The integrin inhibitor cilengitide affects meningioma cell motility and invasion

Annette Wilisch-Neumann¹, Nadine Kliese¹, Doreen Pachow¹, Thomas Schneider², Jan-Peter Warnke³, Werner EK Braunsdorf⁴, Frank-Dietmar Böhmer⁵, Peter Hass⁶, Diana Pasemann⁶, Cornelia Helbing⁷, Elmar Kirches¹ and Christian Mawrin¹*

Departments of ¹Neuropathology, ²Neurosurgery and ⁶Radiotherapy, Otto-von-Guericke University, Magdeburg, ³Neurosurgery, Paracelsus Hospital Zwickau; ⁴Neurosurgery, City Hospital Magdeburg; ⁵Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital; ⁷Special Lab for Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg; Germany

Running title: Cilengitide in meningiomas

Key words: meningioma, chemotherapy, NF2, migration

*Correspondence:
Christian Mawrin, MD
Department of Neuropathology
Otto-von-Guericke University Magdeburg, Germany
Tel: +49 391 6715825
Fax: +49 391 6713300
e-mail: christian.mawrin@med.ovgu.de
Statement of translational relevance:

Meningiomas are frequent intracranial tumors without clear effective pharmaceutical treatment option thus far. Brain invasion by meningiomas occurs frequently and has negative prognostic impact. We demonstrate that the integrin inhibitor cilengitide affects meningioma cells especially by inhibiting motility and invasion, while largely not influencing cell proliferation and viability. In an orthotopic meningioma xenograft mouse model, we show that cilengitide as a single agent has no major impact on tumor growth and overall survival, despite an observed inhibition of brain invasion. Simultaneous treatment of meningiomas with the integrin inhibitor and radiation reduced tumor growth more effectively than radiation alone. Our data suggest that a cilengitide monotherapy has limited efficacy in meningiomas, while cilengitide treatment of irradiated meningiomas warrants further attention.
Abstract

PURPOSE: Meningiomas are frequent intracranial or spinal neoplasms which recur frequently and can show aggressive clinical behaviour. We elucidated the impact of the integrin inhibitor cilengitide on migration, proliferation and radiosensitization of meningioma cells.

EXPERIMENTAL DESIGN: We analyzed integrin expression in tissue microarrays of human meningiomas and the anti-meningioma properties of cilengitide in cell cultures, subcutaneous and intracranial nude mouse models by measuring tumor volumes and survival times.

RESULTS: αvβ5 was the predominantly expressed integrin heterodimer in meningiomas, while αvβ3 was mainly detected in tumor blood vessels. Application of up to 100µg/ml cilengitide resulted in only mildly reduced proliferation/survival of meningioma cell lines. Effects on cell survival could be enhanced by irradiation. One µg/ml cilengitide was sufficient to significantly inhibit meningioma cell migration and invasion in vitro. A daily dosage of 75 mg/kg did neither affect tumor volumes nor overall survival (p = 0.813, log-rank test), but suppressed brain invasion in a significant fraction of treated animals. A combination of 75 mg/kg cilengitide daily and irradiation (2 x 5 Gy) led to a 67% reduction of MRI estimated tumor volumes in the intracranial model (p<0.01), whereas the corresponding reduction reached by irradiation alone was only 55% (p<0.05).

CONCLUSIONS: These data show that a monotherapy with cilengitide is not likely to achieve major responses in rapidly growing malignant meningiomas, although brain invasion may be reduced due to the strong anti-migratory properties of the drug. The combination with radiotherapy warrants further attention.
Introduction

Integrins are cell surface adhesion molecules important for many cellular features, including proliferation, survival and migration (1). Cilengitide is a pentapeptide that targets $\alpha v \beta 3$, $\alpha v \beta 5$, and $\alpha v \beta 1$ integrins by mimicking the Arg-Gly-Asp (RGD) binding site (2, 3). Cilengitide inhibits proliferation and differentiation of endothelial progenitor cells, which play an important role in tumor neoangiogenesis (4). Brain tumors are known to express integrins, which besides their role in tumor angiogenesis are key players in the setting of diffuse brain infiltration by gliomas (5). The biological roles of integrins in meningiomas have not been extensively studied, but integrin expression has been demonstrated in meningiomas of all World Health Organization (WHO) grades (6-8).

Meningiomas have incidence rates comparable to gliomas (9). The vast majority belongs to WHO grade I and can usually be cured by neurosurgery. About 5% of these tumors belong to the more aggressive atypical (grade II) or anaplastic subtypes (grade III) with poor overall survival (reviewed in (10)). However, even among WHO grade I meningiomas, the rate of local recurrences is high. Furthermore, atypical and especially malignant meningiomas show in some cases an intriguing capacity to invade brain tissue, further reducing surgical treatment options. Despite additional irradiation, they recur frequently (11). Chemotherapeutic agents, such as hydroxyurea, and targeted cancer drugs have been used in these cases with only marginal efficacy (reviewed in (12, 13)). For instance, a recent study using the EGF receptor–targeting drug Erlotinib has shown only modest effects (14). This failure of establishing efficient therapy approaches is at least partly based on the still limited knowledge about basic molecular alterations operating in meningioma development, progression, and invasion.
Since previous immunohistochemical studies have shown that meningiomas do express αvβ3 and αvβ5 integrins (6), cilengitide may be an option for their treatment. Here we characterized basic effects of cilengitide on meningioma cell viability, radiation sensitization, and tumor cell migration in benign and malignant human meningioma cells with special emphasis on the relation to the NF2 gene status. In addition, we analyzed the impact of the drug to inhibit malignant meningioma growth with and without irradiation in mice.
Materials & Methods

