Nab-paclitaxel is an active drug in preclinical model of pediatric solid tumors

Libo Zhang *,†, Paula Marrano †, Sushil Kumar §, Michael Leadley †, Evelyn Elias †, Paul Thorner †,§, Sylvain Baruchel *,†,§

*New Agent and Innovative Therapy Program, †Department of Paediatric Laboratory Medicine, ‡Division of Hematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada; § Institute of Medical Sciences, University of Toronto, Toronto, Canada

Running title: preclinical study of nab-paclitaxel

Key words: neuroblastoma, sarcoma, drug therapy, tumor model, preclinical study, taxane, nanoparticle

Address all correspondence to: Sylvain Baruchel, New Agent and Innovative Therapy Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8. Phone: 416-813-5977; Fax: 416-813-5327; E-mail: sylvain.baruchel@sickkids.ca

Conflict of Interest

Dr. Baruchel seats on a pediatric advisory board for the nab-paclitaxel pediatric phase 1 development and serves as an advisor to Celgene with this regards.

Current study is partially funded by Celgene.

Other members at the time do not have any conflict of interest to disclose.
Translational Relevance

Paclitaxel has been used widely for the treatment of adult solid tumors, but it has shown minimal activity in pediatric solid tumors. Here, we evaluated a novel, solvent free formulation of paclitaxel, nab-paclitaxel, in pediatric solid tumor models. Nab-paclitaxel is effective against both rhabdomyosarcoma and neuroblastoma in preclinical models. We also showed that nab-paclitaxel is more active than paclitaxel in all tumor models tested. Paclitaxel relapsed tumors developed resistance against paclitaxel treatment, but those tumors remained responsive to nab-paclitaxel treatment. Mechanistically, elevated intratumor and correspondingly lower plasma paclitaxel levels were observed with nab-paclitaxel compared to paclitaxel, resulting in higher tumor/plasma paclitaxel drug ratio for nab-paclitaxel. Therefore, this pre-clinical study supports further testing of nab-paclitaxel in pediatric solid tumor patient population.
Abstract

Purpose: To investigated the anti-tumor effect of nab-paclitaxel, an albumin-stabilized nanoparticle formulation of paclitaxel, on pediatric solid tumor models.

Experimental Design: A panel of three rhabdomyosarcoma (RMS), one osteosarcoma and seven neuroblastoma (NB) cell lines were exposed to increasing concentrations of nab-paclitaxel in vitro. Cell viability was evaluated using the Alamar Blue assay. Anti-tumor effect was further assessed in vivo in NOD/SCID xenograft and metastatic NB mouse models. Tumor sections were analyzed by immunohistochemistry for cleaved caspase-3 and phospho-histone H3. Plasma and intratumoral paclitaxel concentrations were measured by liquid chromatography–mass spectrometry. Ratio of intratumoral and plasma concentration was compared between nab-paclitaxel and paclitaxel treatment groups.

Results: Nab-paclitaxel displayed significant cytotoxicity against most pediatric solid tumor cell lines in vitro in a dose-dependent manner. In vivo, nab-paclitaxel demonstrated anti-tumor activity in both rhabdomyosarcoma (RH4 and RD) and NB (SK-N-BE(2) and CHLA-20) xenograft models. In the SK-N-BE(2) metastatic model, nab-paclitaxel treatment significantly extended animal survival compared to control (p<0.01). Nab-paclitaxel treatment induced tumor cell cycle arrest and apoptosis in vivo. In the RH4 model, increased local relapse-free intervals were observed with nab-paclitaxel treatment (37.7±3.2 days) comparing to paclitaxel (13.6±2.07 days). Local relapsed tumors following paclitaxel treatment proved to be paclitaxel-resistant and remained responsive to nab-paclitaxel. Mechanistically, a higher tumor/plasma paclitaxel drug ratio in favor of nab-paclitaxel was observed.
Conclusions: Nab-paclitaxel demonstrated significant anti-tumor activity against all pediatric solid tumors associated with an enhanced drug intratumor delivery. Further testing of nab-paclitaxel in pediatric solid tumor patient population is under development.
Introduction:

Solid tumors make up about 60% of all pediatric cancers (1). The most common types of solid tumors in children include brain tumors, neuroblastoma, rhabdomyosarcoma, Wilms' tumor, and osteosarcoma. Although significant progress has been made during the last decades in the treatment and prognosis of pediatric malignancies, high mortality is still prevalent in patients with advanced, unresectable, or high-grade disease. (2). Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and the third most common extracranial solid tumor in children following neuroblastoma and Wilm's tumor, with an annual incidence of 4-7 cases per million children under the age of 16 years (3, 4). Multimodal treatment has significantly improved survival to approximately 70%. Although a majority of patients achieve a complete remission with primary therapy, a substantial number still experience recurrences with poor prognosis (5). In addition, at least 15% children with rhabdomyosarcoma present with metastatic disease (IRSG IV), and their prognosis has not improved significantly in the last 15 years (6).

