FUNCTIONAL GENETIC SCREENS IDENTIFY GENES ESSENTIAL FOR TUMOR CELL SURVIVAL IN HEAD-AND-NECK AND LUNG CANCER

Sanne R. Martens-de Kemp1*, Remco Nagel1*, Marijke Stigter-van Walsum1, Ida H. van der Meulen2, Victor W. van Beusechem2, Boudewijn J.M. Braakhuis1 and Ruud H. Brakenhoff1

* These authors contributed equally to this work

1 Department of Otolaryngology/Head-Neck Surgery,
2 RNA Interference Functional Oncogenomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands

Running Title

KIF11 is essential for cell viability in NSCLC and HNSCC

Keywords

RNAi screen, KIF11, lung cancer, head-and-neck cancer, ispinesib

Grant support

This study was performed within the framework of CTMM, the Centre for Translational Molecular Medicine, AIRFORCE project (grant 03O-103).

Corresponding author

Ruud H. Brakenhoff, Tumor Biology Section, Dept Otolaryngology/Head-Neck Surgery, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, fax: +31-20-44 43688, email: rh.brakenhoff@vumc.nl
Disclosure of Potential Conflicts of Interest

The authors disclose no potential conflicts of interest.

Word count

4688 words.

Number of figures and tables

Five figures, six supplementary figures and two supplementary tables.

Statement of translational relevance

The prognosis of lung and head-and-neck cancer is still disappointing and novel treatments are urgently awaited. In this study we employed a genome-wide siRNA screen to identify genes that seem to be essential for tumor cell viability. A specific subgroup of these genes linked to G2/M regulation of the cell cycle and were tested for their suitability as targets to eradicate lung and head-and-neck cancer cells. A drug against one of these genes, KIF11, was tested in xenograft mouse models and inhibited tumor growth significantly. In summary, we show that genome-wide siRNA screens deliver a plethora of druggable genes that can be exploited to improve treatment of both lung and head-and-neck cancer.
ABSTRACT

Purpose: Despite continuous improvement of treatment regimes, the mortality rates for non-small cell lung cancer (NSCLC) and head-and-neck squamous cell carcinoma (HNSCC) remain disappointingly high and novel anticancer agents are urgently awaited.

Experimental design: We combined the data from genome-wide siRNA screens on tumor cell lethality in a lung and a head-and-neck cancer cell line.

Results: We identified 71 target genes that appear essential for survival of both cancer types. We identified a cluster of 20 genes that play an important role during G2/M phase transition, underlining the importance of this cell cycle checkpoint for tumor cell survival. Five genes from this cluster (CKAP5, KPNB1, RAN, TPX2 and KIF11) were evaluated in more detail and shown to be essential for tumor cell survival in both tumor types, but most particularly in HNSCC. Phenotypes that were observed following siRNA-mediated knockdown of KIF11 (kinesin family member 11) were reproduced by inhibition of KIF11 using the small molecule inhibitor ispinesib (SB-715992). We showed that ispinesib induces a G2 arrest, causes aberrant chromosome segregation and induces cell death in HNSCC in vitro, while primary keratinocytes are less sensitive. Furthermore, growth of HNSCC cells engrafted in immune deficient mice was significantly inhibited after ispinesib treatment.

Conclusion: This study identified a wide array of druggable genes for both lung and head-and-neck cancer. In particular, multiple genes involved in the G2/M checkpoint were shown to be essential for tumor cell survival, indicating their potential as anticancer targets.
INTRODUCTION

Two of the more frequently diagnosed types of cancer in the world are those in the lung and the head-and-neck region. Lung cancer is currently the most common cancer in the world, while head-and-neck cancer is the 6th most common cancer worldwide (1,2). The predominant histological type of head-and-neck cancer is squamous cell carcinoma (HNSCC), which is found in over 95% of the cases (3). Lung cancer is more diverse, as multiple different histological types of tumor cells can be distinguished. Lung cancers are classified as non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), which make up approximately 80% and 20% of the total number of cases, respectively (4). NSCLC can be further subdivided into several histological subtypes, of which squamous cell carcinomas (40%) and adenocarcinomas (37%) are the most predominant (4).

Advanced stages of lung and head-and-neck cancer are often treated by a combination of platinum-containing chemotherapy and locoregional radiotherapy. Despite improvement of locoregional control, the current survival rates of both lung and head-and-neck cancer patients remain disappointing. For HNSCC the five year survival rate is approximately 50-60% and this has only increased slightly during the last three decades (5). For lung cancer, the prognosis is even worse with a five year survival rate of only 5-15% (6). Hence, there is an urgent need to improve current therapies. The recent successes with targeted drugs indicate that identification of druggable genes that are essential for tumor cells, may fuel the development of novel treatment approaches (7-9).

