Accelerated Tumor Growth Mediated by Sub-lytic Levels of Antibody-Induced Complement Activation is Associated with Activation of the PI3K/AKT Survival Pathway

Xiaohong Wu#, Govind Ragupathi##*, Katherine Panageas^, Feng Hong#, and Philip O. Livingston++

Authors’ Affiliations: #Laboratory of Tumor Vaccinology, Melanoma Sarcoma Service, Department of Medicine and ^Department of Biostatistics, Memorial Sloan-Kettering Cancer Center; 1275 York Avenue, New York, NY 10065.

+Present Address: MabVax Therapeutics Inc, 11588 Sorrento Valley Road, Suite 20, San Diego, CA 92121

*Corresponding Author: Dr. Govind Ragupathi, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. Phone: 212-639-4022; E-mail: ragupatg@mskcc.org

Acknowledgment: Supported by grants from the Flight Attendant Medical Research Institute, and the NCI (R44-CA153561).

Potential Conflict of Interest: At present Philip O. Livingston is an employee of MabVax. GR and POL are paid consultants and shareholders of MabVax Therapeutics Inc.

Running title: Complement activating antibodies are a two-edged sword.

Key words: Monoclonal antibody, gangliosides, glycolipid, vaccines, tumor growth, PI3K/Akt pathway, complement.

Abbreviations:
mAbs: monoclonal antibodies; PI3K: Phosphoinositide 3-kinases; p-AKT, phosphorylated AKT; p-PRAS40, phosphorylated PRAS40; GM2-KLH, GM2 conjugated to keyhole limpet hemocyanin. GD2, GD3: disialogangliosides and GM2 monosialoganglioside are used in accordance with the abbreviated gangliosides nomenclature of Svennerholm (1). TCC: terminal complement complex.
Translational relevance

Therapy with tumor vaccines or complement fixing monoclonal antibodies (mAbs) inevitably results in sub-lytic levels of complement activation due to low antigen expression or periods of low antibody titers. We demonstrate here that while detectable levels of serum monoclonal antibodies result in complement mediated tumor cell lysis in vitro and tumor elimination in vivo, lower levels of antibody result in sub-lytic complement activation and more rapid tumor cell growth in vitro and in vivo. This sub-lytic complement activation was associated with activation of the PI3K/AKT survival pathway. Both accelerated tumor cell growth and PI3K activation were eliminated by PI3K inhibitors NVP-BEZ235 and Wortmannin. These PI3K inhibitors also significantly increased efficacy of even high mAb doses. Our findings suggest that manipulation of the PI3K/AKT pathway and its signaling network can significantly increase the potency of passively administered mAbs and vaccine-induced polyclonal antibodies targeting a variety of tumor cell surface antigens.
Abstract

Purpose: We addressed the possibility that low levels of tumor cell bound antibodies targeting gangliosides might accelerate tumor growth.

Experimental Design: To test this hypothesis, we treated mice with a range of mAb doses against GM2, GD2, GD3 and CD20 after challenge with tumors expressing these antigens and tested the activity of the same mAbs in-vitro. We also explored the mechanisms behind the complement-mediated tumor growth acceleration that we observed and an approach to overcome it.

Results: Serologically detectable levels of IgM-mAb against GM2 are able to delay or prevent tumor growth of high GM2-expressing cell lines both in-vitro and in a SCID mouse model, while very low levels of this mAb resulted in slight but consistent acceleration of tumor growth in both settings. Surprisingly, this is not restricted to IgM antibodies targeting GM2 but consistent against IgG-mAb targeting GD3 as well. These findings were mirrored by in-vitro studies with antibodies against these antigens as well as GD2 and CD20 (with Rituxan), and shown to be complement-dependent in all cases. Complement-mediated accelerated growth of cultured tumor cell lines initiated by low mAb levels was associated with activation of the PI3K/AKT survival pathway and significantly elevated levels of both p-AKT and p-PRAS40. This complement-mediated PI3K-activation and accelerated tumor growth in-vitro and in-vivo are eliminated by PI3K-inhibitors NVP-BEZ235 and Wortmannin. These PI3K-inhibitors also significantly increased efficacy of high doses of these 4 mAbs.
Conclusion: Our findings suggest that manipulation of the PI3K/AKT pathway and its signaling network can significantly increase the potency of passively administered mAbs and vaccine-induced-antibodies targeting a variety of tumor-cell-surface-antigens.