Cell cultures, inhibitors, and confocal microscopic analysis. The cell line BenMen-1 (15) was delivered by Prof. Werner Paulus (University of Münster) and HBL-52 by Cell lines service (Heidelberg, Germany). Both were derived from WHO grade I meningiomas. Malignant IOMM-Lee cells were provided by Prof. H. Gutmann (Department of Neurology, Washington University School of Medicine, St.Louis, Mo). Men and Men-shNF2 (further referred as Men-NF2) cells, as well as KT21 malignant meningioma cells were a kind gift from Dr. Anita Lal (University of California, San Francisco, CA (16)). The primary meningioma culture was established from a WHO-grade I meningioma in our laboratory. All cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) with 10% fetal calf serum and penicillin/streptomycin. Their identity was analyzed using the AmpFSTR kit and GeneMapper ID v3.2 from Applied Biosystems (ABI, Foster City, CA, USA).

For the evaluation of morphological changes under cilengitide, cells were grown on chamber slides until 70 - 80% confluency was reached and treated with 1 µg/ml cilengitide (24 h). Cells were fixed for 10 min in 4% paraformaldehyde/PBS and washed three times in PBS. Slides were submerged (5 minutes) in 0.15% TritonX-100/PBS before blocking in 1% BSA/PBS (10 minutes). They were stained with a dilution (1:25) of Alexa-Fluor-546 labelled phalloidin (Invitrogen, Darmstadt, Germany) for 1 h at room temperature. After washing slides were postfixed with 4% paraformaldehyde/PBS (10 minutes), washed again, embedded with Vectashield (Vector Laboratories, Burlingame, CA) and covered. Slides were evaluated under a TCS-LC confocal microscope (Leica Mikrosystems, Wetzlar, Germany) and quantitative morphometric analyses of cell protrusions were performed using Image-J.
(National Institutes of Health, USA). A total of 10 cells for each condition were evaluated.

Integrin expression analyses. Immunohistochemistry was performed using a tissue microarray (TMA) containing samples from 46 meningiomas (29 WHO-grade I, 11 atypical WHO-grade II, and 6 anaplastic WHO-grade III tumors). Rabbit monoclonal antibodies against αvβ3 and αvβ5, developed by the company Merck were used. Negative controls included omission of the primary antibody and substitution by an irrelevant antibody. Immunoexpression was graded semiquantitatively using the following score: - no staining, + weak staining, ++ moderate staining, +++ strong staining. For integrin immunofluorescence of cultured cells, the same antibodies were used, as applied for FACS analysis of integrin expression (see below). Nuclei were visualized in addition by DAPI staining.

For quantitative PCR analyses of integrin expression, 48 meningiomas cases (42 benign WHO grade I, 4 atypical meningiomas WHO grade II, and 2 anaplastic meningiomas WHO grade III), as well as tumor-free control meninges from 8 cases (6 derived at autopsy, 2 from biopsy) were analyzed. Total RNA from frozen tissues or meningioma cells was isolated by Trizol reagent (Invitrogen, Karlsruhe, Germany) and transcribed into cDNA. Real-Time-PCR was performed on an ABI-Prism-7000SDS using a SYBR Green PCR master mix (ABI). Primers were: β2-microglobulin (MG): CCAGCAGAGAAAAGTC and GATGCTGCTTGTCTCG, bcl2: GATGACTGAGGAACCG and CAGGGCCAAAGAGCAG, bax: CCAGCTCTGAGCAGATCATG and CAATCATCCTCTGCAGCTCC, Integrin αv: CAAGCTATTTCTGGCAAGGC and ATAGATGGAACTGGCCTGG, Integrin β3: GGCTACAAACACGTGCTGAC and CTTCCGTCCAATGCTATATG, Integrin β5:
ATGTGAAGAATGTCTGCTAATC and CAATCACCTGTGGTGTCATC. Expression levels were normalized to β2-microglobulin.

FACS analysis of integrins: Antibodies against αvβ5 (dilution 1:1000) and αvβ3 (dilution 1:25) from Millipore were used to label 1 million cells in a total volume of 200 µl PBS. After washing twice with PBS, a fluorescently labeled secondary antibody (FITC or Cy3) was applied. Excess of unbound secondary antibody was removed by two additional PBS washes. Labelled cells were then analysed on a FACS Calibur (Becton Dickinson Biosciences, Bedford, MA) with CellQuest Pro (Becton Dickinson).

Western blot analysis. To monitor merlin expression lysates of MEN / MEN-NF2 cells were analyzed using an anti-merlin antibody (sc-331, Santa Cruz Biotechnology Inc., Santa Cruz, CA). Vinculin levels were assessed for loading control (Santa Cruz).

