The IL-18 Antagonist IL-18–Binding Protein Is Produced in the Human Ovarian Cancer Microenvironment

Grazia Carbotti1, Gaia Barisione1, Anna Maria Orengo3, Antonella Brizzolara1, Irma Airoldi3, Marina Bagnoli4, Patrizia Pinciroli4, Delia Mezzanzanica4, Maria Grazia Centurioni2, Marina Fabbi1, and Silvano Ferrini1

Introduction

Epithelial ovarian cancer (EOC) represents 80% of all ovarian malignancies, is frequently diagnosed at advanced stages, and has a poor 5-year survival rate (1). Evidence from several studies indicates that T lymphocytes capable of recognizing EOC cells are present at the tumor site (2, 3)

Abstract

Purpose: Interleukin (IL)-18 is an immune-enhancing cytokine, which induces IFN-γ production, T-helper 1 responses, and antitumor effects. In turn, IFN-γ stimulates IL-18–binding protein production, which blocks IL-18 activity. In view of the potential use of IL-18 in epithelial ovarian cancer (EOC) immunotherapy, here, we studied IL-18BP expression and its regulation by cytokines in EOC cells in vitro and in vivo.

Experimental Design: Expression and production of IL-18BP in EOC cell lines, primary ovarian carcinomas, and the corresponding normal tissues, patients’ serum, and ascites were investigated by immunochemistry, ELISA, screening of gene expression profiles, and reverse-transcription PCR.

Results: Analysis of gene expression profiles revealed that IL18BP mRNA is increased in EOC tumors compared with normal ovary cells. Release of IL-18BP was detectable in EOC sera and to a greater extent in the ascites, indicating production at the tumor site. Indeed, immunochemical analyses on cells isolated from the ascites and on tumor sections indicated that IL-18BP is expressed in both tumor cells and tumor-associated leukocytes, which displayed a CD3−CD20−NKp46−CD13+CD14low phenotype.

EOC cell lines do not constitutively express IL-18BP. However, its release is inducible both by IFN-γ stimulation in vitro and by xenotransplantation of EOC cells in immune-deficient mice, suggesting a role for the microenvironment. In vitro experiments and immunochemistry indicated that IL-27 is also involved in IL-18BP upregulation in EOC cell lines and primary cells through STAT1 activation. Together, these data indicate that IL-18BP, which is produced in EOC in response to microenvironmental factors, may inhibit endogenous or exogenous IL-18 activity. *Clin Cancer Res; 19(17); 1–10. ©2013 AACR.*

References

IL-18. as it may limit the activity of endogenous or therapeutic immunotherapy is being evaluated in patients with EOC. We found that, indeed, IL-18BP levels are elevated in the serum and particularly in the ascites of patients with EOC and that IL-18BP production may be the consequence of cross-talk between tumor cells and the microenvironment, involving IFN-γ and IL-27, which may play a role in the tumor environment. The high local levels of IL-18BP at the tumor site may limit the induction of an efficient immune response by either endogenous or therapeutic IL-18.

EOC cell lines release pro-IL-18, but not mat-IL-18, due to defective caspase-1 expression or activation, whereas normal ovarian epithelial cells secrete mat-IL-18 (20). Indeed, IL-18 present at high levels in EOC ascites is predominantly the inactive pro-IL-18 (13), although we cannot exclude that low levels of mat-IL-18, eventually present, may contribute to the immune response.