Introduction

A variety of monoclonal antibodies (mAbs) against cancer antigens have resulted in prolongation of disease-free and overall survival in preclinical studies and in clinical responses when tumors known to be strongly positive for the relevant antigens were targeted. Several of these mAbs have been FDA approved for these purposes. Though not FDA approved, ganglioside specific mAbs against gangliosides GD2 and GD3 have demonstrated both preclinical efficacy and clinical responses (2-8) in neuroblastoma and melanoma patients, respectively, in the setting of strongly antigen-positive tumors. On the other hand, randomized trials with a GM2-KLH vaccine that consistently induces IgM and IgG antibodies against GM2 in melanoma patients have demonstrated either no benefit (9, 10) or an initial decrease in overall survival compared with no treatment controls (11, 12). GM2 is present in essentially all melanomas, but unlike GD3 and GM3, which are the most highly expressed melanoma gangliosides, it is expressed at only low levels in the majority of cases (13, 14), and very few melanoma cell lines can be lysed with complement and mAbs or immune sera against GM2 (15). We hypothesized therefore that: 1) induction of high titers of antibodies against GM2 results in only a low level of cell surface antibodies against GM2 because of the low level GM2 expression on most melanomas, and 2) this might result in sub-lytic levels of complement activation resulting in inflammation, angiogenesis, and tumor cell
activation, as has been described for sub-lytic levels of cell surface complement activation in other settings (16-18).

To test this hypothesis, we treated mice with a range of mAb doses against GM2, and 2 other glycolipid antigens (GD2 and GD3) and a glycoprotein antigen (CD20) after challenge with tumors expressing these antigens, and we explored the activity of the same mAbs in vitro. Our findings supported this original hypothesis and extend it beyond GM2 to a variety of other antigens. Here we also explore the mechanisms behind this complement-mediated tumor growth acceleration and an approach to overcome it.

Materials and Methods

Monoclonal Antibodies (mAb) and Reagents:

MAb PGNX (anti-GM2, murine IgM) was obtained from Progenics Pharmaceuticals Inc. (Tarrytown, NY). mAb 3F8 (anti-GD2, murine IgG3) was provided by Dr. Nai-Kong V. Cheung (Department of Pediatrics, MSKCC, NY). mAb R24 (anti-GD3, murine IgG3) was provided by Dr. Paul Chapman (MSKCC). Rituxan (anti-CD20, chimeric IgG) was obtained from Genentech, Inc (San Francisco, CA). MAb against p-AKT, AKT, p-PRAS40 and PRAS40 were obtained from Cell Signaling Technology (Danvers, MA). NVP-BEZ235, Wortmannin were from Chemdea (Ridgewood, NJ). MAb anti-C9 was purchased from Abcam (Cambridge, MA). Human sera (as a complement source) was purchased from Quidel (San Diego, CA).
Cell Culture:

CHLA136Luc, luciferase transduced CHLA136 human neuroblastoma cell line, was kindly provided by Dr. Robert C. Seeger (21, 22) (Division of Hematology-Oncology, Children’s Hospital Los Angeles, CA) and was maintained in Iscove’s Modified Dulbecco’s Medium supplemented with 15% FBS and ITS premix (BD Bioscience, Bedford, MA) at 37°C, in a 5% CO2 humidified chamber. Lan-1 neuroblastoma and Hs445 lymphoma cell lines were kindly provided by Dr. Nai-Kong V. Cheung (23, 24). The small cell lung cancer cell line H524 was obtained from American Type Culture Collection (Manassas, VA). DaudiLuc cells were kindly provided by Dr. Wim Bleeker, (Genmab B.V., The Netherlands). These last 3 cell lines were maintained in RPMI-1640 media supplemented with 10% FBS at 37°C in a 5% CO2 humidified chamber.

In Vivo experiments:

Animals: CB17 SCID mice (Taconic, Rensselaer, NY) 5-8 weeks old were housed 5 per cage. All protocols and procedures were approved by the Memorial Sloan Kettering Cancer Center’s Institutional Animal Care and Use Committee (IACUC).

Tumor Challenge: Mice were placed under a heat lamp for 2-3 minutes and immobilized in a mouse restrainer; 0.5x10⁶ CHLA136Luc cells in 100µl were injected into the tail vein using a BD insulin syringe with 28G needle.

mAb and BEZ-235 administration: Mice were treated with murine mAbs 3F8(5, 8), PGNX(25, 26), R24(2) against GD2, GM2, GD3 and Rituxan against CD20 with or
without BEZ235. Control mice, typically 2 cages of 5 mice were treated identically, received the same volume of PBS at the same intervals.

Imaging: Mice were anaesthetized using isoflurane and injected with 300 µg of D-Luciferin Firefly (Caliper LifeScience, Hopkinton, MA). They were imaged 10 minutes later using the IVIS-200 in vivo imaging system (Caliper Life Science) over periods of time ranging up to 3 minutes using the software program "Living Image 3.0" (Caliper Life Science). Values are reported as photons/second.

In Vitro experiments:

ELISA assay: ELISA assays were performed to determine IgM and IgG serum antibody titers against GM2, GD2, and GD3 after administration of mAbs targeting these gangliosides (8). Briefly 0.1µg ganglioside per well in ethanol was coated on ELISA plates overnight at room temperature. Nonspecific sites were blocked with 3% human serum albumin in PBS for 2 hours. Serially diluted sera drawn at 4 and 24 hours and then at 3-4 day intervals for 3 weeks after mAb administration were added to each well. After 1 hour incubation, the plates were washed and alkaline phosphatase-labeled goat antimouse IgM or IgG added at 1:200 dilution. The antibody titer was defined as the highest dilution with absorbance of ≥0.1 over that of control mouse sera. Pretreatment sera were consistently negative (absorbance <0.1 at 1:5 dilution).