Cell viability assays. Cell survival was assessed using standard 3-(4,5-dimethlythiazol-2-yl)-2,5diphenyltetrazoliom bromide (MTT) assay. Cells were seeded in microtiter plates (2000 per well). For the experiments with different cell densities, 1000, 2000 and 4000 cells were plated to obtain 30%, 60% or 90% confluency, respectively. After overnight incubation, plates were treated with 1, 10 or 100 µg/ml cilengitide for 24 or 48 h. Control wells received culture medium. For the experiments designed to test a possible synergism between the drug and irradiation, plates received 2, 5 or 8 Gy X-rays in a Gulmay-D3225 machine (Gulmay Inc, GA, USA) two hours after drug addition to the wells. After 48h medium was removed and MTT (0.75 mg/ml medium) added. The solution was discarded after 2h (37°C) and 100µl DMSO were added to each well. Formazane absorbance at 562 nm was measured in
a microplate reader (Tecan, Männedorf, Switzerland). The percentage of viable cells was defined as optical density relative to that of untreated controls.

Cell cycle analysis. 200,000 cells were seeded in T25 cell culture flasks and incubated overnight. Cilengitide was then added to a final concentration of 1, 10 or 100 µg/ml for 24h. Adherent cells were then trypsinized and harvested together with floating cells by centrifugation, fixed with cold 70% ethanol and treated with RNase A (100µg/ml) for 10 min at 37°C. Cells were resuspended in propidium iodide (50µg/ml in PBS). DNA content was determined by flow cytometry using FACS calibur and CellQuest Pro (BD Biosciences, Bedford, MA). Debris and damaged cells were excluded by gating on a forward and sideward scatter dot plot. DNA was recorded in the FL2 channel using linear amplification. Data obtained were evaluated with FACScan to calculate the percentage of cells in each phase.

Caspase assay. Meningioma cells were plated in T25 flasks and grown overnight. Ten flasks per concentration were treated with 0, 1, 10 and 100 µg/ml cilengitide. After 48 h cells were harvested by trypsin and PBS-washing, lysed with one volume share lysis buffer, supplied with the CCP32/caspase-3 fluorimetric protease assay kit (Chemicon, Temecula, USA), and stored on ice for 10 min. Protein was quantified using the Bio-Rad Dc assay (Bio-Rad, Hercules, USA). The fluorimetric caspase-3-reaction was performed according to the manufacturer’s instructions. Fluorescence was measured in a Safire reader (Tecan) at excitation/emission wavelengths of 400/505 nm.

Cell invasion and migration assay. The upper and lower compartments of a 24-well transwell chamber (Corning, Lowell, MA) were separated by polycarbonate filters with
8 µm pore size. Prior to the assays, the polycarbonate filters were coated with 100 ng Matrigel. 10^5 cells/well were seeded onto the filters and incubated for 48 hours in medium containing 0, 1, 10 and 100 µg/ml cilengitide. As control the same number of cells was seeded into normal 24-well plates with the same cilengitide concentrations. Cells passing the filters and attaching to the lower sides of the matrigel-coated membranes (migrated cells) were harvested using trypsin/EDTA. The cell number was quantified by a Neubauer chamber. The percentage of migrating cells was calculated in relation to controls grown under identical conditions without filters (in triplicate).

To evaluate the migratory properties, a gap assay was performed using chamber-inserts from Ibidi (Munich, Germany). A cell suspension (5 x 10^5 cells/ml) was prepared. 70 µl were filled into each well and incubated at 37°C for 6h before cilengitide was added for 24h. The culture insert was removed to create the gap of 500 – 600 µM. Migration was measured under an inverted microscope at various time intervals between 0 and 29 h. With Axiovision (Carl Zeiss AG, Jena, Germany) the distances between the outermost cells were measured on twenty marker lines cutting the gap square. The assay was performed in the absence or presence of 1µg/ml cilengitide.

Cilengitide treatment and irradiation of tumor-bearing nude mice:

Experiments were done in accordance with the regulations of animal protection. Fifteen eight to ten-week-old Swiss Nude mice (Charles River) were injected subcutaneously on both flanks with 3x10^6 IOMM-Lee cells in 100 µl PBS/matrigel. Beginning at day 3, 8 mice were i.p. injected daily (5 days per week) with 8 mg/kg cilengitide in PBS for 17 days. Seven PBS-treated tumor-bearing mice served as a control. The tumor volume (V) was estimated weekly by measurement (caliper rule).
of two perpendicular axes according to $V = \pi/6 \times a \times b^2$ ($a > b$). After killing the mice tumors were resected and weighed.

