PI3K/mTOR Inhibitor PF-04691502 Antitumor Activity Is Enhanced with Induction of Wild-Type TP53 in Human Xenograft and Murine Knockout Models of Head and Neck Cancer

Amanda Herzog1,2, Yansong Bian1, Robert Vander Broek1,2, Bradford Hall3, Jamie Coupar1, Hui Cheng1, Anastasia L. Sowers4, John D. Cook4, James B. Mitchell4, Zhong Chen1, Ashok B. Kulkarni3, and Carter Van Waes1

Abstract

Purpose: Phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway activation is often associated with altered expression or mutations of PIK3CA, TP53/p73, PTEN, and TGF-β receptors (TGFBR) in head and neck squamous cell carcinomas (HNSCC). However, little is known about how these alterations affect response to PI3K/mTOR–targeted agents.

Experimental Design: In this preclinical study, PI3K/Akt/mTOR signaling was characterized in nine HNSCC (UM-SCC) cell lines and human oral keratinocytes. We investigated the molecular and anticancer effects of dual PI3K/mTOR inhibitor PF-04691502 (PF-502) in UM-SCC expressing PIK3CA with decreased wild-type TP53, mutant TP53/C0, mutant TGFBR2, and in HNSCC of a conditional Pten/Tgfbr1 double knockout mouse model displaying PI3K/Akt/mTOR activation.

Results: UM-SCC showed increased PIK3CA expression and Akt/mTOR activation, and PF-502 inhibited PI3K/mTORC1/2 targets. In human HNSCC expressing PIK3CA and decreased wtTP53 and p73, PF-502 reciprocally enhanced TP53/p73 expression and growth inhibition, which was partially reversible by p53 inhibitor pifithrin-α. Most UM-SCC with wtTP53 exhibited a lower IC50 than those with mtTP53 status. PF-502 blocked growth in G0–G1 and increased apoptotic sub-G0 DNA. PF-502 suppressed tumorigenesis and showed combinatorial activity with radiation in a wild-type TP53 UM-SCC xenograft model. PF-502 also significantly delayed HNSCC tumorigenesis and prolonged survival of Pten/Tgfbr1-deficient mice. Significant inhibition of p-Akt, p-4EBP1, p-S6, and Ki67, as well as increased p53 and TUNEL were observed in tumor specimens.

Conclusions: PI3K-mTOR inhibition can enhance TP53/p73 expression and significantly inhibit tumor growth alone or when combined with radiation in HNSCC with wild-type TP53. PIK3CA, TP53/p73, PTEN, and TGF-β alterations are potential modifiers of response and merit investigation in future clinical trials with PI3K-mTOR inhibitors. Clin Cancer Res; 19(14); 1–12. ©2013 AACR.
PTEN expression is decreased in ~60%, and mutated in ~7% of HNSCC (9–11). We recently detected increased phospho-Akt concurrent with decrease in PTEN and TGFBR1 expression in 8 of 20 (40%) human HNSCC (11). Conditional double knockout of Pten/Tgfbr1 enhanced development of HNSCCs in which P13K-Akt activation is driven by distinct underlying alterations and contributes to repression of TP53. Evaluation of PIK3CA as well as TP53 and TGFBR alterations prevalent in HNSCC may be important to include in future clinical trials to identify selective factors for the broader class of PI3K-mTOR inhibitors.

Translational Relevance

Although phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) activation is prevalent in cancers, we found that activity of PI3K/mTOR–targeted agents differed among HNSCC models displaying distinct molecular alterations affecting TP53 and TGF-β tumor suppressor function. Notably, in HNSCC in which we showed repression of wild-type TP53, PF-502 reciprocally enhanced TP53 expression and apoptosis, and showed significant therapeutic activity alone and in combination with radiation. PF-502 also showed antitumor activity in a Pten/Tgfbr1-deficient murine head and neck cancer model, but not in human HNSCC with mT/P53/TGFBR2. These findings provide evidence for activity of PI3K/mTOR inhibitor PF-502 in HNSCCs in which PI3K-Akt activation is driven by distinct underlying alterations and contributes to repression of TP53. Evaluation of PIK3CA as well as TP53 and TGFBR alterations prevalent in HNSCC may be important to include in future clinical trials to identify selective factors for the broader class of PI3K-mTOR inhibitors.
HNSCC are well characterized for status of TP53 and TGFBR tumor suppressor alterations (Supplementary Tables S2 and S3; refs. 14, 16, and 17). The UM-SCC cells were cultured in minimal essential medium and 10% fetal calf serum. Human oral keratinocytes (HOK) obtained from oral gingival mucosa from Lonza were used as a control cell line.