IL-18 binding protein (IL-18BP) is an inhibitor of IL-18 activity, as it binds the mature form of this cytokine and blocks its interaction with IL-18R (21) and its isoform “a” is the mostly expressed form (22). IL-18BP is produced by monocytes and macrophages (23) and by prostatic (24) and colorectal tumor cells (25) in response to IFN-γ stimulation. IFN-γ is the physiologic inducer of IL-18BP, which in turn inhibits IL-18 biologic activity in a negative feedback loop. IL-18BP accumulates in the serum in chronic renal failure, in which it may contribute to the defective immune response (26). To further address the biologic role of endogenous IL-18 in human EOC, we conducted an integrated analysis of IL-18 and IL-18BP in patients with EOC. The study of IL-18BP also seemed relevant, as IL-18–based immunotherapy is being evaluated in patients with EOC (refs. 27, 28; NCT00659178) and high levels of IL-18BP may interfere with this treatment. We found that, indeed, IL-18BP levels are elevated in the serum and particularly in the ascites of patients with EOC and that IL-18BP is expressed by EOC cells and by reactive leukocytes. Our data also suggest that IL-18BP production may be the outcome of cross-talk between tumor cells and the microenvironment, involving IFN-γ and IL-27, a member of the IL-12 cytokine family (29, 30). Together, these data support an immune-regulatory role for IL-18BP in EOC, as it may limit the activity of endogenous or therapeutic IL-18.

Materials and Methods

Cells and cell treatments

The human EOC cell lines SKOV3 (ATCC), A2780 (ICLC), A2774 (IST, Genoa, Italy), and OVCAR5 (INT, Milan, Italy) were grown in RPMI-1640, with L-glutamine, 10% FCS, and antibiotics (Lonza). NK-92 cells (ATCC) were grown in medium containing 600 IU IL-2 (Novartis). A vial of each cell line master stock was recently genotyped using the Cell ID System (Promega) and GeneMapper software, version 4.0.

Cells (50 × 10^6/well) were seeded in 24-well plates in culture medium. The following day, culture medium was replaced with medium with or without human recombinant IFN-γ (PeproTech), human recombinant IL-27 (R&D System) or human recombinant IL-35 (Enzo Life Sciences). For IL-27R blocking experiments, an anti-gp130 antibody was added [monoclonal antibody (mAb) 228, R&D Systems]. Treatment was carried out for 48 hours. Conditioned media were then collected, centrifuged, and used for IL-18BP detection.

RT-PCR analysis of IL18BP mRNA expression

Cells were detached by trypsin and washed, and total RNA was isolated by the NucleoSpin RNA ll kit (Macherey-Nagel) and reverse-transcribed using the SuperScript II Reverse Transcriptase (Invitrogen). Quantitative RT-PCR analysis was conducted using the following primers: POLR2A upper primer GACAAGAGAGAAGGTGG, lower primer GCCAGAGACATCATCAG; GAPDH upper primer GAGGTGAAGGTCCGGAG; lower primer CATGGGTGAATCATTAATGGG; IL18BP upper primer GTTCCCAGCATTGGAGTGACC, and lower primer GCAAGGTTGCTCAGTGAAGACC. Amplification was carried out by the Mastercycler ep realplex instrument (Eppendorf International) using the iQ™ SYBR Green Supermix system (Bio-Rad Laboratories). Relative quantification of mRNAs was calculated by the ΔΔCt method. For semi-quantitative RT-PCR, 2 μL of cDNA was separately amplified with 0.25 μL of Taq DNA Polymerase (Roche) in the presence of 1 μmol/L of the following primers: IL18BP upper primer ACCATGAGACAAACTGGAACCA; lower primer TAAACCTGCGCTGTTTGGACTGCT; housekeeping gene ACTB upper primer GCCATCGATTGCCACCG; lower primer CTTTCACTGTGGGATTGAG. PCR products were analyzed on 1% agarose gel stained with ethidium bromide.

Patients

Clinical samples were obtained upon written informed consent and previous approval by the Institutional Review Board from patients and tumor-free, age-matched (median = 60 years; range = 43–75) women. All 55 patients showed evidence of disease and untreated or off treatment for at least 2 months (Table 1). Ascitic fluids were collected during surgical procedures. Tumor histopathology, grade, and stage were assigned according to the International Federation of Gynecology and Obstetrics (FIGO) criteria.