In MRI studies thirty-nine eight to ten-week old mice were used for subarachnoidal inoculation with IOMM-Lee cells. Animals were anesthetized i.p. (Rompun/Ketamin) and stabilized in a stereotactic head holder. Two holes were drilled 2 mm anterior of the bregma and 1.5 mm left and right from the sagittal suture, just deep enough to penetrate bone and meninges with minimal alteration of the neocortex. Approximately 2.5x10^5 cells in 5 µl PBS were slowly (1 minute) injected per hole to a depth of 1 mm with a Hamilton syringe. In one set of experiments, 8 mice received a daily dose of 8 mg/kg cilengitide i.p. (beginning at day 3), while 7 mice received PBS. In another set of experiments, 7 mice were treated with 75 mg/kg cilengitide daily, 6 mice with 75 mg/kg and brain X-irradiation (5 Gy, Gulmay-3225) at days 3 and 6, while 5 mice received irradiation only and 6 animals served as completely untreated controls (PBS). To measure a potential effect of cilengitide-monotherapy (75 mg/kg) in another malignant meningioma cell line with similar dose-dependent in vitro response to cilengitide in MTT assays as compared to IOMM-Lee cells ($p \leq 0.01$, data not shown), the above described orthotopic xenograft experiment was repeated with malignant KT21 cells in 10 mice, five of which received cilengitide.

MRI scanning of intracranial tumor growth

Meningioma growth was monitored in isoflurane-anesthetized mice by magnetic resonance imaging at days 4 and 10 after inoculation of IOMM-Lee cells or at day 21 after inoculation of the slowly growing KT21 cells using a Bruker Biospec 47/20 scanner (4.7 T, Bruker BioSpin GmbH, Ettlingen, Germany) equipped with a BGA09 (400 mT/m) gradient system. A 25mm Litzcage system (DotyScientific Inc., Columbus, SC, USA) was used for RF excitation and signal reception. T_2-weighted
images were acquired by a rapid acquisition relaxation enhanced (RARE) sequence with the following parameters: TR 4000 ms, TE 15 ms, slice thickness 800 µm, field of view 25.6 x 25.6 mm, matrix 256x256 (i.e. nominal in plane resolution 100 x 100 µm), RARE factor 8, 6 averages, total scanning time for one direction 12 min 48 s. ImageJ (http://rsb.info.nih.gov/ij/) was used to calculate the tumor volume at day 10. For this volumetric analysis, the tumor was segmented manually in each section and the determined area multiplied by the slice thickness (0.8 mm). Tumor tissue grown from both injection holes per mouse were regarded as a single tumor for statistical analysis.

Determination of overall survival

Twelve mice were inoculated intracranially with IOMM-Lee cells and six were treated with 75 mg/kg cilengitde or PBS. Tumors were allowed to grow until ethical criteria for killing were reached. The period between inoculation and killing was defined as survival time.

Histochemical analyses of meningiomas grown in nude mice:

The skulls were decalcified, embedded in paraffin and sections were stained with H&E and MIB-1/Ki67 antibody (Dako, Hamburg, Germany) to assess microscopically brain invasion and to count the percentage of Ki67-positive nuclei (proliferation). To assess the level of apoptosis, the percentage of TUNEL-positive nuclei was counted after TUNEL staining with the In-situ Cell Death Detection kit (Roche, Mannheim, Germany). For quantification of Ki67- and TUNEL-indices 100 nuclei were analyzed in three microscopic slices per tumor. The degree of tumor cell invasion was assessed in H&E stained slices by calculating the ratio between the contour area of tongue-like infiltrating tumor cells within the brain and the length of the baseline of
this area at the brain-tumor border using a 10x microscopic objective and the Cell-D software (Olympus), as previously described (Kliese et al., Oncogene 2012, doi: 10.1038/onc.2012.468).

Statistics. Multiple comparisons were performed by one way analysis of variance (ANOVA) followed by Tukey post-hoc test. Differences of the means between two groups were analyzed by a t-test. All figures show means ± standard deviation (SD). Cumulative survival was depicted as Kaplan-Meier curves and analyzed by log-rank test. Calculations were performed using SPSS, release 21. Significance was assumed for p≤0.05.
Results

Integrins are differentially expressed in meningiomas and meningioma cell lines.

It has been previously shown that meningiomas express $\alpha v\beta 3$ and $\alpha v\beta 5$ integrin (6), two targets of the integrin inhibitor cilengitide (17). We first re-evaluated immunooexpression patterns of $\alpha v\beta 3$ and $\alpha v\beta 5$ using a TMA containing meningiomas of different malignancy and found that $\alpha v\beta 5$ was strongly expressed in the majority of tumors, while $\alpha v\beta 3$ was detected only in blood vessels within the tumors (Figure 1A). Normal leptomeningeal tissue also showed some $\alpha v\beta 5$ staining (Figure 1A-a). Semiquantitative analysis of $\alpha v\beta 5$ immunoexpression revealed no major differences between different grades of malignancy (Table 1).

Next we determined the mRNA expression level of the three integrin monomers. Expression of all three proteins was reduced in meningiomas compared to non-neoplastic meninges, with statistically significant reduction for αv (Figure 1B). We found no significant differences in the integrin mRNAs between tumor grades (data not shown). Analysis of various meningioma cell lines (supplementary Figure S1) showed high expression of the αv subunit in IOMM-Lee and HBL52 cells, whereas the $\beta 5$ and $\beta 3$ subunits were less abundant. In BenMen-1 cells, all subunits were expressed at lower levels. By FACS analysis of meningioma cell lines we confirmed the predominance of the $\alpha v\beta 5$ heterodimer in IOMM-Lee, BenMen-1 and HBL-52 cells. Figure 1C shows an example for a typical fluorescence distribution. Only low expression of $\alpha v\beta 3$ was seen in all three cell lines (data not shown). In most experiments the immunofluorescence of $\alpha v\beta 3$ could not clearly be distinguished from controls without primary antibody. Visualization of $\alpha v\beta 5$ in meningioma cells by confocal imaging is shown in Figure 1D (comparable data were obtained for IOMM-Lee cells [not shown]).
Effects of cilengitide on meningioma cell survival

