and-whisker diagrams (n = 13). Horizontal line, median. B, The TCR affinity of post-vaccine APL-sensitized PBMCs was evaluated by IFNγ-ELISpot assay in the presence of titrated doses of APLs or wild-type peptides. Three representative cases are shown for each vaccine APL (MelanA/MART-1: INT-024, INT-028, and INT-008; gp100: INT-006, INT-028, and INT-008; NY-ESO-1: INT-024, INT-003, and INT-008; survivin: INT-020, INT-003, and INT-008). Numbers refer to the percentages of HLA-A*0201/multimer+CD8+ T cells in the tested T-cell
cultures. Nonlinear curve fitting analysis and EC$_{50}$ (index of functional affinity) calculations were performed using Prism5 Graphics software.

Figure 4. Anti-tumor activity of APL-specific T-cell cultures from postvaccine PBMCs. A, Fourteen-day APL-sensitized cultures (n = 12 for each peptide included in the vaccine) obtained from post-vaccine (sixth vaccination) PBMCs were tested by IFNγ-ELISpot assay for the recognition of the HLA-A*0201$^+$MelanA/MART-1$^+$$\text{gp100}^+$$\text{NY-ESO-1}^+$$\text{Survivin}^+$ melanoma cell line 624.38mel. Bars, box-and-whisker diagrams. Horizontal line, median. B, Anti-NY-ESO-1- and anti-survivin-specific T-cell cultures enriched for CD8$^+$ cells by immunomagnetic selection were tested for IFNγ release (ELISpot) in response to four different HLA-A*0201$^+$MelanA/MART-1$^+$$\text{gp100}^+$$\text{NY-ESO-1}^+$$\text{Survivin}^+$ melanoma cell lines or C1R-A2$^+$Survivin$^+$ cells. The HLA-A*0201$^-$ melanoma cell line INT07/00mel was used as a negative control. Targets were pre-treated (open histograms) or untreated (filled histograms) with an anti-HLA class I mAb to test for HLA restriction. Dot plots with the percentage of CD8$^+$HLA-multimer$^+$ T cells are shown. Two representative cases are shown (NY-ESO-1: INT-024; survivin: INT-020).

Figure 5. Lack of tumor recognition by NY-ESO-1$^+_{[165V]}$- and Survivin$^+_{[97M]}$-specific T cells. A, Anti-Survivin$^+_{[97M]}$- or anti-NY-ESO-1$^+_{[165V]}$-specific CD8$^+$ T cells generated from post-vaccine (sixth vaccination) PBMCs were sorted using a BD FACSArray Cell Sorting System and monitored for TCR affinity by IFNγ-ELISpot assay using T2 cells pulsed with decreasing APL or wild-type peptide concentrations (left panels) as targets. Recognition of the HLA-A*0201$^+$ melanoma cell line 624.38mel (MelanA/MART-1$^+$$\text{gp100}^+$$\text{NY-ESO-1}^+$$\text{Survivin}^+$) or C1R-A2$^+$Survivin$^+$ cells pulsed or not pulsed with saturating doses of wild-type peptide was also evaluated (right panels). B–C, Assessment of cytolytic function by granzyme B ELISpot assay and confocal analysis. Post-vaccine HLA-multimer$^+$-sorted Survivin$^+_{[97M]}$ (grey bars) or NY-ESO-1$^+_{[165V]}$ (white bars) CD8$^+$ T cells were incubated with 624.38mel or APL-pulsed (2 μM) T2 cells as a positive control. HLA-blocking
experiments were conducted by pre-incubating the targets (624.38mel) with anti-HLA class I or anti-HLA-DR mAbs. Data represent the mean ± SD of quadruplicates. *\(P < 0.05 \) (unpaired Student \(t \) test). In the confocal images, cells were double-stained with Abs specific for the cytolytic granule marker cathepsin D (red) and IFN\(\gamma \) (green). TOTO-3 iodide 642/660 was used for nuclei staining. Bar, 10 \(\mu \)m. Magnification, 30X. Two representative cases are shown (NY-ESO-1: INT-024; survivin: INT-003).
Figure 1
Log-rank p = .7877

Log-rank p = .4803

DFS

OS

Vaccination arm (N=22)
Observation arm (N=21)

Figure 2
Figure 3
Figure 4
Figure 5
Clinical Cancer Research

Limited Induction of Tumor-cross-reactive T Cells without a Measurable Clinical Benefit in Early Melanoma Patients Vaccinated with Human Leukocyte Antigen-Class I-Modified Peptides

Paola Filipazzi, Lorenzo Pilla, Luigi Mariani, et al.

Clin Cancer Res Published OnlineFirst October 2, 2012.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-12-1516

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2012/10/02/1078-0432.CCR-12-1516.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.