FACS: Flow cytometry with the indicated cultured cancer cell lines was performed as previously described (26). In brief, single cell suspensions of 1x10⁶ culture tumor cells per tube were washed in PBS with 3% fetal bovine serum (FBS). Murine monoclonal antibodies PGNX (IgM against GM2), 3F8 (IgG3, GD2), R24 (IgG3, GD3),
and Rituxan, (IgG1, CD20) were used to identify the respective antigens. MAb anti-C9 was used for detecting the terminal complement complex (TCC) formed on cell surface. After wash in 3% FBS, 20 µl of 1:25 diluted goat antimouse IgM or IgG labeled with fluorescein-isothiocyanate (FITC, Southern Biotechnology, Birmingham, AL) was added, and the mixture incubated for another 30 minutes on ice. After a final wash, the positive population and median fluorescence intensity of stained cells were differentiated using FACS Scan (Becton & Dickinson, San Jose, CA). Cells stained only with goat antimalouse IgM or IgG labeled with fluorescein-isothiocyanate were used to set the FACScan result at 1% as background for comparison to percent positive cells stained with primary mAbs.

WST-1 assay: WST-1 cell proliferation assay kit was used for detection of the extent of cellular proliferation as instructed in the company’s manual. Briefly, 2x10⁴ cells in 100 µl of culture media as defined above were plated in a 96 well flat bottom plate and incubated at 37⁰ C in 5% CO₂ overnight. Antibody doses between 0.02 pg to 5 µg in 1µl of defined culture media were added to each well and incubated for 1 hour at 37⁰ C, 5% CO₂; 4-10µl of human serum complement was then added to each well and incubated overnight. For assays testing the impact of PI3K inhibitor, NVP-BEZ235 at 0.005, 0.5 or 5 µg/ml in DMSO were added accordingly at same time when mAb was added. WST-1 agent (Roche Applied Science, Indianapolis, IN) was added at 1:10 ratio at the end of incubation, and OD (Optical density) was acquired by reading the plates at 415 nm 4 hours later. The Student t test was used for statistical analysis.

Western blot: 1x10⁶ Cells were plated into 6 well plates and incubated overnight. Cells were then treated with NVP-BEZ235 (0.5 µg/ml), mAbs (0.001 µg/ml) and human
sera complement (5%) for 4 hours. At the end of incubation, cells were collected and lysed with lysis buffer from Cell Signal (Danvers, MA), which contains protease inhibitor cocktail and phosphatase inhibitor cocktail (Calbiochem, Philadelphia, PA), each at 1:100 dilution (Cocktails: lysis buffer). The cell lysates were then quantitated using Bradford assay (Bio-Rad, Hercules, CA) according to the company’s manual: 30 µg of cell lysate protein from each sample were run on 7.5% of Tris-HCl gel (Bio-Rad) and transferred to a PVDF membrane. Membrane was then blocked with Pierce blocking buffer overnight at 4°C, probed with indicated mAbs at 1:1000 dilution overnight at 4°C and HRP-goat anti- rabbit-IgG antibody at 1:1000 for 1 hour. The membrane was washed with PBS-T (PBS + 0.1% Tween-20) 5 minutes on a shaker 5 times after each incubating and then developed using Amersham ECL™ Prime Western Blotting Detection Reagent (GE Healthcare, Piscataway, NJ). Imaging was acquired by scanning the membrane on the Fujifilm LAS-3000 Imager.

Statistical analysis: Overall survival was defined as the time from IV tumor cell challenge to date of death or day 160. Survival distributions were generated using Kaplan-Meier methodology (27), and comparisons between treatment group and control (PBS) were made via the logrank test (using GraphPad Prism 5). For the combined analysis with each antibody, low dose versus control was compared across all experiments performed using a generalized linear model accounting for experiment.
Results

In Vivo experiments targeting GM2, GD2, GD3, and CD20:

Cell surface expression of GM2, GD2 and GD3 on neuroblastoma cell lines CHLA136luc and Lan-1 and SCLC cell line H524, and CD20 expression on lymphoma cell lines Hs445 and Daudi were confirmed by flow cytometry (See Figure A in Supplementary Data)