Cilengitide (1, 10, and 100µg/ml) was added to IOMM-Lee, HBL52 and Ben-Men1 cultures. Morphological changes were monitored over 24h. In all three meningioma lines, cells started to round up and detach from the flask in a concentration-dependent manner, demonstrating that cilengitide decreases cell adhesion (data not shown). Quantification of cell viability after 24h cilengitide treatment showed in all three cell lines a highly significant dose-dependent but rather mild decline of viable cells, without major differences between cell lines (Figure 2A). IC_{50} values could not be reached, even with higher concentrations or longer incubation times (data not shown). In order to study a potential role of meningioma cell confluence prior to cilengitide administration, MTT assays were done with IOMM-Lee cells at 30%, 60%, or 90% confluency. Figure 2B shows that cilengitide exhibited highest efficacy at low cell density.

MTT-assay measures the viable cell number, which is often used to quantify the reaction of tumor cells to cytostatic drugs, but it does not discriminate between cytotoxic and antiproliferative effects. Therefore, we analyzed potential cilengitide-induced changes of cell cycle progression. In two analyzed cell lines (BenMen-1, IOMM-Lee) no cell cycle arrest was induced by cilengitide and no increase of the sub-G_{0} fraction of dead cells was seen (supplementary Figure S2). Moreover, application of cilengitide did not change caspase-3 activity significantly in both cell lines compared to untreated cells (not shown). No significant alterations of the mRNA levels of the apoptotic regulators bax and bcl-2 were found for various cilengitide concentrations (data not shown). Even under hypoxia (0.1% O_{2} for 24 h before RNA isolation) no increase of bax or decrease of bcl2 mRNA could be seen in the cilengitide treated samples (data not shown).
Irradiation enhances cilengitide response of meningioma cells

Since inaccessible residual tumor tissue and malignant meningiomas are often irradiated, we wondered whether irradiation might affect the sensitivity of meningioma cells towards cilengitide. We combined various doses of X-rays (2, 5 or 8 Gy) with various cilengitide concentrations in IOMM-Lee and BenMen-1 cells, applying X-rays 2 hours after the initiation of drug treatment. As shown in Figure 2C, significant and dose-dependent cytostatic effects of cilengitide occurred under all irradiation regimens. The surviving cell fractions for a given drug concentration relative to solely irradiated samples were rather similar among the irradiation regimens, and indicated mild synergistic effects in this assay.

Cilengitide effects on meningioma cells are NF2-dependent

A significant proportion of human meningiomas carries alterations at the NF2 gene which encodes the “merlin” protein. Using meningioma cells with stable shRNA-mediated knockdown of NF2 (Figure 3A), we first observed that the level of αvβ5 integrin expression was reduced in the merlin-deficient cells (Figure 3B). Confocal imaging demonstrated not only reduced expression, but also a change in the integrin distribution within the cell, from a more generalized distribution to a perinuclear expression in the merlin-deficient cell line MEN-NF2 (Figure 3C). MEN-NF2 cells were more susceptible to cilengitide treatment as compared to MEN cells in MTT-assays, as long as no concomitant radiation was applied (Figure 3D). Surprisingly, we observed that this difference disappeared under irradiation.

Cilengitide reduces migration and invasion of meningioma cells
Tumor cell invasion of meningioma cells in surrounding structures like bone or brain constitutes a significant event. Since cilengitide inhibits integrins which are responsible for cell adhesion, we next wanted to analyze effects on meningioma cell invasion. First, we used a transwell-assay to investigate the invasion of IOMM-Lee, HBL-52, and primary tumor cells derived from a WHO grade I meningioma. As shown in Figure 4, cilengitide clearly inhibited the invasiveness of the malignant cell line IOMM-Lee (A) and the primary culture of benign meningioma cells (B) in a dose-dependent manner. In contrast, invasiveness of the benign cell line HBL-52 was not suppressed by cilengitide (A). Already 1µg/ml of cilengitide decreased the invasive ability of IOMM-Lee and primary cells by about 50% (p<0.05). To further support this result, we performed gap assays using IOMM-Lee cells to evaluate effects of the drug on meningioma cell migration. Figure 4C shows that already 1µg/ml inhibits the migration of IOMM-Lee cells. After 29h, the remaining gap width for treated cells was 45% compared to 25% for untreated cells. Because cilengitide detaches adherent cells, this experiment could not be performed with higher concentrations.

Confocal imaging of IOMM-Lee cells stained with phalloidin (Figure 4D) showed reduced spike number and length (arrows) in cells treated with a low cilengitide concentration (1 µg / ml).