Reagents

PF-04691502 was provided by Pfizer though a Materials Transfer Agreement with the National Institute of Deafness and Other Communication Disorders (NIDCD), and described previously (32, 33). The drug was resuspended to a stock solution of 10 mmol/L in dimethyl sulfoxide (DMSO) for in vitro experiments and 2.35 mmol/L in 0.5% methylcellulose (Sigma Aldrich) to deliver 5 to 10 mg/kg for in vivo experiments. TP53 inhibitor Pifithrin (35) was from Sigma-Aldrich.

Western blot

Western blots were done as previously described (11, 16, 29), using whole cell lysates and antibodies as described in Supplementary Methods. The quantification of the protein expression detected by Western blots was done by protein densitometry with ImageJ 1.45 k software, and the calculation was done using a formula described in Supplementary Methods.

MTT/XTT cell-density assay and cell-cycle analysis by DNA flow cytometry

Cell density was evaluated using MTT or XTT assay as indicated, and cell-cycle effects were characterized by DNA flow cytometry as described previously (16, 18) and in Supplementary Methods.

HNSCC xenograft and radiation regrowth delay tumor models

All animal experiments were carried out under protocols approved by the Animal Care and Use Committee of the NIDCD or NCI, and were in compliance with the Guide for the Care and Use of Laboratory Animal Resource (1996) National Research Council. Four- to 6-week-old female BALB/c severe combined immunodeficient (SCID; for xenografts) or nu/nu mice (for radiation experiments) were obtained from Frederick Cancer Research and Development Center (National Cancer Institute) and housed in a specific pathogen-free animal facility. Mice were injected s.c. in flanks with 5 x 10^6 UM-SCC 1 or 46 cells and treated 1 to 2 weeks later, as described in Supplementary Methods and Supplementary Fig. S5.

Tgfb1/Pten 2cKO mouse model studies

The Tgfb1/Pten 2cKO mice were generated from crosses between Tgfb1 cKO mice (K14-CreERT^2;Tgfb1^l/l) and Pten^f/f mice, induced as recently reported (11), and treated as described in Supplementary Methods and Fig. S5.

Immunohistochemical analyses of tumors

Immunohistochemical staining (IHC) and quantifications of slides with tumor from control or PF-502–treated mice were done using a previously published method (11), and as described in Supplementary Methods.

Statistics

Statistical analyses used were as indicated in figure legends and Supplementary Methods.

Results

Differential expression and molecular effects of dual PI3K/mTOR inhibitor PF-502 on PI3K/Akt/mTOR pathway components and TP53/p73 in HNSCC cell lines

We examined the expression and phosphorylation of key PI3K/Akt/mTOR pathway proteins in a panel of 9 human HNSCC (UM-SCC) cell lines, which have been previously genotyped and also demonstrate alterations prevalent in HNSCC tumors, including EGFR and PI3K/Akt activation (5, 6), as well as inactivation or mutations of TP53/p73 and TGFBRs (refs. 14, 16–17; Supplementary Tables S1–S3). Expression and/or phosphorylation of several PI3K/Akt/mTOR pathway components were differentially increased in most of the UM-SCC lines when compared with control HOK (Fig. 1A) and normalized to β-actin and UM-SCC1. A marked increase in protein expression of the PI3K p110alpha catalytic subunit (PIK3CA), p-Akt (S473 and T308), p-S6 (S240/244), and p-4EBP1 (T37/46) was observed in two thirds of wtTP53 deficient (UM-SCC1–6) and most mutant (mt)TP53 (UM-SCC11A-46) lines. Thus, the majority of UM-SCC lines showed differentially increased expression and/or phosphorylation of several PI3K/Akt/mTOR pathway components, consistent with previous studies in HNSCC tumors (7, 8, 19).