Neuroblastoma (NB) is the most common extra-cranial childhood malignancy. It accounts for 8-10% of all pediatric malignancy, and is responsible for 15% of all childhood cancer deaths (7). Despite intensive treatment protocols including megatherapy with hematopoietic stem cell transplantation, the prognosis of patients with this malignancy remains poor. Disease-free survival is only about 30% for metastatic disease compared to 95% for localized tumors over 1 year (8, 9).

Paclitaxel, originally isolated from *Taxus brevifolia* (Pacific Yew), is a cytotoxic microtubule stabilizing agent that stabilizes microtubules and as a result, interferes with the normal breakdown of microtubules during cell division, and lead to mitotic arrest (10). This mitotic arrest triggers the mitotic spindle checkpoint and results in apoptosis (10). Paclitaxel has also
been shown to mediate apoptosis through pathways that may be independent of gross microtubule dysfunction (11-13). Paclitaxel is widely used in the treatment of various malignancies, including ovarian cancer, breast cancer, non-small cell lung carcinoma, bladder cancer, head and neck cancer, and a wide range of other malignancies (10, 14). However, due to its very low aqueous solubility, conventional paclitaxel like Taxol uses a Cremophor EL/ethanol vehicle as the solvent. The Cremophor EL-containing paclitaxel formulation can cause severe allergic, hypersensitivity, and anaphylactic reactions in animals and humans which limited its application in pediatric cancer patients (15-17). Although paclitaxel were reactive to several neuroblastoma cell lines in vitro, it displayed little efficacy in vivo in nude mice (18). In a phase I trial in children with refractory solid tumors, severe acute neurological and allergic toxicity was encountered with 3-hour paclitaxel infusion after premedication (dexamethasone, dexchlorpheniramine) with one treatment-related death occurred (19). For reasons that are still unclear, taxanes demonstrated minimal activity in treating solid tumors in children in several clinical trials (20-22).

Nab-paclitaxel (also known as ABI-007, Abraxane®, Celgene Corporation, Summit, New Jersey) is a novel, solvent free, 130 nm, protein-stabilized formulation of paclitaxel that was developed to reduce the toxicity of solvent-based paclitaxel (known as Taxol) (23, 24). In human adult tumor models, Nab-paclitaxel is effective in inducing regression of implanted human malignant carcinomas and prolonging survival in tumor-bearing mice (25). Clinically, nab-paclitaxel is approved globally for the treatment of metastatic breast cancer (MBC) and is also recently approved in the United States (US) for the first-line treatment of locally advanced or metastatic non-small cell lung cancer (NSCLC), in combination with carboplatin, in patients who are not candidates for curative surgery or radiation therapy. Since limited pediatric data are currently
available, in this study, we tested the anti-tumor activity of nab-paclitaxel against different pediatric solid tumor models to support the development of early phase clinical trials in pediatric patients.

Materials and Methods

Materials and Reagents

Nab-paclitaxel (Celgene Corporation) was supplied as a lyophilized powder and stored at room temperature until reconstitution. Nab-paclitaxel was reconstituted following the package insert with 20 ml 0.9% saline to 5 mg/ml stock solution. The dosing solutions were prepared by diluting the stock solution with 0.9% saline to the desired concentration. Paclitaxel was dissolved in DMSO (Sigma Aldrich, Saint Louis) to 25 mg/ml stock solution. The dosing solutions were prepared by diluting the stock solution with 0.9% saline to the desired concentration.

The Annexin V-FITC Early Apoptosis Detection Kit was purchased from Cell Signaling Technology, Inc (Danvers, MA). The cleaved caspase-3 (Asp175) antibody was obtained from Cell Signaling Technology, Inc (Danvers, MA). The anti-histone H3 (phospho S10) antibody was purchased from Abcam Inc (Cambridge, MA).

Cell Culture

RH4, RH30 and RD rhabdomyosarcoma cells and KHOS osteosarcoma cells were gifts from Dr. David Malkin (The Hospital for Sick Children, Toronto). LAN-5, SK-N-BE(2), BE(2)C, and SH-SY5Y neuroblastoma cells were kindly provided by Dr. Herman Yeger (The Hospital for Sick Children, Toronto). CHLA-15, CHLA-20 and CHLA-90 were obtained from the Children's Oncology Group (COG) Cell Culture and Xenograft Repository under a signed and approved
Material Transfer Agreement. RH4, RH30 and RD rhabdomyosarcoma cells were cultured in DMEM supplemented with 10% FBS. CHLA-15, CHLA-20 and CHLA-90 neuroblastoma cells were cultured in Iscove’s modified Dulbecco’s medium supplemented with 3 mM l-glutamine, insulin, and transferin 5 μg/ml each and 5 ng/ml selenous acid (ITS Culture Supplement; Collaborative Biomedical Products, Bedford, MA) and 20% fetal bovine serum (FBS, complete medium). LAN-5, SK-N-BE(2), BE(2)C, and SH-SY5Y neuroblastoma cells were cultured in AMEM with 10% FBS. KHOS osteosarcoma cells were cultured in Eagle's Minimum Essential Medium supplemented with 10% FBS.