Cilengitide monotherapy does not inhibit tumor growth, but brain invasion in mice and may be beneficial in combination with irradiation

In a first set of *in vivo* experiments, we tested the ability of a low dose cilengitide monotherapy (8 mg/kg daily) to inhibit the subcutaneous meningioma growth (IOMM-Lee cells) in nude mice. No significant impact of the integrin inhibitor was observed. The mean tumor volume (± SD) of treated mice on day 17, as estimated by external calliper rule measurement in living animals, was 2042 ± 569 mm³, as compared to
1964 ± 352 mm³ in controls (difference n.s.). Accordingly, the weights of explanted
tumors (651 ± 249 mg vs. 547 ± 183 mg) showed no significant difference between
the groups. Treating the orthotopic meningioma mouse model with the same dosage
did not yield a significantly reduced tumor volume 10 days after inoculation (36.1 ±
11.9 mm³) in comparison to PBS controls (42.1 ± 19 mm³), as estimated by MRI
scans.

In a new set of experiments, we intended to test a high daily dosage of cilengitide (75
mg/kg) as a monotherapy or combined with irradiation in the orthotopic mouse model.
Again, the cilengitide treated group exhibited no statistically significant difference to
PBS controls. Irradiation alone (2 x 5 Gy) led to a more than 2-fold reduction of the
tumor volume at day 10 (p<0.05), while the combination of irradiation and cilengitide
resulted in a more than 4-fold (p<0.01) decrease (Figure 5A). Based on the used
number of animals, the difference between irradiation alone and combined therapy
became not statistically significant. Immunohistochemical analyses of paraffin-
embedded tumor sections revealed high proliferation rates and moderate levels of
apoptosis in all groups, as demonstrated by a mean Ki67-index of 17.1% (± 5.1%)
and a mean TUNEL-index of 2.7% (±1.7%). A high variability was observed among
mice of identical treatment and no significant effect of cilengitide on these parameters
could be detected. On the other hand, a significant reduction of tongue-like brain
invasion (p≤0.01) could be observed in tumors of mice treated with either cilengitide
alone (35% decrease) or treated with cilengitide and irradiation (35.5% decrease).

To verify the non-responsiveness with a second cell line, an MRI-based comparison
was performed between mice carrying intracranial xenografts of slowly growing KT21
tumors and treated either with high dosage cilengitide (75 mg/kg) or PBS. Even after
a prolonged intracranial growth period (21 days) the tumor volumes remained small
as compared to IOMM-Lee induced meningiomas. The MRI estimated mean tumor volumes in treated and control mice were highly similar (difference < 5%, n.s.). These data suggested that rapidly growing meningiomas, as represented by IOMM-Lee xenografts, have no survival benefit from cilengitide monotherapy, despite of its anti-migratory properties. This hypothesis was proven in the orthotopic model by measuring cumulative survival (supplementary Figure S3) in 6 cilengitide treated animals (75 mg/kg) versus 6 controls. A log-rank test revealed no significant impact of cilengitide on overall survival ($p = 0.813$). Since these tumors had grown for longer periods (mean survival 15.1 days), the invasion status was histologically examined again. Only two treated animals exhibited brain invasion, while all six untreated mice showed clear tongue-like brain invasion of meningioma cells (Figure 5B, Table 2).
Discussion

Cilengitide is a promising new drug against human tumor diseases, which is currently tested in clinical studies. Due to its impact on tumor vascularisation it became a candidate for targeted tumor therapy. Furthermore, cilengitide has been shown to affect tumor cell invasion and migration (18). Clinical activity with low side effects was observed in phase I and II glioma studies (19, 20) and a first phase III trial with the drug has been carried out (21). Although meningiomas are common intracranial tumors, they nevertheless receive less attention due to their benign biological behaviour in the majority of patients. Therefore, no data of cilengitide sensitivity are available, despite of the need for a supportive cytostatic therapy for incompletely removed, atypical or anaplastic tumors.

Integrin αvβ5 and αvβ3 expression in meningiomas

The expression of these two heterodimers, which are targeted by cilengitide, had already been described in tumor cells and neoplastic vasculature of meningiomas of all WHO grades (6). These results were basically confirmed by the present study, although in our series we found that αvβ5 integrin was highly expressed in the tumor cells, while αvβ3 was only present in blood vessels. In contrast to Bello and colleagues (6), we also analyzed normal meninges and observed that integrin expression was reduced in the tumor tissues compared to tumor-free meninges. This might have an impact on the effectiveness of cilengitide in tumor cells.

Clear impact of cilengitide on meningioma cell migration

Since migration and invasion of high grade meningioma cells into the brain tissue play a significant role for disease outcome (22), we analyzed the influence of cilengitide towards meningioma cell invasion and migration in transwell and gap...
assays. We found dose-dependent inhibition in both assays, which did however not occur with all cell lines. In previously published studies of glioma cell lines, the invasiveness of LN-308 was significantly reduced by cilengitide, whereas U87MG or LNT-229 did not show this effect (23). This underlines that even among different cell lines of the same tumor entity variable migratory responses towards cilengitide can be observed.

Only moderate cytostatic effects in vitro

MTT-assays demonstrated only limited dose-dependent cytostatic effects of cilengitide in the meningioma cell lines tested. The IC$_{50}$ could not be reached even after 48h incubation. This result was confirmed by propidium iodide FACS analysis, which showed no growth arrest and no increase of the sub-G$_0$ fraction of dead cells, even with 100 µg/ml cilengitide. This is in accordance with reports, which demonstrated only moderate effects of cilengitide on cell viability in glioma cell lines (23), not reaching IC$_{50}$ with 1000 µM of the drug within 72 hours.