To compare the molecular effects of the PI3K-mTOR inhibitor PF-502 in UM-SCC with different molecular alterations, UM-SCC lines 1 and 46 were selected for initial study (Fig. 1B). These lines showed increased expression of PIK3CA, p-Akt, and mTOR targets, but either express low levels of wtTP53 (UM-SCC1), or express mtTP53 and PIK3CA, p-Akt (T37/46) was observed in two thirds of wtTP53 deficient (UM-SCC1–6) and most mutant (mt)TP53 (UM-SCC11A-46) lines. Thus, the majority of UM-SCC lines showed differentially increased expression and/or phosphorylation of several PI3K/Akt/mTOR pathway components, consistent with previous studies in HNSCC tumors (7, 8, 19).

PI3K/mTOR Inhibition Induces TP53 in HNSCC

To compare the molecular effects of the PI3K-mTOR inhibitor PF-502 in UM-SCC with different molecular alterations, UM-SCC lines 1 and 46 were selected for initial study (Fig. 1B). These lines showed increased expression of PIK3CA, p-Akt, and mTOR targets, but either express low levels of wtTP53 (UM-SCC1), or express mtTP53 and PIK3CA, p-Akt (T37/46) was observed in two thirds of wtTP53 deficient (UM-SCC1–6) and most mutant (mt)TP53 (UM-SCC11A-46) lines. Thus, the majority of UM-SCC lines showed differentially increased expression and/or phosphorylation of several PI3K/Akt/mTOR pathway components, consistent with previous studies in HNSCC tumors (7, 8, 19).

Copyright © 2013 American Association for Cancer Research. Published OnlineFirst May 2, 2013; DOI: 10.1158/1078-0432.CCR-12-2716
As we have previously found evidence for repression of TP53 and p73 expression and tumor suppressor function in HNSCC (16, 17), we examined if PI3K/mTOR inhibition modulated expression of these proteins (Fig. 1B). Interestingly, PF-502 treatment induced an increase in expression of TP53 up to 50-fold in the UM-SCC1 line expressing minimal detectable levels of wtTP53, whereas a lesser fold increase in TP53 was seen in the UM-SCC46 line with already elevated basal levels of mtTP53 between 6 and 24 hours. A moderate increase in p73 was also observed in both UM-SCC1 and 46 after PF-502 treatment. To confirm these findings and control for experimental variability, protein loading, cell density, or cell line variation, we conducted additional experiments (Supplementary Fig. S1). Reproducible inhibition of selected PI3K/mTOR targets and a clearly inducible expression of TP53/p73 proteins were observed in replicate as well as independent experiments with time/density-matched controls for UM-SCC1 and 46 (Supplementary Fig. S1A–S1D). In addition, inhibition of selected PI3K/mTOR targets and induced expression of TP53/p73 proteins were observed in an independent wtTP53 line UM-SCC6 expressing detectable TP53 and p73 (Supplementary Fig. S1E). These findings indicate that dual PI3K/mTOR inhibitor PF-502 had similar inhibitory effects on PI3K/mTOR signaling, while enhancing expression of TP53 and p73 expression in multiple UM-SCC lines with wtTP53 or mtTP53.

Dual PI3K/mTOR inhibitor PF-502 differentially modulates cell growth and survival of HNSCC in vitro

UM-SCC1 and 46 cell lines treated with increasing PF-502 concentrations between 25 nmol/L to 10 μmol/L over a 5-day MTT assay exhibited a dose-dependent decrease in cell density (Fig. 2A and B). UM-SCC1 had a higher IC_{50} value of ~2 μmol/L as compared with an IC_{50} of ~0.6 μmol/L for UM-SCC46. As we observed PF-502–modulated TP53, we examined an expanded panel of UM-SCCs, which included 5 wtTP53 and 6 mtTP53 lines (Supplementary Tables S1 and S2) for ICs of PF-502 (Supplementary Fig. S2). For IC_{50}, most mtTP53 lines appeared to be relatively more resistant, except for two with IC_{50} overlapping those of wtTP53 lines, whereas wtTP53 line UM-SCC1 was a more resistant outlier by boxplot analysis.