In order to survive and proliferate, tumor cells strongly depend on specific genetic and epigenetic alterations. These tumorigenic alterations are responsible for important cancer associated phenotypes such as deregulation of apoptosis and cell cycle control (10). Since these genetic changes drive tumorigenesis, they often become the Achilles’ heel of the tumor. Moreover, the rewiring of signaling pathways by alterations in the participating genes may
cause that expression of some genes becomes very critical for tumor cell survival. Several studies have already reported decreased tumor cell survival by inhibition of individual genes in a specific background of somatic mutations, a phenomenon commonly referred to as synthetic lethality (11-13). Therefore, the identification of genes essential for cell viability and the unmasking of synthetic lethal interactions in tumor cells provide a powerful approach for the discovery of novel therapeutic targets.

Large-scale RNA interference (RNAi) screens are excellently suited for the discovery of genes essential for tumor cell survival. Therefore, in the current study we explored genome-wide siRNA screen data and identified a total of 362 tumor lethal siRNAs. Strikingly, many of the potential tumor essential genes targeted by these siRNAs are involved in the regulation of the G2/M phase of the cell cycle. Several of these candidates were validated as potent anti-cancer targets.
EXPERIMENTAL PROCEDURES

Cell lines and animal models

The cancer cell lines used and the primary fibroblasts were all cultured in Dulbecco's modified Eagle's medium (DMEM; Lonza, Breda, The Netherlands), 5% fetal calf serum (FCS; Lonza) and 2 mM L-glutamine (Lonza). Oral keratinocytes were cultured in Keratinocyte Serum Free Medium (KSFM; Invitrogen, Breda, The Netherlands) supplemented with 0.1% bovine serum albumin, 25 mg bovine pituitary extract, 2.5 µg human recombinant EGF, 250 µg Amphotericin B (MP biomedicals, San Francisco, United States of America) and 250 µg gentamycin (Sigma-Aldrich, Zwijndrecht, The Netherlands). Cells were grown in a humidified atmosphere of 5% CO₂ at 37°C.

Non-small cell lung cancer (NSCLC) cell lines SW1573, A549, H460 and H1299 were obtained from the American Type Culture Collection (ATCC). Head and neck squamous cell carcinoma (HNSCC) cell lines UM-SCC-11B, UM-SCC-22A and UM-SCC-22B were obtained from Dr. T Carey (University of Michigan, Ann Arbor, MI, USA) (14). Cell line VU-SCC-120 (formerly known as 93VU120) and VU-SCC-OE were established as described previously (15). The HNSCC cell lines were authenticated to the earliest available passages by microsatellite profiling and TP53 mutation analysis (14;16). Oral keratinocytes and human fibroblasts were isolated from an uvulopalatopharyngoplasty (UPPP) specimen and served as normal control. Use of residual tissue from surgical specimen was according to the guidelines of the Dutch Medical Scientific Societies (www.federa.org) and the Dutch law on medical research. Informed consent was obtained of enrolled patients, when required.

siRNA screens
The SW1573 NSCLC cell line was subjected to a high-throughput forward transfection in 96-well plates (Cellstar, Greiner Bio-One, Alphen aan den Rijn, The Netherlands). Cells were seeded using a µFill microplate dispenser (Bio-Tek, Bedfordshire, UK) and 24 hours later, the cells were transfected on an automated platform. In total 25 nmol of each siRNA SMARTpool derived from the siARRAY Human Genome library (Catalog items G-003500 (Sept05), G-003600 (Sept05), G-004600 (Sept05) and G-005000 (Oct05); Dharmacon, Thermo Fisher Scientific, Lafayette, CO) and 0.01 µl DharmaFECT1 (Thermo Fisher Scientific, Lafayette, USA) were delivered to the cells using the Sciclone ALH 3000 workstation (Caliper LifeSciences, Teralfene, Belgium) and a Twister II microplate handler (Caliper LifeSciences). The nontargeting siCONTROL#2 and the PLK1 SMARTpool were used as negative and positive control, respectively. Plates were incubated for 96 hours at 37°C/5% CO₂. Afterwards the cells were fixed and stained for 1 hour with a 3.7% formaldehyde solution in H₂O containing 0.5 µg/ml Hoechst 33342. The number of cells was determined using the Acumen eX3 microplate cytometer (TTP LabTech, Royston, United Kingdom), by automatically counting the number of nuclei present in each well.