Since patients with high-grade or recurrent meningiomas often receive radiation therapy, we tested whether there is a synergistic effect of cilengitide treatment and irradiation using MTT assays. No major synergistic effect could be seen. Other studies show that cilengitide amplifies the toxicity of irradiation only mildly in the U251 glioma cell line, but HUVECs are strongly affected (24). However, this effect was seen only 5 days after irradiation. In vivo co-treatment with cilengitide and irradiation prolonged the survival of U251 tumor-bearing rats twofold compared to irradiation alone (24).

In clinical studies the intravenous administration of 600mg/ml cilengitide resulted in plasma concentrations of about 250µg/ml which decreased very fast in a logarithmic manner, yielding only 1 µg/ml after approximately 8h (19, 25). For our experiments
we used 0, 1, 10 and 100µg/ml cilengitide for 24 or 48 h, which should be a relevant range compared to the plasma concentrations reached in clinical studies.

Potential role of the NF2 gene

We observed a relation between the *NF2* gene status of meningioma cells, and both αvβ5 expression, and sensitivity to cilengitide treatment. A large proportion of meningiomas harbor *NF2* gene alterations (26), but the interaction between chemotherapy and *NF2* gene status, as well as treatment response has not been studied thus far. It was shown recently that merlin interacts with integrins via the src/Fak pathway (27). Integrins may also control the mTORC1 signaling pathway through merlin (28). However, the detailed relation between *NF2*/merlin and integrin action in the regulation of tumor cell invasion and migration is not well studied.

Inhibition of brain invasion and trend for improvement of radiotherapy in mouse models

In order to assess a potential impact of cilengitide to inhibit meningioma development in vivo and to assess a potential synergism with irradiation in vivo, as described for glioma bearing animals (24, 29), we used subcutaneous and intracranial meningioma mouse models. We first chose a daily dosage of 8 mg/kg, which was similar to a regimen exhibiting excellent growth suppression in slowly growing rat gliomas (29). The regimen did not yield any effect in both meningioma models. An extremely high daily dosage (75 mg/kg) was then tested, which was known to inhibit the progression of breast cancer bone metastases in rats (30). It did not decelerate intracranial meningioma growth, but clearly suppressed brain invasion. In view of the rapid volume increment, suppressed invasion was not translated into prolonged survival. These results are compatible with a recent phase III study looking for an additional
benefit of cilengitide in glioblastoma treatment, if added to the current standard regimen of irradiation plus temozolomide. Although brain infiltration is a hallmark of glioblastomas, the drug did not improve overall survival (ASCO 2013 abstract LBA2009).

However, cilengitide may enhance the efficacy of irradiation (compare Figure 5A), although a synergism could not yet be statistically proven on the basis of the number of mice used. This point warrants a more detailed analysis with variation of both, dosage of cilengitide and irradiation.

In summary, the present study demonstrated no activity of cilengitide on meningioma apoptosis, mild cytostatic synergistic effects with irradiation, and inhibition of cell migration and invasion in some cell lines, primary cultures and in vivo. The study does not suggest any benefit of a monotherapy with the inhibitor in malignant meningiomas. The observed effect of a combined therapy with cilengitide and irradiation in meningioma-bearing mice warrants further attention. If a radiosensitization can be established in mouse models, a benefit of the drug in meningioma therapy may still be possible.
Acknowledgements

The technical expertise of Ines Schellhase is highly appreciated. This work was supported by a research grant from MerckSerono. We appreciate the help of Dr. Claudia Wilms (MerckSerono), who performed immunostains of tissue arrays. We also thank Dr. Roland Hartig for help with the FACS analyses. The meningioma research of C. Mawrin is supported by the Deutsche Krebshilfe (grant no#108987) and by the Wilhelm Sander Stiftung (grant no#2010.017.1). We also thank Drs. Anita Lal, Werner Paulus, and David Gutmann for providing cell lines. The help of Dr. Juliane Sanft, Dept. of Forensic Science, University of Jena, for cell line identification is highly appreciated.
FIGURE LEGENDS

Figure 1: Integrin expression in human meningiomas and meningioma cell lines. A Immunoeexpression of $\alpha v\beta 5$ and $\alpha v\beta 3$ in human meningiomas. a-c $\alpha v\beta 5$ is expressed in the majority of meningiomas, as well as in tumor-free meninges (arrow in a) and interstitial tissue (arrows in c). a atypical meningioma WHO grade II, b,d fibroblastic meningioma WHO grade I. d $\alpha v\beta 3$ is detected only in blood vessels within the tumor, while tumor cells are devoid of staining (meningothelial meningioma WHO grade I). Each bar represents 200µm. Staining intensity and distribution among different tumor grades for $\alpha v\beta 5$ are summarized in the table. B Quantitative mRNA detection of integrin subunits shows that expression of αv is significantly reduced in human meningiomas compared to tumor-free meninges. C FACS analyses reveal that $\alpha v\beta 5$ is expressed in the meningioma cell lines IOMM-Lee, BenMen-1, and HBL52. D Confocal microscopy demonstrates cellular distribution of $\alpha v\beta 5$ in BenMen-1 and HBL52 cells (comparable data were seen for IOMM-Lee).