Figure 1. PI3K/Akt/mTOR pathway activation and inhibition by PF-502 in HNSCC. A, Nine UM-SCC cell lines were assessed for PI3K/Akt/mTOR pathway activation via Western blot and showed varying levels of increased activation of the pathway as compared with control HOK cells. The relative protein density normalized to UM-SCC1 and individual β-actin–loading controls are shown above each blot. To probe for all 11 proteins of interest, the top 6 panels of protein densities were normalized to the middle actin panel, whereas the densitometry of the bottom 5 proteins was normalized to the bottom actin panel. B, UM-SCC1 (wtTP53) and UM-SCC46 (mtTP53) cell lines were treated with 1.25 μmol/L PF-502 or 0.01% DMSO control, and cell lysates were procured 6, 12, and 24 hours after treatment and subjected to SDS-PAGE and Western blot. PF-502–treated samples showed decreased pAkt (S473 and T308), p-4EBP1 (S65 and T37/46), and p-S6 (S240/244) in UM-SCC1 and 46. Baseline TP53 and p73 in wtTP53 UM-SCC1 was increased after PF-502 administration. The numbers above each blot correspond to relative protein density measured in UM-SCC1 or 46 compared with 6 hours of the DMSO treatment condition and appropriate β-actin–loading controls.

OF4Clin Cancer Res; 19(14) July 15, 2013

and 600 nmol/L, respectively. C, boxplots of IC50sf or 6m T P 5 3 (r e d) a n d 5 w T P 5 3 l i n e s (c y a n ; S u p p l e m e n t a r y T a b l e S 2). IC50 levels were

PF-502 reduced cell density and cell adherence, effects that were partially reversed by TP53 inhibitor pi

(Fig. 2D and Supplementary Fig. S3). IC50 levels were significantly higher for most mtTP53 relative to wtTP53 cell lines,

when pifithrin was combined with PF-502, consistent

with partial contribution of TP53 to growth inhibition

(Fig. 2D) and was associated with a change in cellular

morphology (rounding, detachment; Supplementary Fig.

S3). Although pifithrin alone had no appreciable effect on

cell density, significantly higher cell density was observed

with pifithrin when treated with PF-502, consistent

with partial contribution of TP53 to growth inhibition

(Fig. 2D and Supplementary Fig. S3).

To further evaluate the effects of PF-502 on cell cycle and
death, DNA cytofluorometric analysis of UM-SCC1 and 46

cells was compared after treatment with PF-502 at twice

their established IC50 values (Fig. 3). UM-SCC1 cells treated

with PF-502 (4 µmol/L) exhibited increased G0–G1

accumulation over 24 to 48 hours, and sub-G0 DNA over 24 to

72 hours, consistent with the G0–G1 growth arrest and cell

death expected with the PI3K/Akt/mTOR signal inhibition,

and increased TP53/p73 protein expression observed with

PF-502 above. By contrast, treatment of UM-SCC 46 cells

with 1.2 µmol/L PF-502 showed a lesser increase in G0–G1

and no further increase in the elevated sub-G0 fraction

observed with late growth. Because the differences in DNA

fraction could be related to lower concentration used for

UM-SCC46, we also compared the effects after treating

both at the same concentration of ~IC50 for UM-SCC1

(2 µmol/L). Under these conditions, PI3K/Akt/mTOR
inhibition still had a differentially greater effect on G_0–G_1 cell-cycle arrest in UM-SCC1 than 46, and similar enhancement of sub-G_0 DNA in both lines required ~3 x the IC_{50} for UM-SCC46 (Supplementary Fig. S4). Cell-cycle analysis conducted for additional wtTP53/TGFB2 lines UM-SCC6 (IC_{50} ~ 0.2 μmol/L), UM-SCC9 (IC_{50} ~ 0.15 μmol/L), and mtTP53/wtTGFB2 line UM-SCC38 (IC_{50} ~ 0.5 μmol/L) also showed PF-502–induced G_0–G_1 accumulation (Supplementary Fig. S4A). wtTP53 UM-SCC6 and 9 showed relatively higher baseline and PF-502 inducible sub-G_0 fraction by 24 hours, whereas PF-502–induced increase in sub-G_0 DNA was delayed until 48 hours in UM-SCC38 with mtTP53/wtTGFB2 (Supplementary Fig. 4B). Together, the above findings suggest that TP53 status as well as other factors contribute to the sensitivity of UM-SCC to PF-502.