VU-SCC-120 cells were plated and transfected in 96-well flat bottom low evaporation TPP plates (VWR International, Amsterdam, The Netherlands) using the aforementioned automated platform and assay controls. Cells were transfected with 25 nmol siRNA and 0.03 µl DharmaFECT1. Cell viability was determined by adding CellTiter-Blue reagent (Promega, Leiden, The Netherlands) using a Multidrop Combi (Thermo Fisher Scientific, Landsmeer, The Netherlands) in cell culture medium. After two hours of incubation at 37°C fluorescence was analyzed at 540 nm excitation and 590 nm emission wavelength using an Infinite F200 microplate reader (Tecan, Giessen, The Netherlands).

Deconvolution of cancer lethal siRNA pools
To validate the potency of the obtained hits, three NSCLC cell lines (A549, H1299 and H460) and three HNSCC cell lines (UM-SCC-11B, UM-SCC-22B and VU-SCC-120) were transfected with siRNAs targeting a variety of G2/M phase related genes. The nontargeting siCONTROL#2 and the PLK1 SMARTpool were used as negative and positive control, respectively. All cell cultures were transfected with 25 nmol siRNA and DharmaFECT1. NSCLC cell line SW1573 was transfected with 0.015 µl DharmaFECT1, cell lines A549 and H1299 with 0.03 µl and 0.025 µl, respectively. HNSCC cell line UM-SCC-11B was transfected with 0.065 µl DharmaFECT1, UM-SCC-22B and VU-SCC-120 with 0.15 µl and 0.03 µl, respectively. Cell viability was measured 96 hours post-transfection using CellTiter-Blue reagent (Promega) as described above.

Quantitative RT-PCR

Total RNA was isolated using the RNeasy micro kit (Qiagen, Venlo, The Netherlands) and quality was controlled by OD260/280 nm analysis on a Nanodrop (Thermo Fisher Scientific, Landsmeer, The Netherlands). Complementary DNA was synthesized from 50 ng of RNA template using a high capacity cDNA reverse transcription kit (Applied Biosystems, Nieuwerkerk aan den IJssel, The Netherlands). Amplification of the cDNA was performed on the ABI/Prism 7500 Sequence Detector System (Taqman-PCR, Applied Biosystems) with universal PCR master mix (Applied Biosystems) and gene-specific expression assays for KIF11 (Hs00189698_m1), AURKA (Hs01582073_m1) and AURKB (Hs01582073_m1). For each sample the cycle number at which the amount of amplified target crossed a pre-determined threshold (the Ct-value) was determined. To correct for differences in RNA input, beta-glucuronidase (GUSB; Hs99999908_m1) (17) was used as a reference gene for each RNA sample. The mRNA expression was calculated relative to GUSB (delta Ct method).
Western blot

Western blots were performed according to standard procedures. Antibodies used for detection are mouse anti-KIF11 (1/1,000 4H3-1F12; Cell Signaling Technology) and mouse anti-beta-actin (1/20,000, clone AC-15; Sigma-Aldrich, Zwijndrecht, The Netherlands). Proteins were visualized using secondary fluorescently-labeled antibodies (1/5,000 goat-anti-mouse-IRDye 680 RD; LI-COR Biosciences, Lincoln, USA). Blots were scanned on the Odyssey infrared imaging system (LI-COR Biosciences). Quantification of the protein level was done using Image J software (NIH) and the protein levels were standardized to beta-actin levels.

Cell cycle analysis

Cells were treated with 4 nM ispinesib (Selleck Chemicals, Breda, The Netherlands) during 24 hours, after which cells were incubated with 4 nM 5-bromo-2'-deoxyuridine (BrdU; Sigma-Aldrich, Zwijndrecht, The Netherlands) for 45 minutes. Cells were subsequently harvested and fixed overnight in 70% EtOH. Next, cells were incubated with 0.5 mg/ml RNAse A in PBS at 37°C. After 30 minutes, cells were washed and resuspended in 5M HCl with 0.5% Triton X-100. The cells were left for 20 minutes at room temperature, after which the solution was neutralized by addition of 0.1 M Na2B4O7. The cells were stained for BrdU incorporation using mouse anti-BrdU antibodies, followed by FITC-conjugated rabbit anti-mouse antibodies (Dako, Enschede, The Netherlands) in PBS with 0.5% Tween-20 and 1% bovine serum albumin. Staining for DNA content was performed using propidium iodide. The cell cycle distribution was analyzed with a BD FACSCalibur flow cytometer (BD Biosciences, Erembodegem-Aalst, Belgium). Cell cycle analyses were performed using BD CellQuest software (BD Biosciences).
Staining of mitotic spindles