EOC xenotransplant model

Female homozygous nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice (The Jackson Laboratory) were bred in-house. Nude mice were from Janvier. The experiments were carried out according to the...
National Regulation on Animal Research Resources and approved by the Institutional Review Board. Six-week-old NOD/SCID animals were injected intraperitoneally with \(5 \times 10^6\) SKOV3 or A2774 cells. When ascites developed, animals were euthanized and blood and ascites collected. Nu/Nu mice were surgically implanted in the left ovary with \(2 \times 10^6\) SKOV3 cells. Tumor masses were excised and fixed in 10% buffered formalin.

ELISA for IL-18, IL-18BP, and IFN-\(\gamma\)

Samples were tested with commercially available ELISA kits for human IL-18 (MBL), IL-18BPa (DuoSet R&D Systems), and IFN-\(\gamma\) (Quantikine, R&D Systems). Assays were conducted in duplicate and background values were subtracted.

Immunohistochemistry

Immunohistochemistry detection of IL-18BP was conducted on sections of formaldehyde-fixed paraffin-embedded cell pellets or tumors explanted from mice or on commercially available tissue microarrays of patients with EOC (Super Bio Chips). Antigen retrieval was done with high-pH citrate buffer in a microwave oven. The sections were immunostained using rabbit anti-IL-18BP (clone EP1088Y, Epitomics), anti-EBI3 (Novus Biologicals Europe), or anti-IL27A (LifeSpan BioSciences) overnight at 4°C. The antibody complex was revealed with the EnVision+ System-Peroxidase (Dako) and 3-amino-9-ethylcarbazole (AEC, Calbiochem). The sections were counterstained with modified Mayer hematoxylin and mounted in PermaFluor (Thermo Scientific). The sections were observed with a Nikon Eclipse 80i light microscope equipped with a color camera imaging head, using a \(\times 40\) objective.

Public EOC datasets of gene expression

We explored IL18BP gene expression in our dataset (Iorio, GSE19532) and in public EOC datasets processed through the Affymetrix HG U133 Plus 2.0 arrays (Tothill, GSE9891 and Anglesio GSE12172). Only type II tumors (31) were considered for all three datasets when exploring pattern of correlation among different relevant genes. We considered only the platforms including probes 222868_s_at because this is the only probe that comprises the IL-18BPa isoform. The Tothill dataset consists of 18 low malignant potential (LMP), 10 type I and 210 type II EOC; the Anglesio dataset consists of 30 LMP and 58 type II EOC cases; and the Iorio dataset includes 17 EOC high-grade tumors, two preparations of normal ovarian surface epithelial cells (OSE), and six EOC cell lines. Raw data were downloaded from GEO and normalized through the RMA algorithm (with Expression Console software, Affymetrix) except for the Iorio dataset, for which the processed matrix was downloaded from GEO.

Statistical analysis

The normal distribution of the data was verified before applying parametric tests by transforming data to logarithms. The one-way ANOVA and appropriate multiple comparison tests were used to compare expression levels between patients and control subjects. The paired Student \(t\) test was used when appropriate. Parametric methods were used to examine the correlation among gene or protein expression levels (Pearson correlation coefficient). An \(\alpha\) level of 0.05 was used for all statistical tests. GraphPad Prism 5.0d software and R statistical language (http://www.R-project.org; version 12.2) were used.

Western blot analysis

For the analysis of phosphorylated proteins, \(10^7\) EOC cells were incubated for 10 minutes at 37°C with or without 20 ng/mL of rIL-27 in 0.5 mL of medium. Cells were lysed in 100 mL of buffer containing 1 mmol/L sodium orthovanadate. Lysates were resolved under reducing conditions by 10% SDS-PAGE and analyzed by Western blotting using rabbit anti-phospho-STAT1 (pY701) anti-serum (Cell Signaling Technology) or anti-\(\beta\) actin or tubulin mAb (Sigma) and chemiluminescence detection.