PF-502 differentially affects tumor growth and survival and delays tumor growth with radiation in a human HNSCC xenograft model with wtTP53

To evaluate the activity and tolerability of PF-502 in HNSCC in vivo, pilot dosage studies were done using the UM-SCC1 (wtTP53) and UM-SCC46 (mtTP53 and mtTGFB2) as human HNSCC xenograft models. Tumor cells were implanted s.c. into the flank of SCID mice, and treatment was initiated beginning ~14 days after implantation when tumors were palpable. PF-502 (5, 7.5, and 10 mg/kg) or control vehicle were given via oral gavage for 21 consecutive days (see schema; Supplementary Fig. S5). After establishing 10 mg/kg of PF-502 as the most effective tolerated dose (data not shown), we conducted a larger trial (n ≥ 12 per group) in UM-SCC1 and UM-SCC46 xenograft mice, and the effects on tumor growth and survival were
compared (Fig. 4A, B). Although UM-SCC1 showed more rapid tumor growth than UM-SCC46 in vivo, PF-502 had a greater inhibitory effect on the tumor growth in the wtTP53 UM-SCC1 xenograft mouse model than in UM-SCC46 with mtTP53 and mtTGFBR2 (Fig. 4A). At the completion of treatment on day 21, the difference in tumor volume versus control was highly statistically significant ($P < 0.0001$) in the UM-SCC1 model and associated with an improvement in median survival of ~10 days, whereas UM-SCC46 xenograft mice did not show improved survival with PF-502 treatment. (C) The effects of control (0.5% methyl cellulose/PBS), PF-502 (10 mg/kg), 15 Gy radiation, and PF-502 plus radiation on the growth of UM-SCC1 xenografts. PF-502 was administered by oral gavage once daily for 5 days, and radiation treatment was delivered on the fourth day, 2 hours after PF-502 gavage (arrows). Error bars, SEM ($n = 5$ mice/group).

Figure 4. Effects of PF-502 treatment on tumorigenesis and survival in two HNSCC xenograft mouse models. Human HNSCC xenografts were established utilizing 5×10^6 wtTP53 UM-SCC1 or mtTP53 UM-SCC46 cells implanted s.c. into the flank of SCID mice ($n = 13$ or 12 mice per treatment group, respectively). Treatment was initiated when tumors were palpable, 14 days after implantation. Mice were treated with 10 mg/kg of PF-502 by oral gavage for 21 consecutive days. A, tumor volume was reduced by PF-502 for UM-SCC1 on day 21 ($P < 0.0001$). Tumor volume reduction in the UM-SCC46 model at day 21 was not significant ($P > 0.05$). B, mice bearing UM-SCC1 xenografts treated with PF-502 showed a median survival advantage of ~10 days, whereas UM-SCC46 xenograft mice did not show improved survival with PF-502 treatment. (C) The effects of control (0.5% methyl cellulose/PBS), PF-502 (10 mg/kg), 15 Gy radiation, and PF-502 plus radiation on the growth of UM-SCC1 xenografts. PF-502 was administered by oral gavage once daily for 5 days, and radiation treatment was delivered on the fourth day, 2 hours after PF-502 gavage (arrows). Error bars, SEM ($n = 5$ mice/group).