Figure 2: Effects of cilengitide on meningioma cell survival. A MTT assay to measure cell viability following cilengitide treatment exhibited significantly reduced cell survival as compared to controls (**p<0.001). B Treatment efficiency of cilengitide is best in cells grown at low density (*significant difference to untreated controls, p<0.05). C Effect of combined irradiation and cilengitide treatment on IOMM-Lee and BenMen-1 cells. Additional irradiation only moderately increased meningioma cell sensitivity for cilengitide, irrespective of the dose (*significantly reduced viable cell number as compared to controls, p<0.05).

Figure 3: Effects of cilengitide on meningioma cells are partly dependent on NF2/merlin expression. A Meningioma cells characterized by wild-type merlin (Men)
or shRNA-induced reduction of merlin (Men-NF2). B FACS analyses reveal lower expression of αvβ5 in MEN-NF2 cells compared to control cells. C Confocal microscopic imaging demonstrates both, reduced content and altered cellular distribution (arrows) of αvβ5 in MEN-NF2 cells compared to wild-type Men cells. D While MEN-NF2 cells are significantly more susceptible to cilengitide in a dose-dependent manner (left bar diagram), additional irradiation does not enhance this effect irrespective of the irradiation dose applied. (**p<0.001).

Figure 4: Cilengitide reduces meningioma cell migration and invasion. Using a transwell assay (A and B), cilengitide clearly reduces invasion in a dose-dependent manner for IOMM-Lee cells and primary meningioma cells, but not for HBL52 cells (*significant difference compared to untreated controls, p<0.05). C Using a gap assay to evaluate tumor cell migration, IOMM-Lee cells showed reduced speed of gap closing compared to untreated controls (*p<0.05). D Confocal imaging of cilengitide-treated IOMM-Lee cells stained with phalloidin showed reduced spike number and length (arrows) in cilengitide-treated cells. The reduction of spike length was highly significant (**p<0.001).

Figure 5: A MRI estimated volume of intracranial meningiomas (mm3) at day 10 in PBS-treated control mice (n = 6), in mice treated daily with 75 mg/kg cilengitide (CIL, n = 7), in mice treated with irradiation (2 x 5 Gy, n = 5)) or with a combination of both regimens (n = 6). *p<0.05 and **p<0.01 refer to significant differences to the PBS-controls. B Histological analyses of cilengitide-treated animals reveals absence of brain invasion (arrows mark tumor-brain-boarder) compared to tongue-like brain infiltration (arrows) typical for human meningiomas seen in untreated animals.
References

FIGURE 1

A

a

b

avβ5

avβ5

C

D

avβ5

DAPI

Merge

BenMen-1

HBL52

avβ3

avβ3

Leptomeninges

Meningiomas

relative mRNA expression

αv Integrin

β5 Integrin

β3 Integrin

counts

αvβ5-FITC

*
FIGURE 2

A

![Graph A]

B

![Graph B]

C

![Graph C]
FIGURE 3

A

MEN MEN-NF2

Merlin

Vinculin

B

avβ5-FITC

counts

MEN-NF2 MEN

C

avβ5 DAPI Merge

Men

Men-NF2

D

Percentage of control

0 20 40 60 80 100 120

Control

1 µg/ml

10 µg/ml

100 µg/ml

MEN 0Gy MEN-NF2 0Gy

MEN 2Gy MEN-NF2 2Gy

MEN 5Gy MEN-NF2 5Gy

MEN 8Gy MEN-NF2 8Gy

Research.
FIGURE 5

A

![Graph showing volume (mm³) for different treatments.](image)

B

![Micrographs showing control and cilengitide treated sections.](image)
Table 1: Immunoexpression of αvß5 in human meningiomas

<table>
<thead>
<tr>
<th>WHO Grade</th>
<th>αvß5</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N=29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade I</td>
<td>-</td>
<td>3 (10)</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>9 (31)</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>5 (17)</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>12 (41)</td>
</tr>
<tr>
<td>Grade II</td>
<td>-</td>
<td>1 (9)</td>
</tr>
<tr>
<td>(N=11)</td>
<td>+</td>
<td>2 (18)</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>2 (18)</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>4 (55)</td>
</tr>
<tr>
<td>Grade III</td>
<td>-</td>
<td>1 (17)</td>
</tr>
<tr>
<td>(N=6)</td>
<td>+</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>1 (17)</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>4 (67)</td>
</tr>
</tbody>
</table>

Table 2: Rate of meningioma brain invasion in cilengitide-treated and control animals

<table>
<thead>
<tr>
<th></th>
<th>Meningioma brain invasion present</th>
<th>Meningioma brain invasion absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>control group (n=6)</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>cilengitide group (n=6)</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
The integrin inhibitor cilengitide affects meningioma cell motility and invasion

Anette Wilisch-Neumann, Nadine Kliese, Doreen Pachow, et al.

Clin Cancer Res Published OnlineFirst August 15, 2013.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-12-0299

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2013/08/15/1078-0432.CCR-12-0299.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.