Table 1. Distribution by tumor characteristics for EOC patients with evidence of disease

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Cases at diagnosis, (n)</th>
<th>Cases at relapse, (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>48</td>
<td>7</td>
</tr>
<tr>
<td>Age at diagnosis, y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>55</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td><55</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>NA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stage(^a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>22</td>
<td>3</td>
</tr>
<tr>
<td>IV</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>NA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Histotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serous</td>
<td>30</td>
<td>4</td>
</tr>
<tr>
<td>Endometrioid</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Mucinous</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>NA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Borderline</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Abbreviation: NA, not available.

\(^a\)Stage at diagnosis.
Results

Gene expression of \textit{IL18BP} in EOC tumors

\textit{IL18BP} mRNA was first to be analyzed in our gene expression dataset (Iorio) including primary EOC tumors, tumor cell lines, and normal ovarian surface epithelial (OSE) cells. A significantly higher expression intensity of \textit{IL18BP} was observed in tumor samples than in EOC cell lines ($P < 0.0001$) and in OSE cells ($P = 0.01$; Fig. 1A). In addition, \textit{IL18BP} expression was significantly higher in type II (high-grade) tumors (31) relative to low malignant potential tumors (LMP), in two independent datasets by two-sided unpaired Student t test (Anglesio dataset) and one-way ANOVA and Tukey post-test (Tothill dataset). Boxes and whiskers represent median and quartiles with minimum and maximum. C, \textit{IL-18BP} ELISA levels were significantly higher in sera from EOC patients at diagnosis ($n = 48$) or at relapse ($n = 7$) than in age-matched female controls ($n = 13$) by Kruskal–Wallis test. \textit{IL-18BP} levels were similar in stage I/II and stage III/IV patients. D, \textit{IL-18BP} levels were higher in the ascites than in sera simultaneously collected from the same patient (by two-sided paired Student t test). Mean and SD are indicated in C and D.

\textbf{IL-18BP levels are elevated in EOC sera and ascites}

We then tested \textit{IL-18BP} serum levels in 48 patients with EOC (Table 1), all with evidence of disease and untreated, in 7 patients at relapse, and in 13 age-matched healthy women by ELISA for \textit{IL-18BP}a, the major isoform of \textit{IL-18BP} (22). \textit{IL-18BP} serum levels were higher in both untreated (onset, mean ± SD = 11.06 ± 5.7; median = 9.45 ng/mL, $P = 0.03$) and in patients with relapsing EOC (mean ± SD = 11.76 ± 3.2; median = 11.21 ng/mL, $P = 0.01$) than in healthy women (mean ± SD = 7.4 ± 3.5; median = 6.86 ng/mL; Fig. 1C). By stratifying patients in stage I/II and stage III/IV, no significant difference between the two groups was observed ($P = 0.43$), suggesting that \textit{IL-18BP} is altered at early stages of EOC and that \textit{IL-18BP} serum levels are independent from tumor burden (Fig. 1C). To gain information on the possible tumor origin of the high serum \textit{IL-18BP} levels, we tested 18 EOC serum and ascites pairs, collected at the same time. By paired analysis, \textit{IL-18BP} levels were significantly higher in the ascites than in sera simultaneously collected from the same patient (by two-sided paired Student t test). Mean and SD are indicated in C and D.

Analyses of \textit{IL-18BP} correlation with IL-18 and IFN-\gamma

It is known that \textit{IL-18BP} inhibits IL-18 as the result of a negative feedback loop mediated by IL-18–induced IFN-\gamma (21, 23). In agreement with our previous data (13), \textit{IL-18 ELISA} levels were elevated in EOC serum and ascites (Supplementary Fig. S2A and S2B).
We therefore first evaluated whether there was any relationship between \textit{IL18} and \textit{IL18BP} mRNA in two public access datasets of ovarian cancers and found a moderate, yet significant correlation (Anglesio dataset, $P = 0.0056$; Tothill dataset, $P < 0.0001$; Fig. 2A). In addition, a correlation was found for \textit{IFNG} and \textit{IL18BP} and for \textit{IFNG} and \textit{IL18} in the Tothill dataset (\textit{IFNG} vs. \textit{IL18}, $P < 0.0001$; \textit{IL18BP} vs. \textit{IFNG}, $P < 0.0001$), although only a minority of patients showed elevated levels of \textit{IFNG} expression (Fig. 2B).