Cells were grown on an eight-wells Lab-Tek chamber slide (Thermo Fisher Scientific, Landsmeer, The Netherlands) and treated with 4 nM ispinesib (Selleck Chemicals) for 24h. The cells were fixed during 1 hour in 4% formaldehyde (Fluka Chemika, Zwijndrecht, The Netherlands) and subsequently permeabilized with 0.5% Triton-X100 (ICN Biochemicals, Zoetermeer, The Netherlands). An anti-alpha-tubulin antibody (clone B-7; Santa Cruz Biotechnology, Heidelberg, Germany) was applied in a 1:100 dilution for 40 minutes to visualize mitotic spindles. A FITC-labeled anti-mouse antibody (Dako, Enschede, The Netherlands) was utilized as secondary antibody. The DNA was visualized with 4',6-diamidino-2-phenylindole dihydrochloride (DAPI; Sigma-Aldrich, Zwijndrecht, The Netherlands). The slides were mounted with fluorescence mounting medium (Dako).

Efficacy of ispinesib in vivo

Female nu/nu mice were obtained from Harlan Laboratories (Boxmeer, The Netherlands). Cell lines VU-SCC-OE and UM-SCC-22A were subcutaneously injected. Resulting xenograft tumors were measured twice a week and treatment started when tumors reached sizes between 100 and 200 mm³. Mice were treated i.p. (intraperitoneal) with ispinesib (10 mg/kg) or with the ispinesib diluent at a q3.5dx4 schedule. Again, tumor sizes and body weight were checked twice a week. Mice were sacrificed when one of the tumors reached a volume over 1000 mm³ or 90 days after the first ispinesib/diluent injection.

All animal experiments were performed according to the NIH Principles of Laboratory Animal Care and Dutch national law (Wet op de dierproeven, Stb 1985, 336).
RESULTS

A large panel of genes is involved in cell viability

The non-small cell lung cancer (NSCLC) cell line SW1573 and the head-and-neck squamous cell carcinoma (HNSCC) cell line VU-SCC-120 were subjected to an optimization procedure for automated high-throughput forward siRNA transfection. An siRNA SMARTpool targeting \textit{PLK1}, a gene essential for cancer cell viability (18;19), was used as positive control. Optimal transfection conditions resulted in a reduction of at least 70\% cell viability in the \textit{PLK1} siRNA transfected cells as compared to siCONTROL\#2, a non-targeting siRNA. In addition, more than 80\% gene-specific knockdown was observed by quantitative real-time PCR (data not shown). Introduction of siCONTROL\#2 did not reduce cellular viability with more than 10-20\% compared to untransfected cells, indicating that the transfection protocols did not lead to excessive non-specific cell death.

With these optimal transfection conditions, we performed screens to identify genes that influence cell viability in the NSCLC cell line SW1573 cells and in the HNSCC cell line VU-SCC-120. To identify tumor lethal siRNAs, both cell lines were seeded in 96-well plates and transfected with the genome-wide siRNA library, containing 21,121 pools of four siRNAs, that all target a specific gene. The positive control \textit{PLK1} and the negative siCONTROL\#2 were loaded on each plate in quadruplicate. The effect of each siRNA on the viability of the cells was analyzed by CellTiter-Blue assay (VU-SCC-120) or automated counting of nuclei (SW1573). Comparison of the two independent duplicate screens, showed high reproducibility with a Spearman’s Rho= 0.748 for the duplicate screen in SW1573, and 0.843 for the duplicate screen in VU-SCC-120. Raw viability values were normalized per plate and between replicates, and Z-scores were calculated. A cut-off of $Z=-2.75$ ($p<0.003$) yielded 293 siRNAs that significantly decreased cell viability in SW1573 as compared to siCONTROL transfections and 140 siRNAs that caused a lethal phenotype in VU-SCC-120 (Fig. 1A and
supplementary Tables S1 and S2). None of the 1088 siCONTROL transfections present in the screens reached this threshold, while in total 99.3% and 100% of the PLK1 controls were scored as lethal in the NSCLC and HNSCC cell lines, respectively.