Initial experiments focused on impact of low (1 or 5 µg) and high (50 µg) doses of mAbs administered weekly for 4 weeks beginning 2 days after IV challenge with 0.5x10^6 CHLA136 cells. Survival was significantly prolonged by the 50 µg dose of PGNX (against GM2), 3F8 (GD2), or R24 (GD3), compared with untreated mice or mice receiving low-dose PGNX (Fig. 1A), and survival was more prolonged when the 3 mAbs were administered together. While survival of mice receiving the 5 µg dose of PGNX was not significantly changed compared with the untreated control group, tumor growth measured by luciferase expression at 6-8 weeks was significantly increased (Fig. 1B). In subsequent experiments, the 1 µg doses of PGNX and R24 were found to be optimal for this growth enhancement at weeks 4-8 (Figs. 1C and D). Significant enhancement of early growth was seen at low mAb doses in 5 of 6 experiments for PGNX and 2 of 2 experiments for R24. Significantly decreased survival was seen at the 1 µg dose in 3 of 6 experiments for PGNX and 2 of 2 experiments for R24. The 1 µg and 2 µg doses of 3F8 and doses as low as 0.001 µg of Rituxan resulted in slight delay of tumor growth; accelerated in vivo tumor growth was not seen at doses down to 0.02 µg of 3F8 and 0.001µg of Rituxan (data not shown).
Sera had drawn beginning 4 hours after administration of a high dose (50 µg) of mAbs PGNX, 3F8, R24 demonstrated antibody titers between 1/160 and 1/1280 at 4 hours which was still detectable at 24 hours (PGNX) and 2 weeks (R24). The 1 µg dose of R24 and PGNX that resulted in early accelerated tumor growth in vivo resulted in minimal or no detectable antibody titers, even at 4 hours.

In vitro impact of high and low doses of mAbs and complement on tumor cell growth:

We confirmed the presence of bound antibody and complement activation at the CHLA136Luc cell surface after treatments with doses of PGNX mAb as low as 0.0002µg/ml (Figure 2). Low dose PGNX (0.0002µg/ml) binds weakly but detectably to CHLA136Luc (Figure 2A), and terminal complement complex formation (TCC) in the presence of complement (human serum) was PGNX dose dependent and detectable down to the 0.0002µg/ml dose level (Figure 2B), but was not formed when C7 depleted human serum was used as complement source. Impact on cell growth was determined in parallel using the WST-1 assay. High antibody doses caused growth inhibition and the 0.0002 dose level caused growth acceleration, but only in the presence of HuC'. Though 30% cell growth inhibition was seen with 20µg/ml PGNX and C7dHuC' treatment, this was most likely due to direct antibody mediated tumor growth inhibition as demonstrated with each of the mAbs tested below.

The impact of complement and these high and low doses of mAbs against all 3 glycolipids on tumor cell growth in vitro was determined using WST-1 assays. Rituxan was included to target a glycoprotein. MAbs PGNX, R24, 3F8, and Rituxan each
inhibited tumor growth \textit{in vitro} at high mAb doses, and accelerated tumor cell growth at low mAb doses exclusively in the presence of complement (Figure 3). Figure 3 represents multiple experiments with each of the cell lines. Of 7 experiments conducted on CHLA136 target cells, PGNX, 3F8, and R24 demonstrated low dose acceleration of growth in every case which was statistically significant for PGNX and 3F8 5 times each out of 7 experiments (combined analysis compared to complement alone \(p<0.001\) in both cases) and R24 4 times out of 7 experiments (combined analysis \(p<0.01\)). Of 3 experiments conducted with LAN1, low dose acceleration of growth was statistically significant twice with 3F8 and R24 (combined analyses \(0.001\) and \(0.01\) respectively). Five experiments were conducted on H524 with PGNX, 3F8, and R24. Low dose accelerated growth was statistical significance in 4 of these 5 experiments with PGNX, 3F8 and R24 (combined analyses \(p<0.001\) in each case). Six experiments were conducted with Hs445 and Rituxan. Low dose Rituxan significantly accelerated growth 4 times (combined analysis \(p<0.001\)) and also in the single experiment conducted on Daudi cells. In each case, high doses resulted in significantly diminished cell counts in every experiment, which was primarily complement dependent. In each case, the low dose acceleration of growth was seen with each of the 4 mAbs tested and was also complement dependent (Figure 3). No acceleration of tumor growth was detected in the absence of complement, though at the highest mAb doses, complement-independent tumor inhibition was detected with 3F8 on CHLA136Luc, Lan-1, H524 cells (Figs 3 A, B, C), PGNX on CHLA136Luc (Figure 3A), R24 on Lan-1 cells (Figs. 3B) and Rituxan (Figs. 3D-E). Comparable results were obtained when heat inactivated serum was added to the mAb alone wells (see Figure B in Supplementary Data). Overall, this
complement-dependent in vitro growth inhibition at high mAb doses and acceleration of growth at low mAb doses was true with 5 different human cell lines, and included 1 IgM and 3 IgG mAbs targeting 3 glycolipid antigens (GM2, GD2 and GD3) and 1 protein antigen (CD20).

The PI3K/AKT pathway is activated by sub-lytic complement activation

We tested the association of the PI3K/AKT pathway with accelerated CHLA136luc cell growth promoted by low-dose PGNX-mediated sub-lytic complement activation. A PGNX level of ~0.001µg/ml resulted in a >50% increase in phosphorylated AKT (p-AKT) expression at 4-6 hours, while the highest doses of PGNX greatly decreased p-AKT expression (Figs. 4A, 4B). The impact of this increased p-AKT (AKT activation) on downstream events was also tested. PRAS40 is an AKT substrate and mTORC1 inhibitory binding protein. Phosphorylation of PRAS40 by p-AKT in the PKB/AKT pathway dissociates this binding and recovers mTORC1 activity in regulating the cell growth. Treatment of CHLA136Luc cells with 0.001µg/ml PGNX for 4 hours resulted in a >50% increase in PRAS40 phosphorylation (Fig. 4B).