However, when we investigated possible correlations at the protein level, we found no significant correlation between IL-18 and IL-18BP in the sera ($r = 0.12$, $P = \text{ns}$ by Pearson correlation) and in the ascites ($r = 0.3$, $P = \text{ns}$) of patients with EOC (Supplementary Fig. S2A and S2B). Moreover, IFN-γ levels were low or undetectable in ascites and sera from patients with EOC, in agreement with previous reports, and showed no correlation with IL-18 and IL-18BP (Supplementary Fig. S2C).

Although microarray data suggest that the IL-18/IFN-γ axis may be involved in the regulation of IL-18BP expression in the tumor tissue of a few patients, no evidence of this regulation was found in sera and ascites.

Both EOC cells and reactive cells from the microenvironment express IL-18BP

To address the possible cellular origin of the elevated IL-18BP in EOC, we conducted immunochemical analyses on cells isolated from the ascites and on tissue arrays. Among cells present in EOC ascites, tumor cell nests showed positivity for IL-18BP, although stronger expression was found in tumor-associated leukocytes (Fig. 3A). Staining appeared specific, as no reactivity was found on a contiguous section stained with secondary antiserum. Immunohistochemical analyses of tissue microarrays revealed that most EOC tumors expressed IL-18BP, irrespective of the tumor histotype, although at variable intensity in different tumors. Both neoplastic cells and infiltrating leukocytes showed expression of IL-18BP (Fig. 3B).

The IL-18BP–expressing leukocytes showed monocyte- or granulocyte-like morphologic features and had a nonlymphoid (CD$^3^-$CD$^{20^+}$NK$^{46^+}$) but myeloid (CD$^{13^+}$CD$^{14^+}$/low) surface phenotype (Supplementary Fig. S3). These features may be consistent with...
“myeloid-derived suppressor cells” (32). Together, these data indicate that different cell populations express IL-18BP in the EOC microenvironment. In contrast, normal ovary and Fallopian tube tissue showed no expression of IL-18BP by immunohistochemistry (Fig. 3C).

IFN-γ and IL-27 upregulate IL-18BP in human EOC cell lines

Unlike EOC cells present in tumor specimen, four EOC cell lines showed no constitutive expression of IL-18BP mRNA or protein (Fig. 4). However, culture in the presence of IFN-γ increased IL-18BP protein secretion (Fig. 4A) and IL18BP mRNA (Fig. 4B) expression in EOC cell lines. In addition, although human IL-18BP was undetectable in sera, it was found in the ascites of nude mice bearing orthotopic xenotransplants of the human A2774 and SKOV3 cell lines (Fig. 4C), further suggesting that EOC cells can contribute to IL-18BP production in vivo. Indeed, A2774 and SKOV3 cells grown in immune-deficient mice showed IL-18BP expression by immunohistochemistry, whereas IL-18BP was virtually undetectable in the same EOC cell lines in vitro (Supplementary Fig. S4). These findings suggest that factor(s) present in the microenvironment are responsible for production of IL-18BP in vivo. Although IFN-γ mediates IL-18BP expression in EOC cell lines in vitro, it should not be involved in vivo, as it was virtually undetectable in human ascites from patients and, moreover, mouse IFN-γ is inactive on human cells. These considerations prompted us to examine whether other cytokines, known to be elevated in patients with EOC, such as IL-6, TNF-α, VEGF-A, EGF, IL-18, and IL-8, could mediate IL-18BP expression in EOC cell lines, but none proved active (data not shown).