PF-502 delays HNSCC tumor development and growth and improves survival in Pten/Tgfbr1 2cKO mice

Decreased PTEN and TGFBR1 has been detected in ~40% of human HNSCC and implicated in PI3K/Akt/mTOR
activation and tumor development (10–12). As we recently established that increased PI3K-Akt-mTOR activation and HNSCC tumorigenesis with 100% penetrance is a consequence in Pten/Tgfbr1 2cKO mice (11), we examined the potential of PF-502 to inhibit development and growth of HNSCC in this defined transgenic mouse model. After a pilot dosage escalation study, PF-502, 10 mg/kg, for 3 weeks, was found to be well tolerated and without significant weight loss or toxicity for up to 6 months (data not shown). Treatment of larger groups of Pten/Tgfbr1 2cKO mice (n > 18) with PF-502 was then initiated 4 weeks after deletion of Pten and Tgfbr1 via tamoxifen-induced Cre expression and approximately 2 weeks before development of HNSCC. Tgfbr1/Pten 2cKO mice were treated with PF-502, 10 mg/kg, or 0.5% methylcellulose vehicle alone by oral gavage for 21 days. A, representative HNSCC in 4 control mice on day 21. B, representative PF-502–treated mice showed visibly reduced tumor burden on day 21. C, PF-502–treated mice had fewer tongue tumors as compared with control mice (30% vs. 55.6%, respectively) on day 21 despite similar initial tongue tumor incidence. Tongue tumors also visibly covered a smaller surface in PF-502 mice (9.8%) as compared with control mice (21.3%) on day 21 (P < 0.0001). D, 2cKO mice treated with PF-502 (n = 19) showed decreased tumor volume versus control vehicle (n = 18) during 21 days of PF-502 treatment. E, PF-502–treated 2cKO mice showed improved median survival of >60 days as compared with 40 days for control mice (median survival advantage of >20 days; n = 19 and 18, respectively).

PF-502 inhibited PI3K/Akt/mTOR and Ki-67 and increased TP53 and TUNEL staining in xenograft and 2cKO models in vivo

Effects of PF-502 treatment for 21 days on PI3K/Akt/mTOR, TP53/p73, and related proliferation (Ki67) and apoptosis (TUNEL) markers were examined by immunostaining in HNSCC tumors from UM-SCC1 and 46 xenografts and Pten/Tgfbr1 2cKO mice (Fig. 6A). Tumor immunostaining was quantified by histoscores (Fig. 6B). PF-502 treatment for 21 days significantly decreased PI3K/Akt/mTOR...
pathway signaling as measured by decreased staining of pAkt (S473) and downstream p-4EBP1 (T37/46) and p-S6 (S240/244) in tumor specimens from all three models (Fig. 6). Conversely, TP53 was significantly increased in tumors from wtTP53 UM-SCC1 and mtTP53 UM-SCC46 xenografts but did not reach significance in 2cKO mice. p73 staining was slightly increased but also did not reach statistical significance in the three tumor models. There was a statistically significant decrease in proliferation (Ki67) and an increase in apoptosis (TUNEL) marker staining in tumor specimens from all three models, with greater relative increase in TP53 and TUNEL staining observed in UM-SCC1 with wtTP53. TP53 inducible cell-cycle–dependent kinase inhibitor p21Cip1 gene expression was increased in wtTP53 UM-SCC1 but not in mtTP53 UM-SCC46 tumors, providing further evidence for functional activation of TP53 (Supplementary Fig. S7).

Discussion

Here, we show that PI3K/mTOR antagonist PF-04691502 has antitumor activity in PIK3CA-overexpressing/TP53-deficient human and Pten/Tgfbr1-deficient murine head and neck cancer models, which reflect alterations found concurrently with PI3K/Akt/mTOR activation in human HNSCC subsets. Notably, in HNSCC from the subset in which we previously showed decreased wtTP53/p73 expression (16, 17), PF-502 inhibited PI3K/Akt/mTOR signaling and reciprocally enhanced TP53 and p73 expression, supporting a model whereby oncogenic activation of the PI3K/Akt/mTOR pathway can repress TP53 and p73 expression (Supplementary Fig. S8). PF-502 significantly delayed HNSCC tumorigenesis and prolonged survival of mice bearing wtTP53 UM-SCC1 xenografts, and in Pten/Tgfbr1-deficient mice, in which PI3K/Akt activation is a major driver of HNSCC (11, 12). More limited activity was
observed in human UM-SCC46 with PIK3CA overexpression, Akt/mTOR activation, but mutations of both TP53 and TGFBR2 (14, 16). Our findings comparing IC_{50}s in a wider panel of UM-SCC \textit{in vitro} suggest that TP53 status as well as other factors contribute to the sensitivity of UM-SCC to PF-502. Preliminary findings from the The Cancer Genome Atlas have detected amplifications or putative activating mutations in PIK3CA in ~30% of 279 HNSCC tumors, which overlap with wild-type and mutant TP53 subsets, and other less prevalent candidate gene alterations (36). Together, these observations underscore the importance of evaluating molecular and antitumor effects of PI3K/Akt/mTOR pathway targeted therapy in experimental models and clinical subsets with different genetic and molecular alterations of biologic relevance in HNSCC.