Impact of blocking PI3K/AKT on mAb induced in vitro growth inhibition and acceleration:

The impact of mAb-mediated sub-lytic complement activation on PI3K/AKT/mTOR pathway activation was further demonstrated by its inhibition using the PI3K and mTOR dual inhibitor NVP-BEZ235. NVP-BEZ235 inhibited both p-AKT and p-PRAS40 expression (Fig. 4C). NVP-BEZ235 decreased not only PI3K/AKT/mTOR
pathway activation but also CHLA136Luc and DaudiLuc cell growth in vitro, especially in the presence of mAbs (Figure 5). NVP-BEZ235 at 0.5µg/ml, combined with 3F8 and Rituxan at various doses, significantly enhanced mAb cytotoxicity of CHLA136Luc and DaudiLuc cells compared with each treatment alone. When combined with low-dose 3F8 (0.001µg/ml) and Rituxan (0.0001µg/ml), NVP-BEZ235 eliminated accelerated CHLA136Luc and DaudiLuc cell growth induced by these low doses of mAbs. These findings were unchanged when heat inactivated complement was used as negative control in place of no complement (data not shown). These results with 3F8, R24, PGNX and Rituxan were consistent over several experiments with \(P \) values compared with antibodies and human complement alone ranging between 0.015 and 0.0001. Wortmannin (another PI3K inhibitor) also abrogated CHLA136Luc accelerated cell growth induced by low-dose 3F8, when compared with low-dose 3F8 alone and human complement alone but the impact was less striking (data not shown; \(P \) values, 0.04-0.008).

Impact of PI3K Inhibitor on mAb-induced accelerated tumor growth in vivo:

The impact of treatment with PGNX and/or 3F8 alone or in combination with NVP-BEZ235 on the growth of CHLA136Luc was tested in a SCID xenograft model (Fig. 6). Addition of NVP-BEZ235 alone resulted in some reduction of CHLA136Luc growth and prolonged survival. The combination of NVP-BEZ235 and PGNX and/or 3F8 resulted in more marked prolongation of survival compared to antibody alone. NVP-BEZ235 also eliminated the early tumor growth acceleration induced by low-dose PGNX.
Discussion

Concerns that the immune system is a two-edged sword that sometimes inhibits and sometimes enhances tumor growth have focused on both the B-cell and T-cell arms of the immune system for over 40 years. While the clinical value of adoptively transfused T cells in a variety of clinical settings is well established (28) Recent concerns have focused on regulatory mechanisms able to diminish the antitumor T-cell response and even enhance tumor growth (29). Antibodies and the B-cell response have long been associated with this dichotomy as well (30). Since FDA approval of monoclonal antibodies such as Rituxan and Herceptin, and their widespread use, there is no doubt about the clinical value of immune effector mechanisms such as complement activation and ADCC, which these antibodies are known to mediate (8, 31). Despite the obvious value of adoptively administered antibodies and T cells, the role of vaccine-induced antibodies and T cells targeting cancer antigens remains less clear.

While one vaccine (Sipuleucel-T) was FDA approved for use in patients with prostate cancer (8, 31), its mechanism of action remains unclear. On the other hand, several recent randomized trials with whole-cell vaccines or carbohydrate conjugate vaccines have demonstrated no clinical benefit or an initial shortened time to recurrence compared with control groups (9-12). The shortened time to recurrence seen in patients receiving the whole irradiated melanoma cell vaccine Canvaxin is difficult to dissect, since its mechanism of action (B-cell or T-cell mediated) and relevant target antigens is unclear, and any single immune response was detectable in only a minority of patients.
Two of these trials targeted GM2 ganglioside using a GM2-KLH conjugate vaccine compared with interferon alpha (10) or no treatment (11, 12). This vaccine is known to induce only an antibody response and only against GM2, and to induce this response in essentially every vaccinated patient. The significantly decreased progression-free and overall survival identified during the initial 1-2 years of followup (9, 11), though not after longer-term followup (10, 12), in these trials is assumed to be a consequence of the vaccine-induced antibodies targeting GM2.