A recent report indicated that the heterodimeric cytokine IL-27, consisting of EB13 and IL-27 chains, could mediate IL-18BP production by human keratinocytes in an IFN-γ-independent manner (33). We then tested whether IL-27 or the related cytokine IL-35 could mediate IL-18BP expression in EOC cells. Indeed, IL-27 induced IL-18BP secretion (Fig. 5A; S5A and B) in four EOC cell lines in a dose-dependent fashion, whereas IL-35 showed no activity (not shown). IL-27 also increased IL18BP mRNA expression (Supplementary Fig. S5C). Importantly, the IL-18BP-containing supernatant of IL-27–stimulated A2780 cells significantly inhibited IL-18 bioactivity in a concentration-dependent manner, as detected through IFN-γ release by the human NK cell line NK-92. Controls such as IL-27–containing medium or the supernatant from unstimulated EOC cells produced no inhibition (Fig. 5B).

Because IL-18BP expression is activated through the STAT1 pathway, we also analyzed STAT1 activation by IL-27 in EOC cells. Indeed, IL-27 activates STAT1 signaling in EOC cell lines (Fig. 5C and Supplementary Fig. S5D), as reported for other IL-27–sensitive cell types (33, 34). In addition, Western blot analysis showed that STAT1 was constitutively tyrosine-phosphorylated in cells isolated from ascites ex vivo and was further activated by in vitro treatment with IL-27 (Fig. 5C). Confocal microscopy confirmed constitutive STAT1 phosphorylation, which increased with IL-27 stimulation, in both EPCAM-positive EOC and EPCAM-negative inflammatory cells (Supplementary Fig. S5E). Consistently, cells isolated from ascites showed spontaneous IL-18BP secretion in culture, which could be further enhanced by in vitro IL-27 stimulation (Fig. 5A).

Because IL-27 activity is mediated through a heterodimeric receptor consisting of gp-130 and WSX-1 molecules, we asked whether antibodies neutralizing gp-130 could inhibit the effect of IL-27. Anti-gp130 mAb significantly inhibited IL-27–mediated IL-18BP production in two different EOC cell lines, further supporting the involvement of the IL-27/IL-27R pathway in IL-18BP regulation (Fig. 5A).
IL-27A and EBI3 are expressed in EOC tissues

Further analyses of two microarray datasets of EOC indicated a correlation between the expression of EBI3 and IL18BP mRNA in EOC primary tumors (Supplementary Fig. S6A). In addition, although IL18BP mRNA expression showed no significant correlation with outcome (not shown), high levels of EBI3 expression correlated with a shorter relapse-free survival (Supplementary Fig. S6B). The correlation between IL18BP and EBI3 gene expression suggested a possible paracrine loop of IL-18BP induction in vivo. This hypothesis was also suggested by the use of an anti-IL-27A (p28) specific antibody in immunohistochemistry, which revealed IL-27 expression predominantly in a fraction of tumor-associated leukocytes isolated from the ascites and in tissue microarrays, whereas tumor cell nests appeared negative (Fig. 5C and D). Also, EBI3 protein showed a similar distribution both in ascites (Supplementary Fig. S7A) and within tumor tissues (Supplementary Fig. S7B).
Discussion

In this study, we show that IL-18BP levels are elevated in the serum of patients with EOC and are even higher in the ascites, reaching four-fold higher levels than those found in normal serum. This finding suggested a local production of IL-18BP in the microenvironment of EOC. Indeed, immunohistochemical analyses showed that IL-18BP is expressed by neoplastic cells of different EOC histotypes and by tumor-associated leukocytes with myeloid features. Therefore, the high concentration of IL-18BP in the tumor environment of EOC may limit the effect of endogenous or exogenously administered IL-18. On the other hand, IL-18BP also binds the anti-inflammatory cytokine IL-37 (35), which may suppress the host immune response (36), and this may result in a beneficial effect for the host. However, to our knowledge, no evidence for IL-37 expression in ovarian cancer has been provided to date.