To identify common pathways that are essential for tumor cell survival we subjected the obtained hits to cluster analysis. First we clustered the 71 genes that were found to be essential for tumor cell survival in both NSCLC and HNSCC using the STRING database (version 9.0), and this revealed three clusters that contained genes involved in RNA processing, ribosome biogenesis and protein modification/ubiquitination (Supplementary Fig. 1A). Since we used a stringent cut-off of $Z=-2.75$, it is likely that we excluded siRNAs that do give a lethal phenotype in only one of the cell lines, while it just did not reach the cut-off in the other cell line. Therefore, we also combined the NSCLC and the HNSCC hit lists for cluster analysis. This analysis yielded 362 hits in total, which again contained the same clusters, but with many more genes per cluster (Supplementary Fig. 1B). One cluster, consisted of 20 genes involved in the regulation of the G2/M phase of the cell cycle (Fig. 1B). It is known that in both NSCLC and HNSCC the cell cycle checkpoints at G1 and G2 are often inactivated by abrogation of the p53 and pRb pathways. The hits identified in the G2/M phase might consequently relate to these specific aberrations and we therefore analyzed these in more detail.

Mitotic spindle assembly and stabilization is vital

We selected six genes from the hits in the G2/M cluster that are all involved in mitotic spindle organization and stability. For each of these genes we tested the four separate siRNAs that make up the siRNA pools in the genome-wide screens. The phenotype caused by introduction of these separate siRNAs was retested in the cell lines used in the genome-wide screens and 4 additional NSCLC and HNSCC cell lines (Fig. 2A and supplementary Fig. 2A-
E). Inhibition of four of the selected genes (*CKAP5*, *KPNB1* (importin-β), *RAN* and *TPX2*) resulted in >50% cell death in all cell lines tested with at least 2 of 4 siRNAs. This shows that expression of these genes is essential in a broad panel of tumor cell lines. We could not validate *CDCA8* as a hit in any of the used cell lines (Supplementary Fig. 2A), indicating that this was likely a false positive hit in VU-SCC-120. The siRNAs targeting *KIF11* mRNA showed a cell killing phenotype in all cell lines, except for SW1573. This was not unexpected since the *KIF11* siRNA pool was not scored as a hit in the primary genome-wide siRNA screen in this cell line. We confirmed that the siRNA does target the mRNA of *KIF11* in SW1573, as a qRT-PCR showed a *KIF11* mRNA knockdown of >94%, while the protein level was decreased with >82% (Supplementary Fig. 3A/B). Altogether, these data show that 5 of 6 tumor lethal gene hits involved in the G2/M phase could be validated in a broad panel of cell lines.

One of the strongest and most consistent hits was *RAN*. However, three genes associated with spindle formation via RAN signaling (*DLG7*, *NUTF2* and *RCC1*) were not identified as putative hits in the genome-wide screens. In subsequent deconvolution experiments, siRNAs targeting these genes indeed confirmed that their role seems not essential for cell survival (Supplementary Fig. 2F-H).

Surprisingly, aurora kinases did not appear to be lethal tumor hits in the genome-wide screens, even though *AURKA*, *AURKB* and *AURKC* have emerged as key mitotic regulators (20-22) and have been explored as promising drug targets (23). We therefore deconvoluted the siRNA pools of the AURK genes and analyzed the cell viability in three HNSCC and three NSCLC cell lines (Fig. 2B and supplementary Fig. 4A-B). *AURKA* inhibition showed an effect (>50% cell death) on the cell viability of 3 out of 6 cell lines tested, whereas *AURKB* and *AURKC* did not show a phenotype in any of the cell lines. We tested the level of knockdown induced by all siRNAs used and concluded that the lack of phenotype is not
technical since all siRNAs showed significant mRNA knockdown (Supplementary Fig. 4 C-D). Next, we explored the possibility that the aurora kinases have a redundant function by simultaneous knockdown of these genes (Supplementary Fig. 4 E-F). None of the combinations resulted in an increase in cell death. Altogether, many hits identified in the initial screens could be validated, while more or less expected hits that were not found, were also not confirmed in deconvolution experiments. This observation, although based on limited numbers of genes, demonstrates the accuracy of the obtained hit list of these tumor lethal siRNAs.

Functional KIF11 is essential for cell viability

We showed that multiple genes that act during the G2/M phase of the cell cycle are apparently crucial for the viability of NSCLC and HNSCC cells, which makes these genes potential targets for therapy (Fig. 2A). These genes included the microtubule motor protein KIF11. Treatment of cell lines with ispinesib (SB-715992), a potent and highly selective small molecule inhibitor of KIF11 (24), confirmed that functional KIF11 is important for cell viability (Fig. 3). When treated with ispinesib, primary human oral keratinocytes and fibroblasts only showed a mild growth inhibition (approximately 40% compared to untreated controls), while cell lines derived from human HNSCCs were completely inhibited in their growth (Fig. 3B). Also NSCLC cell lines encountered growth inhibition when ispinesib was applied (Fig. 3A), but this effect seemed less dramatic when compared to the HNSCC cell lines. Cell line SW1573 was only marginally affected in its growth after ispinesib incubation, which is in line with the observation that knockdown of KIF11 expression resulted in only a minor growth inhibiting effect in this cell line.