While GM2 is expressed on most melanomas, it is expressed in only small amounts in most cases; less than 20% of melanoma cell lines can be lysed with high doses of anti-GM2 antibodies and human complement (13). Consequently, previous clinical trials with the GM2-KLH vaccine induced sub-lytic levels of cell surface complement activation in most cases. We demonstrate here that in a setting where high-dose PGNX (an IgM monoclonal antibody targeting GM2) is able to delay or prevent growth of strongly GM2 positive tumor cells both in vivo and in vitro, low (sub-lytic) levels of the same monoclonal antibody accelerates initial tumor growth in both settings. Surprisingly, these findings were not limited to IgM mAb PGNX against GM2. These in vitro and in vivo findings were also present with IgG mAb R24 against GD3. This low antibody dose acceleration of cell growth in vitro was also seen with two other IgG mAbs, 3F8 (against GD2) and Rituxan (against the protein antigen CD20). Both inhibition and acceleration of tumor cell growth in vitro with high or low doses of these 4 mAbs was demonstrated on 5 different cell lines and was shown to be complement-dependent. With 3F8 and Rituxan, however, accelerated growth was not seen in vivo,
possibly because of the over-riding role for antibody dependant cellular cytotoxicity (ADCC) in protection mediated by these two antibodies in this murine model.

The high dose (50 µg) of these mAbs is comparable to doses of mAbs commonly used in patients on a per Kg basis and results in antibody titers in mice at 4 and 24 hours in the 1/160-1/1280 range. The low dose (0.01-1 µg) resulted in little or no detectable serum antibody even at 4 hours. Long-lasting antibody titers in the 1/320-1/1280 range against these same antigens are induced in most patients by KLH conjugate vaccines (32). This suggests that if used in the setting of high-antigen-expressing tumors, the monovalent vaccines should be beneficial, not detrimental, and that polyvalent vaccines inducing antibody titers against several cell surface antigens should be even more beneficial.

Low doses of naturally present, affinity-purified human anti-Neu5Gc antibodies were shown to accelerate growth of Neu5Gc-containing tumors in Neu5Gc-deficient mice (33), while at higher doses these same antibodies elicited tumor cytotoxicity (34). The high-titer anti-Neu5Gc antibodies present in human sera were shown to deposit complement on Neu5Gc-expressing human cells in vitro. Complement activation or ADCC were suggested as potential mechanisms behind this low dose-high dose dichotomy (35) Adding to uncertainty over the impact of complement activation are reports that complement activation can promote an immunosuppressive environment in the tumor and can compete with (or inhibit) NK cell mediated antibody dependant cellular cytotoxicity (ADCC) (36, 37).

No previous studies exploring sub-lytic complement activation have involved tumor cells, and no others have involved mAbs or immune sera targeting cancer.
antigens. Early studies exploring the high-dose/low-dose dichotomy demonstrated consistently that the difference between tumor facilitation and inhibition could be quantitative, the same anti-trinitrophenyl or antihuman immune sera that mediated tumor facilitation at low dose in the presence of complement could inhibit tumor growth at high dose (17, 38). The results of the studies presented here with mAbs targeting a variety of naturally expressed tumor antigens are consistent with these results. High doses of antibodies against each of the glycolipid antigens and one protein antigen that we tested were all decreased tumor cell growth in vitro in the presence of human complement while low doses of each antibody increased tumor growth. Clearly these in vitro findings are independent of the tumor environment or impact on ADCC which complicate analyses in vivo.

Sub-lytic complement activation at the cell surface has long been known to activate a variety of metabolic processes resulting in adherence, aggregation, mitogenesis, and proliferation of a variety of nonmalignant cell types. Enhanced HIV infection (39), glomerular mesangial cell proliferation associated with glomerulonephritis (40), and protection from subsequent lytic complement doses(17) have been demonstrated as consequences. Several signal transduction pathways have been responsible for the cell-cycle activation, antiapoptotic, and differentiation properties associated with sub-lytic complement levels. These include primarily activation of the PI3K/AKT pathway (18, 41, 42). Involvement of the PI3K/AKT signaling pathway in accelerated tumor growth induced by sub-lytic levels of antibody-mediated complement activation has not previously been explored.
We demonstrate here that the accelerated cell growth induced by treatment with low-dose mAbs was associated with activation of the PI3K/AKT/mTOR pathway. Treatment with low-dose PGNX (0.001µg/ml) and human complement induced increased AKT phosphorylation, and also increased release of the phosphorylated AKT substrate PRAS40, a raptor binding protein that inhibits mTORC1 kinase activity (32). These data suggest involvement of the PI3K/AKT/mTOR pathway in low-dose mAb sub-lytic complement activation induced accelerated CHLA136Luc cell growth. This was supported by testing with inhibitors of this pathway. NVP-BEZ235 is a dual-PI3K and mTOR inhibitor, inhibiting both the catalytic subunit (P110) of PI3K and mTORC, while Wortmannin is a more specific PI3K inhibitor, binding only to the P110 catalytic subunit of PI3K. We demonstrated that constitutive expression and low-dose mAb-induced increased expression of p-AKT and p-PRAS40 in CHLA136Luc cells was inhibited by NVP-BEZ235. NVP-BEZ235 and Wortmannin eliminated in vitro tumor growth acceleration induced by low doses of 3F8, R24, PGNX and Rituxan and significantly enhanced in vitro tumor cytotoxicity with high-doses of these same mAbs in a dose-dependent manner. NVP-BEZ235 also increased the efficacy of mAbs PGNX and 3F8 against CHLA136Luc cells in vivo, significantly increasing survival of challenged SCID mice compared with high-dose PGNX and 3F8 alone, and preventing the early tumor growth acceleration seen with low dose PGNX.