The frequent activation of PI3K/Akt/mTOR pathway by upstream receptor tyrosine kinases or intrinsic alterations (3–12) provides an important rationale for investigation of dual PI3K/mTOR inhibitors in HNSCC. The PI3K/Akt/mTOR signaling pathway is activated in most UM-SCC lines and involves increased expression of the PIK3CA (p110alpha) catalytic subunit, p-Akt, p-mTOR, p-4EBP1, and p-S6 (Fig. 1A; Supplementary Fig. S8), as often observed in human tumors (7, 19). Treatment with PF-502 blocked downstream targets of PI3K and mTORC2 (pAkt T308/S473), mTORC1 (p-S6(S240/244)), and p-4EBP1(Thr37/46), consistent with dual PI3K/mTORC1/2 inhibitor activity. However, the duration of blockade was limited for p-Akt (S473 and T308) and some other downstream components in UM-SCC1 and 46 by 12 to 24 hours, as was also observed using lower concentrations of PF-502 in other tumor types \textit{in vitro} and \textit{in vivo} (33). Reactivation of PI3K/Akt with mTOR inhibition has been reported to result from loss of feedback inhibitory loop involving p-S6 and IRS-1 (Supplementary Fig. S8; ref. 2). The greater than baseline increase in p-Akt (S473 and T308) by 24 hours for UM-SCC1 (Fig. 1B) could potentially explain the requirement for markedly higher concentrations of PF-502 to inhibit proliferation of UM-SCC1 relative to UM-SCC 46 \textit{in vitro} (Fig. 2A and B). However, these p-Akt markers were similarly inhibited in all three tumor models in mice receiving 10 mg/kg every 24 hours \textit{in vivo}, indicating that steady-state concentrations of PF-502 were adequate to inhibit p-Akt and p-S6 \textit{in vivo}. A phase I clinical trial with daily PF-502 for recurrent cancers has recently been completed, and p-Akt as a candidate marker of PF-502 activity is planned (R. Millham; personal communication; Pfizer). Preliminary analysis of this phase I clinical trial provides evidence for clinical activity, with prolonged stable disease in 12 of 36 (33%) patients (R. Millham; personal communication; Pfizer), similar to tumoristic effects we observed in UM-SCC1 and 2cKO models. These data also suggest that a subset of tumors are sensitive to clinically achievable concentrations, whereas alterations in others may attenuate the antitumor effects of PI3K/mTOR inhibition.

In this regard, the reciprocal enhancement in expression of TP53/p73 tumor suppressor proteins and the apparent relationship between TP53 status and IC_{50} for the majority of UM-SCC lines with blockade of the PI3K/Akt/mTOR pathway are important findings of this study. Increases in TP53 and p73 were detected in wtTP53 UM-SCC1 and UM-SCC 6 lines \textit{in vitro}, and mtTP53 and p73 were also further increased in UM-SCC46. Pifithrin partially attenuated PF-502–induced growth inhibition in wtTP53 line UM-SCC1, consistent with contribution of TP53 to growth inhibition. We further show that UM-SCC1 with inducible wtTP53 exhibits greater G_0–G_1 growth arrest, and that concentrations ~3 × IC_{50} for UM-SCC46 with mtTP53 are required to induce a comparable increase in sub-G_0 DNA (Fig. 3 and Supplementary Fig. S4). Furthermore, wtTP53 UM-SCC6 and 9 showed relatively higher baseline and PF-502 inducible sub-G_0 fraction by 24 hours, whereas PF-502 did not induce increased sub-G_0 DNA until 48 hours in UM-SCC38 with mtTP53/wtTGFBR2 (Supplementary Fig. S4, right panels). Together, these data suggest that TP53 status as well as other factors, such as PI3KCA mutations, contribute to the sensitivity of HNSCC to PI3K/mTOR inhibitors (37).