Next we checked the basal expression level of KIF11 in all NSCLC and HNSCC cell lines used, and determined that the overall KIF11 expression was significantly higher in the
NSCLC cell lines (p=4.44x10^{-6}; Fig. 3C and supplementary Fig. 5) than in the HNSCC cell lines. This suggests that the mild phenotype after KIF11 knockdown or drug inhibition in NSCLC cell lines might be the result of higher KIF11 expression. On the other hand, the expression of KIF11 in SW1573 does not differ from the other NSCLC cell lines, suggesting that the lack of response to ispinesib treatment is not related to an exceptionally high KIF11 expression in SW1573.

Based on the tumor cell killing phenotype after siRNA knock-down as well as ispinesib treatment, we concluded that particularly HNSCC cell lines are tremendously sensitive to KIF11 inhibition and in subsequent experiments we focused on these cell lines. Ispinesib inhibits the interaction between KIF11 and microtubules, thereby blocking the formation of a functional bipolar mitotic spindle, leading to cell cycle arrest in mitosis and subsequent cell death (24). We investigated the improper mitotic spindle formation in the presence of ispinesib in two HNSCC cell lines. Indeed, 100 out of 100 dividing tumor cells (100%) treated with ispinesib showed monopolar mitotic spindles (Fig. 4A), whereas 55 out of 202 dividing primary keratinocytes (27%) showed monopolar spindles (p<0.001, Fisher exact probability test). In addition, we examined the cell cycle distribution in HNSCC cell lines in the presence of ispinesib and found accumulation of cells in G2 phase (Fig. 4B and supplementary Fig. 6). As expected from the growth inhibition experiments with ispinesib, fibroblasts did not show G2 arrest to the same degree. This indicates that KIF11 seems a suitable HNSCC drug target with less effect on non-tumorigenic cells.

Efficacy of ispinesib in preclinical HNSCC cancer models

Next we analyzed the efficacy of ispinesib *in vivo*. Mice bearing tumor xenografts of HNSCC cell lines UM-SCC-22A and VU-SCC-OE were treated i.p. with ispinesib (10 mg/kg) at a q3.5dx4 schedule or with the ispinesib diluent. A significant decrease in tumor
volume was measured in both xenograft models (p<0.001 for both VU-SCC-OE and UM-SCC-22A at day 14, Student’s t-test), with the longest-lasting effect seen in the VU-SCC-OE xenografts (Fig. 5).
DISCUSSION

We used genome-wide loss of function screens in a HNSCC and a NSCLC cell line to identify genes influencing cell viability. We identified 362 genes that are essential for cellular survival and this list contained a cluster of genes that coordinately regulate the G2/M phase transition. We could validate TPX2, CKAP5, RAN, KPNB1 and KIF11 as essential genes for tumor cell survival in HNSCC and NSCLC. In sharp contrast, the Aurora kinases (AURKs) seemed less important for the survival of both tumor types, although these are also involved in the regulation of the same process. AURKs have previously been reported as promising anticancer targets and approximately 20 inhibitors targeting these kinases have entered clinical trials (25). Our study, however, suggests that multiple other genes involved in G2/M phase progression might be much more potent targets for therapy particularly in head-and-neck cancer and perhaps even in lung cancer.

The process of cell cycle deregulation has attracted great attention as a putative target for intervention. This has lead to the development of FDA approved mitotic spindle drugs like taxanes and vinca alkaloids (26;27). As these drugs have severe toxic side-effects, including neurotoxic effects, there is a need to identify potential new drugs that selectively target proteins that are essential in regulating the G2/M process. The study presented here can therefore serve as a rich source for the identification of novel putative drug targets.