Elevated IL-18BP levels were recently described also in serum of patients with prostate (24) and pancreatic cancer (37). In the latter, the concomitantly elevated levels of free-IL-18 in the serum suggested the existence of a biologic paradox, in view of the immune-enhancing properties of IL-18. Indeed, increased levels of both IL-18 and its natural inhibitor IL-18BP were also found in patients with systemic lupus erythematosus, in whom biologically active free IL-18 was still higher than in controls and was a marker of disease activity and a potential contributor to autoimmunity (38).

It was previously shown that high levels of IL-18 are present in serum and ascites of patients with EOC (12) and that pro-IL-18 is largely predominant (13). In fact, although IL-18 ELISA preferentially recognized mat-IL-18 in sera, this assay also detected pro-IL-18, albeit with a reduced sensitivity. Therefore, the presence of "free IL-18" in EOC could be explained by the predominance of pro-IL-18, which is unable to bind IL-18BP and is detected by IL-18 ELISA. It is likely that a similar situation may occur in other tumors in which alterations of IL-18 processing have been reported (39).

Because the presence of mat-IL-18 in the ascites of EOC could not be formally excluded and mat-IL-18 is an inducer of IL-18BP, via IFN-γ production (25, 40), we explored possible correlations between immune-reactive IL-18 and IL-18BP or IFN-γ levels. No significant correlation was found in the ascites and serum of patients with EOC, and IFN-γ levels were very low to undetectable in the ascites. However, a correlation between IL18 and IL18BP mRNA levels was found in two independent datasets of EOC gene expression profiles. Moreover, IFNG mRNA showed a correlation with IL18BP in one dataset, although IFNG mRNA was elevated only in a minority of cases. These data suggest that the IL-18/IFN-γ loop may be active in the tumor tissue microenvironment in some patients and that other factor(s) may participate in the induction of IL-18BP expression.

Evidence exists to suggest that IL-18BP production is a result of the interaction between EOC cells and the microenvironment. Human EOC cell lines do not produce IL-18BP in culture but, once grafted in immune-deficient mice, they display IL-18BP expression, suggesting a role for factor(s), which function across the species. This is not the case for IFN-γ, in view of its species specificity. Because other cytokines, which are elevated in the ascites of EOC failed to induce IL-18BP expression in vitro, we focused on IL-27, which was recently shown to stimulate IL-18BP expression in human keratinocytes (33).

IL-27 is a member of the IL-12 family that may have pro-anti-inflammatory properties in different systems (29, 30). IL-27 is a heterodimeric cytokine, composed of p28 and EBV-induced gene 3 (EBI3), which upregulates IL-12R expression and is relevant for Th1 polarization (41, 42). However, the precise contribution of IL-27 to immune response, inflammation, and cancer is still poorly understood. On one hand, IL-27 has proinflammatory effects through the induction of CXCL10 in macrophages in inflammatory skin disorders (43). However, IL-27 may limit the proinflammatory and immune-enhancing activities of IL-18 in the skin through IL-18BP induction (33) and may dampen autoimmunity, as Il27−/− mice were more susceptible to experimental autoimmune encephalomyelitis (44).

Here, we show that IL-27 induces the expression of IL-18BP mRNA and protein in human EOC cell lines in culture and activates STAT1 signaling in these cells, whereas IL-35, another EBI3-containing cytokine (30), was inactive. Such activity was specifically induced through the IL-27R complex as indicated by the significant inhibition of IL-18BP induction upon treatment with a neutralizing antibody against the gp130 chain. A potential role of IL-27 in vivo was suggested by the expression of IL-27A and EBI3 found by immunochemistry in tumor-associated leukocytes in both ascites and tumor tissues and by the correlation between EB13 and IL18BP mRNA expression in two different EOC datasets. Interestingly, high EB13 expression correlated with a shorter progression-free survival in type II tumors. The finding that IL18BP gene expression had no significant correlation with relapse-free survival of patients with type II tumors may reflect the multiplicity of components driving clinical outcome. A correlation with Il27A mRNA expression could not be found (data not shown), but this may relate to technical limitations, as only one probe set was present in the arrays. The possible role of IL-27 in vivo was reinforced by the detection of constitutive STAT1 activation in both neoplastic and reactive cells isolated from the ascites, in the absence of measurable IFN-γ levels. Moreover, these ascites cells showed spontaneous secretion of IL-18BP in culture, which could be further enhanced by the addition of exogenous IL-27. Consistently, STAT1 phosphorylation also was increased by IL-27.