In summary, complement activating antibodies are a two-edged sword, demonstrating potent antitumor activity at high (clinically relevant) doses and weak tumor enhancing or accelerating activity at very low doses. Therapy with complement-activating antibodies should be restricted to treatment of antigen-rich tumors. Sub-lytic
complement activation, which can result from a low level of antibody or low antigen expression, results in increased activation of the PI3K/AKT survival pathway and accelerated tumor growth. This can be eliminated by treatment with PI3K inhibitors such as NVP-BEZ235 and Wortmannin, which also increase the efficacy of even high doses of these mAbs. Our findings suggest that manipulation of the PI3K/AKT pathway and its signaling network can potentially increase the potency of passively administered mAbs and vaccine-induced antibodies targeting a variety of tumor cell surface antigens.
References

Figure Legends

Figure 1. Two experiments demonstrated *in vivo* efficacy of PGNX, R24 and 3F8 administered every week for 4 weeks individually or mixed beginning 2 days after IV challenge with 0.5×10^6 CHLA136luc cells in SCID mice. In experiment 1: Figure 1A,B: Single mAb doses (5 µg low dose (L) or 50 µg) or mixed mAb doses (3F8, R24, and PGNX, 50 µg each) were injected IP beginning 2 days after IV challenge. In experiment 2: Figure 1C, D: Single mAb doses (1 µg low dose (L) or 50 µg) were injected IP beginning 2 days after IV challenge. Figures 1A, C involve comparison of experimental group survival with control group by Kaplan-Meier methodology. Figures 1B, D involve students’ *t*-test for statistical comparison of tumor growth measured by luciferase expression at 6 weeks in experimental groups compared with control mice (all groups contained 5 mice except for Experiment 2 control group which contains 10 mice). Significantly increased tumor growth ($* P<.05$) or decreased tumor growth ($** P<.01$)) are as indicated.

Figure 2. Doses of PGNX as low as 0.0002 µg/ml result in demonstrable binding to CHLA136luc cells (Figure 2A) and induce complement activity in the presence of 5% human sera as a complement source and increased cell growth, but not in the presence of C7 depleted human serum (Figure 2B). Figure 2A: CHLA136Luc cells were incubated with 20, 0.02, 0.0002 and 0.000002 µg/ml of PGNX for 30 minutes and stained with FITC conjugated anti-mouse IgM for FACS analysis. Figure 2B: CHLA136Luc cells were incubated with 20, 0.02, 0.0002 and 0.000002 µg/ml of PGNX and 5% human serum (HuC’) or C7 depleted human serum (C7dHuC’) for 2hrs. They were then
incubated with rabbit IgG mAb anti-C9 for 30min and stained with Alexa 488 conjugated anti-rabbit IgG for FACS analysis, or cellular proliferation was determined using the WST-1 assay. Values in parentheses are the percent change obtained with the WST-1 assay compared PGNX in combination with HuC' or C7dHuC' vs. HuC' or C7dHuC' alone '-' stands for the cell growth inhibition, '+' stands for increased cell growth.

Figure 3. Percent change of *In vitro* cell growth was studied with a range of doses of monoclonal antibodies and/or human serum as complement source (HuC’) on the following 5 human cell lines: A. CHLA136Luc cells (neuroblastoma); B. Lan-1-Luc cells (neuroblastoma); C. H524 (SCL C); D. Hs445 (lymphoma); and E. Daudi (lymphoma); Approximately 20,000 cells were plated in triplicate and treated with HuC’ and different amounts of mAbs, mAbs alone, HuC’ alone or neither (cells only), as indicated for 24 hours. Cellular proliferation was quantitated using the WST-1 assay. Each bar represents the mean of triplicates. Student *t*-test results for statistical significance of comparison of antibody or antibody plus HuC’ treated cells to cells treated with HuC’ or media alone are as indicated:(* P<.05, ** P <.01, *** P <.001).

Figure 4. Correlation between low-dose PGNX sub-lytic complement activation induced phosphorylated Akt (p-AKT) expression and phosphorylated PRAS40 (p-PRAS40) expression in CHLA136Luc cell extracts by Western blot analysis. 4A: PGNX dose impact on p-AKT expression at 4 hours. 4B: Time course of PGNX 0.001µg/ml impact on p-AKT expression and its downstream substrate P-PRAS40. 4C: Impact of NVP-
BEZ235 on p-AKT and its downstream substrate P-PRAS40 expression for CHLA136Luc cells after treatment with PGNX (0.001µg/ml) for 4 hours.

Figure 5. Impact on cell growth of CHLA136luc or Daudiluc after treatment for 18 hours with 5% HuC’ plus or minus 0.005, 0.5 or 5 µg/ml BEZ235 (Figure represents 0.5 µg/ml dose) and/or 3 doses of mAb as indicated. Cell growth with HuC’ is set at 0 and percent increased or decreased cell growth with addition of BEZ235 and/or mAb indicated. Percent change calculated according to formula: (OD of HuC’ or media alone – OD of mAbs, BEZ235 alone or combination)/ OD of HuC’ or media alone x 100.