KIF11 plays a critical role during the establishment of a bipolar mitotic spindle. Failure to set up a bipolar mitotic spindle due to inhibition of proper KIF11 functioning results in mitotic arrest, eventually leading to cell death. We confirmed that ispinesib, a small molecule inhibitor of KIF11, has a strong antitumor effect in in vivo experiments with HNSCC xenografts, confirming the potency of the identified hit list for identification of new drug targets. Furthermore, we showed that ispinesib does not influence the viability of primary keratinocytes and fibroblasts, indicating the tumor selectivity of this drug. Thus, our findings
support the potential of ispinesib as a therapeutic agent for head-and-neck cancer. Similar results were reported in preclinical models of breast cancer (28) and other xenograft models (29), suggesting that inhibition of KIF11 might be applicable as therapeutic agent in a wide variety of tumor types.

Ispinesib was the first inhibitor of KIF11 that advanced to clinical trials. Multiple clinical studies on the antitumor activity of ispinesib confirmed the absence of significant neuro- and gastrointestinal toxicities, which makes ispinesib favorable over other mitotic spindle interfering drugs. Several phase I clinical trials (31;36-37) and at least four phase II trials (32-35) on the application of ispinesib in cancer treatment have been described in literature. The studies were performed with a variety of dose and treatment schedules in multiple tumor types, making a good comparison between the trials difficult. The best antitumor effect was scored as partial response in 3 of 16 patients with advanced breast cancer (30), and all studies reported some cases of stable disease (31-36).

The convincing effect of ispinesib on HNSCC xenografts in vivo is promising and by far exceeds the effect of cisplatin (5 mg/kg) and radiation (3 Gy) on these xenografted tumors (data not shown). We could clearly show that repeated exposure of the xenografts to ispinesib is able to sustain inhibition of tumor growth (Fig. 5). However, when treatment was stopped the tumors slowly regained their proliferative capacity. When we resumed the ispinesib treatment in these xenografts, we again could inhibit tumor growth (data not shown). This shows that continued ispinesib exposure might be of importance for treatment. The performed clinical trials have been executed with one dose of ispinesib every three weeks, or three doses in a four week time span (31-37). Therefore, further optimization of dose schedules with this drug should allow a much higher efficacy of the drug in head-and-neck cancer patients. It has also been suggested that the lack of tumor response in patients could be due to limited efficacy of the drug in humans, possibly because of its molecular properties (37). As a
second-generation KIF11 inhibitor, SB-743921, showed promising preliminary results in clinical trials (38), a combination of this novel drug and an optimized dosing schedule could be more beneficial for treatment outcome.

In conclusion, we identified 362 putative tumor essential genes of which five were validated to induce tumor cell kill upon inhibition. Of these five genes, \textit{KIF11} was shown to be a suitable target for drug treatment \textit{in vitro} and \textit{in vivo}. These promising results urge the development of a satisfying treatment schedule for ispinesib, or the use of more effective second generation drugs, to use this potent drug to its full potential.

GRANT SUPPORT

This study was performed within the framework of CTMM, the Centre for Translational Molecular Medicine. AIRFORCE project (grant 03O-103).
References

LEGENDS TO THE FIGURES

Figure 1. Identification of genes essential for NSCLC and HNSCC tumor cell viability by genome-wide siRNA screens.

A, Z-score calculations were performed using cell counts (NSCLC, upper panel) or cell viability measurements (HNSCC, lower panel). Black dots represent the Z-score for individual siRNA pools that target one gene. PLK1 siRNAs were used as positive controls and are indicated as grey dots (encircled). Non-targeting siRNAs (siCONTROL) were used as negative controls and are shown in grey. The Z=-2.75 threshold (black line) was used to determine siRNAs that significantly influenced tumor cell viability (p<0.003). Z-scores were calculated using the mean value per siRNA from two independent siRNA screens. B, A cluster of 20 genes involved in the mitotic spindle checkpoint was identified among the 362 siRNAs that decreased cell viability in NSCLC and/or HNSCC.

Figure 2. Deconvolution of siRNA pools that decreased NSCLC and HNSCC cell viability.

A, Three NSCLC (A549, H1299, SW1573) and three HNSCC (VU-SCC- and UM-SCC-) cell lines were transfected with the KIF11 siRNA pool and the four individual siRNAs to determine the specificity of the lethal phenotype observed in the genome-wide screens. Cell viability was determined in triplicate and calculated relative to siCONTROL transfected cells. Bars are median cell viability values and error bars represent the standard deviation. All HNSCC cell lines showed the lethal phenotype with at least 3 out of 4 siRNAs. All NSCLC cell lines showed similar results, except for SW1573. B, The AURKA pool and individual siRNAs were deconvoluted but showed a less convincing cell killing phenotype than KIF11 siRNAs.
Figure 3. KIF11 is important for NSCLC and particularly HNSCC cell viability.