Our study may open new perspectives on understanding the role of IL-27 in cancer, as its involvement in the antitumor immune response is still poorly understood. In some hematologic neoplasia, including multiple myeloma...
and doxorubicin in advanced-stage EOC (NCT00659178) response (18, 19). Therefore, recombinant IL-18 is under-limit the biologic effects of low levels of endogenous IL-

has recently concluded patient recruitment. It is possible

been debated (50), preclinical studies indicated that IL-18

displays antitumor activity through its ability to trigger

limits the induction of TH1 responses and IFN-

IL-27 may be part of an immune-regulatory network, which

contributes to the microenvironment by inhibiting IL-18 activity. In

support of this concept, studies in murine models highlight-
ed a predominant role of IL-27 as an immune-regulatory agent that generates and maintains T-regulatory cell functions (48) and induces IL-10 produc-
tion by T lymphocytes (49).

Although the role of IL-18 in tumor cell biology has

been debated (50), preclinical studies indicated that IL-18 displays antitumor activity through its ability to trigger IFN-γ production and to favor the induction of the Th1 response (18, 19). Therefore, recombinant IL-18 is under-going testing in clinical trials of cancer immunotherapy (27, 28) and in particular a clinical phase I study of IL-18 and doxorubicin in advanced-stage EOC (NCT00659178) has recently concluded patient recruitment. It is possible that the high local levels of IL-18BP present in EOC may limit the biologic effects of low levels of endogenous IL-18 or of therapeutically administered IL-18, particularly at the tumor site.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: M. Fabbri, S. Ferrini
Development of methodology: G. Carbotti, G. Barisone, A. Brizolara
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): G. Carbotti, A.M. Orengo, A. Brizolara, M.G. Centurioni
Analysis and interpretation of data (e.g., statistical analysis, biosta-
tistics, computational analysis): I. Airolidi, M. Bagnoli, P. Pinciroli, D. Mezzanzanica, M. Fabbri
Writing, review, and/or revision of the manuscript: G. Carbotti, I. Airolidi, M. Bagnoli, P. Pinciroli, D. Mezzanzanica, M. Fabbri, S. Ferrini
Administrative, technical, or material support (i.e., reporting or orga-

izing data, constructing databases): I. Airolidi
Study supervision: M. Fabbri, S. Ferrini

Grant Support

This study was supported by AIRC (Associazione Italiana per la Ricerca sul Cancro, IG5509, IG31018 and IG13518). Ministry of Health Project “Tumori Femminili,” and Compagnia di San Paolo.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received February 27, 2013; revised June 21, 2013; accepted July 8, 2013; published OnlineFirst July 26, 2013.

References

3. Nelson BH. The impact of T-cell immunity on ovarian cancer out-

4. Frumento G, Piazza T, Di Carlo E, Ferrini S. Targeting tumor-related immunosuppression for cancer immunotherapy. Metab Immune Dis-

www.aacrjournals.org Clin Cancer Res; 19(17) September 1, 2013 OF9

Published OnlineFirst July 19, 2013; DOI: 10.1158/1078-0432.CCR-13-0568

Published OnlineFirst July 19, 2013; DOI: 10.1158/1078-0432.CCR-13-0568

Downloaded from clincancerres.aacrjournals.org on April 13, 2017. © 2013 American Association for Cancer Research.
The IL-18 Antagonist IL-18–Binding Protein Is Produced in the Human Ovarian Cancer Microenvironment

Grazia Carbotti, Gaia Barisone, Anna Maria Orengo, et al.

Clin Cancer Res Published OnlineFirst July 19, 2013.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-13-0568

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2013/07/23/1078-0432.CCR-13-0568.DC1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.