Figure 6. Impact of NVP-BEZ235 alone, PGNX and/or 3F8 alone, or the combination in two separate *in vivo* experiments. Mice received NVP-BEZ235 25 mg/kg in experiment 1 (Fig. 6A,B) or 12.5 mg/kg in experiment 2 (Fig. 6C) by gavage beginning 4 days after IV challenge with 0.5 x 10^6 CHLA136Luc cells and continuing daily for 2 weeks. PGNX and/or 3F8 at the indicated doses were injected IV(PGNX) or IP (3F8) starting a day later (5 days after tumor challenge) and re-injected once a week for 4 weeks. 6A,C: Comparison of experimental group survivals to control group by Kaplan-Meier methodology in two experiments. 6B: Student *t* test used for statistical comparison of tumor growth in 6A measured by luciferase expression at 8 weeks in experimental groups compared with control mice. All groups contain 4 or 5 mice except the control group in Experiment 1 (6A and B) which contains 10 mice.
Figure 1

A

Percent Survival

Days after CHLA136Luc challenge

B

Average photons per second per group at 6 weeks

C

Percent Survival

Days after CHLA136Luc challenge

D

Average photons per second per group at 6 weeks
Figure 2

A

PGNX concentration

<table>
<thead>
<tr>
<th>Concentration</th>
<th>PGNX</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>20µg/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.02µg/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0002µg/ml</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.000002µg/ml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

PGNX

<table>
<thead>
<tr>
<th>C7d HuC'</th>
<th>Anti-C9</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30%, p<0.0001</td>
<td></td>
</tr>
<tr>
<td>-65%, p<0.0001</td>
<td></td>
</tr>
<tr>
<td>-7%, p=0.16</td>
<td></td>
</tr>
<tr>
<td>-21%, p<0.001</td>
<td></td>
</tr>
<tr>
<td>+3%, p=0.7</td>
<td></td>
</tr>
<tr>
<td>+22%, p<0.001</td>
<td></td>
</tr>
<tr>
<td>-2%, p=0.73</td>
<td></td>
</tr>
<tr>
<td>0%, p=0.98</td>
<td></td>
</tr>
</tbody>
</table>
Percent change in cell growth compared to HuC' alone and media alone

A. 3F8+HuC' vs. HuC' 3F8 vs. media alone
B. Lan-1Luc (Neuroblastoma) 3F8+HuC' vs. HuC' 3F8 vs. media alone
C. H524 (SCLC) 3F8+HuC' vs. HuC' 3F8 vs. media alone
D. Hs455 (Lymphoma) Rituxan (µg/ml)
E. DaudiLuc (Lymphoma) Rituxan (µg/ml)
Figure 4

A

PGNX (µg/ml)
<table>
<thead>
<tr>
<th>0</th>
<th>0.0001</th>
<th>0.001</th>
<th>10</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

HuC' (50µl/ml)

- p-AKT
- AKT
- β-Actin

B

PGNX (0.001µg/ml)
- - - - -
HuC' (50µl/ml)
+ + + + +

Con 1h 3h 6h 24h

- p-AKT
- AKT
- p-PRAS40
- PRAS40
- β-Actin

C

BEZ235 (0.5µg/ml)
- - - - - + + + +
PGNX (0.001µg/ml)
- - + + + + - - -
HuC' (50µl/ml)
- + - + - + - + +

- p-AKT
- AKT
- p-PRAS40
- PRAS40
- β-Actin
Figure 5

Percent change in cell growth compared to HuC' alone and media alone

CHLA136Luc: mAb 3F8

- 3F8 (µg/ml)
 - 0.0001
 - 0.01
 - 10

BEZ235+3F8 3F8 BEZ235

CHLA136Luc: mAb R24

- R24 (µg/ml)
 - 0.0001
 - 0.01
 - 20

BEZ235+R24 R24 BEZ235

CHLA136Luc: mAb PGNX

- PGNX (µg/ml)
 - 0.0001
 - 0.01
 - 10

BEZ235+PGNX PGNX BEZ235

DaudiLuc: mAb Rituxan

- Rituxan (µg/ml)
 - 0.0001
 - 0.01
 - 10

BEZ235+Rituxan Rituxan BEZ235
Figure 6

A

Percent Survival

Days after CHLA136Luc challenge

B

Average photons per second per group at 8 weeks

C

Percent Survival

Days after CHLA136Luc challenge
Accelerated Tumor Growth Mediated by Sub-lytic Levels of Antibody-Induced Complement Activation is Associated with Activation of the PI3K/AKT Survival Pathway

Xiaohong Wu, Govind Ragupathi, Katherine Panageas, et al.

Clin Cancer Res Published OnlineFirst July 5, 2013.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-13-0088

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2013/07/08/1078-0432.CCR-13-0088.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.