A, Four NSCLC cell lines (black lines) were treated with 18 concentrations of ispinesib (SB-715992), a small molecule inhibitor of KIF11. All cell lines showed growth inhibition after ispinesib treatment, whereas primary oral keratinocytes and fibroblasts (grey lines) only displayed mild effects. SW1573 was the most insensitive cell line among the NSCLC panel. B, Five HNSCC cell lines were exposed to 18 concentrations of ispinesib. All five cell lines (black lines) showed major growth inhibition. C, The KIF11 expression level of cultured HNSCC and NSCLC cell lines was determined. Oral keratinocytes (represented by the black bar) showed very low KIF11 expression as compared to the tumor cell lines. The NSCLC cell lines (A549, H1299, SW1573, H460) showed higher KIF11 expression levels than the HNSCC cell lines (VU-SCC- and UM-SCC-). This corresponds to the lower sensitivity to ispinesib seen in A and B. Bars represent median values of three independent measurements and error bars represent the standard deviation.

Figure 4. Inhibition of KIF11 impairs mitotic spindle formation and induces G2 arrest.

A, HNSCC cell line VU-SCC-OE showed normal mitotic spindles (upper panels), whereas the bipolar mitotic spindles were replaced by monopolar spindles after incubation with ispinesib (panels at second row). Also the alignment of the condensed chromosomes at the metaphase plate is abrogated after ispinesib incubation. Pictures were taken using a 40x magnification. Primary keratinocytes showed normal mitotic spindles (panels at third row) and this was hardly altered after ispinesib treatment (lower panels). B, HNSCC cells treated with ispinesib showed accumulation of cells in the G2/M phase of the cell cycle as compared to untreated cells. In primary fibroblasts this increase in G2 accumulation was significantly
less compared to the tumor cell lines (p<0.001 for both cancer cell lines, Fisher’s exact probability test). Measurements were performed in two independent experiments.

Figure 5. Antitumor activity of ispinesib in HNSCC xenograft models.

Ispinesib diluent (grey) and ispinesib (black, 10 mg/kg) were injected according to a q3.5dx4 schedule. Arrows indicate the days of ispinesib administration. The relative tumor volume is depicted as the mean of all tumors within a group and error bars represent the standard error of the mean.
Figure 1

A

NSCLC

Z-score

HNSCC

Z-score

B

Network diagram with nodes labeled ANAPC1, TUBA4A, WEE1, CEP72, etc.

Figure 2

A

![Graph of KIF11 showing cell viability comparison between different groups and samples.]

B

![Graph of AURKA showing cell viability comparison between different groups and samples.]

Downloaded from clincancerres.aacrjournals.org on April 13, 2017. © 2013 American Association for Cancer Research.
Figure 3

A

Cell viability (%)

Ispinesib (log nM)

Oral keratinocytes
Fibroblasts
SW1573
A549
H1299
H460

B

Cell viability (%)

Ispinesib (log nM)

Oral keratinocytes
Fibroblasts
VU-SCC-120
UM-SCC-11B
UM-SCC-22B
UM-SCC-22A
VU-SCC-OE

C

Delta Ct (GUSB-KIF11)

Oral keratinocytes
A549
H1299
SW1573
H460
UM-SCC-11B
UM-SCC-22A
UM-SCC-22B
VU-SCC-OE
VU-SCC-120

Note: The figure shows the effect of Ispinesib on the viability of different cell types, including oral keratinocytes and fibroblasts, across various cell lines.
Figure 4

Primary keratinocytes

<table>
<thead>
<tr>
<th>4 nM Ispinesib</th>
<th>Untreated</th>
</tr>
</thead>
</table>

VU-SCC-OE

<table>
<thead>
<tr>
<th>4 nM Ispinesib</th>
<th>Untreated</th>
</tr>
</thead>
</table>

Alpha-tubulin

DAPI

Overlay
Figure 4

BrdU

Propidium iodide

Ispinesib

Un-treated

UM-SCC-22A

VU-SCC-OC

Primary fibroblasts

Untreated

Ispinesib

Propidium iodide

BrdU
Figure 5

VU-SCC-OE xenograft

UM-SCC-22A xenograft
FUNCTIONAL GENETIC SCREENS IDENTIFY GENES ESSENTIAL FOR TUMOR CELL SURVIVAL IN HEAD-AND-NECK AND LUNG CANCER

Sanne R. Martens-de Kemp, Remco Nagel, Marijke Stigter-van Walsum, et al.

Clin Cancer Res Published OnlineFirst February 26, 2013.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-12-2539

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2013/02/26/1078-0432.CCR-12-2539.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.