Similar effects of PF-502 associated with genotype were observed \textit{in vivo} (Fig. 6). We found that UM-SCC1, which is wtTP53 genotype and exhibits greater differential induction of TP53 and growth arrest than mtTP53/TGFBR2 line UM-SCC46, shows a greater reduction in proliferation (Ki67) and induction of apoptosis (TUNEL), consistent with the higher sensitivity to tumor inhibition observed. Furthermore, PF-502 induced TP53 target and growth arrest gene p21 in UM-SCC1 tumors, which was not observed in mtTP53 line UM-SCC46 (Supplementary Fig. S7). These data support that wtTP53 genotype and function contribute to the difference observed. The capability of PI3K/mTOR inhibition to enhance TP53 expression and effects when combined with radiation has broader implications for combination with radiation or chemotherapies that enhance the TP53 DNA-damage response. We previously showed that wtTP53 mRNA and protein expression is repressed in UM-SCC1 and a subset of HNSCC, and that the repression of TP53 mRNA, protein, and TP53-dependent growth arrest and cytotoxicity was reversible by treatment with quinacrine (16), but its target of action was unclear. Subsequent studies suggested that quinacrine enhances TP53 reexpression via an Akt-dependent mechanism (32). We also reported that Akt mediates phosphorylation and cytoplasmic inactivation of p73 cofactor YAP in the same subset, which is important in p73 stabilization and transcription (18). Recently, mTOR inhibitor rapamycin was implicated in modulating p73 genes involved in mesenchymal differentiation and tumorigenesis in rhabdomyosarcoma (38). Our current results showing that a dual PI3K/mTOR inhibitor increases TP53, and to a lesser extent, p73 expression, further support the hypothesis that this pathway contributes to inactivation of TP53/p73 in this HNSCC subset.

Our 2cKO transgenic mouse model enabled evaluation of the effect of PF-502 on HNSCC with defined genetic alterations in PTEN and TGF-β signaling, which we have shown enhance PI3K/Akt activation (11). Treatment of the novel Tgfbr1/Pten 2cKO HNSCC mouse model with PF-502 inhibited p-Akt and p-S6 and significantly inhibited tumor development and prolonged survival. These effects were also
PI3K/mTOR Inhibition Induces TP53 in HNSCC

References

7. Woenckhaus J, Steger K, Werner E, Fenic I, Gamerdinger U, Dreyer T, and J. Kan for their technical support.

11. Woenckhaus J, Steger K, Werner E, Fenic I, Gamerdinger U, Dreyer T, and J. Kan for their technical support.

15. Woenckhaus J, Steger K, Werner E, Fenic I, Gamerdinger U, Dreyer T, and J. Kan for their technical support.

43. Min BM, Baek JH, Shin KH, Gujuluva CN, Cherrick HM, Park NH. Inactivation of the p53 gene by either mutation or HPV infection is extremely frequent in human oral squamous cell carcinoma cell lines. Eur J Cancer B Oral Oncol 1994;30B:338–45.

Herzog et al.
Cancer Xenograft and Murine Knockout Models of Head and Neck Cancer

Amanda Herzog, Yansong Bian, Robert Vander Broek, et al.

Clin Cancer Res Published OnlineFirst May 2, 2013.

Updated version: Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-12-2716

Supplementary Material: Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2013/05/02/1078-0432.CCR-12-2716.DC1 http://clincancerres.aacrjournals.org/content/suppl/2013/07/16/1078-0432.CCR-12-2716.DC2

E-mail alerts: Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions: To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions: To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.