Test Animals

Female NOD/SCID mice 4-6 weeks old were obtained from Charles River. Animals were housed in the animal facility of the Hospital for Sick Children, Toronto, Ontario, Canada. These studies were performed under a Hospital for Sick Children Animal Care Committee approval.

Cell Viability Assay

Cells were seeded into 24-well tissue culture plates at a density of 200,000 cells/well in culture medium and incubated for 24 hours at 37°C before starting drug treatment. Cells were exposed to increasing concentrations of nab-paclitaxel for 72 hours. The viability of proliferating cells in the control and treated media were measured with an Alamar Blue assay according to manufacturer’s protocol (Trek Diagnostics Systems Inc.). Briefly, Alamar Blue was diluted 1 to 10 in the cell culture media, and the fluorescent color change was monitored after 3 hours. Colorimetrical evaluation of cell proliferation was performed using a SPECTRAmax Gemini spectrophotometer with 540 nm as excitation wavelength and 590 nm as emission wavelength and values expressed as Relative Fluorescence Units (RFU). Cell viability was measured in triplicate and calculated relative to control non-treated cells.
Immunofluorescence analysis of apoptosis

Annexin V was used to detect apoptosis with the Annexin V-FITC Early Apoptosis Detection Kit (Cell Signaling Technology, Inc). Cells were cultured \((2 \times 10^5\text{cells})\) on coverslips overnight prior to the treatment with nab-paclitaxel for 48 hours. For apoptosis staining with annexin V-FITC, after incubated with Annexin V-FITC according to manufacturer’s protocol, the cells were washed and fixed in 2\% formaldehyde before visualization under a fluorescence microscope using a dual filter set for FITC-Annexin V (green) and DAPI (nuclei staining, blue).

Xenograft Development

The anti-tumor activity of nab-paclitaxel/paclitaxel was investigated in vivo against subcutaneous rhabdomyosarcoma (RH4 and RH30) and neuroblastoma (SK-N-BE(2) and CHLA-20) using NOD/SCID tumor xenografts. Briefly, tumor cells were washed three times with HBSS before injection. Mice were given a subcutaneous injection of \(1 \times 10^6\) tumor cells. Tumor growth was measured weekly in two dimensions using a digital caliper, and tumor volume was calculated as width^2 \times \text{length} \times 0.5. Once the tumor diameter reached 0.5 cm, mice were randomized into treatment groups with 7-10 animals in each group. Nab-paclitaxel was administered either at low-dose metronomic administration (three different doses of 2, 5, or 10 mg/kg i.v. daily) consecutively for over 3 weeks or cytotoxic dose (50 mg/kg i.v. weekly) until tumor volume reached approximately 1.5 cm^3. Paclitaxel was administered i.v. at 20 or 30 mg/kg weekly. Control mice received saline.

Tumor volume, mouse body weight and signs of animal distress were evaluated twice or three times a week for any potential drug toxicity. Animals were sacrificed once the tumor size reached 1.5 cm^3.
In tumor rechallenge experiments, when RH4 relapsed tumors from paclitaxel treatment reached 0.5 cm in diameter, we randomized these animals into two treatment groups (n=3): Nab-paclitaxel and paclitaxel. For nab-paclitaxel relapsed tumors, we randomized animals into two groups (n=3): nab-paclitaxel treatment and saline control. Drugs were given with the same schedule and dosage as above. Tumor growth and animal body weight were monitored.

The anti-metastatic activity of nab-paclitaxel was further investigated in SK-N-BE(2) neuroblastoma metastatic models. Tumor cells were injected intravenously into the lateral tail vein (26-gauge needle, 1 x 10⁶ cells in 100 μl total volume). Mice were randomized into 2 groups (control and nab-paclitaxel 50 mg/kg iv weekly) with 10 mice in each group and treatments started 14 days after inoculation until the event of endpoint. The event of endpoint was defined according to our animal committee guidelines as mice in severe clinical condition, such as loss of 20% of body weight, body temperature lower than 32°C, or signs of stress. The survival time of control and nab-paclitaxel treatment groups was compared and statistically analyzed.

Immunohistochemistry Staining

In order to assess the effect of nab-paclitaxel on inducing cell cycle arrest and apoptosis in vivo, SK-N-BE(2) subcutaneous xenografts treated with nab-paclitaxel or DMSO-paclitaxel were harvested at the end of study and analyzed by immunohistochemistry (IHC) for the apoptotic marker (cleaved caspase-3) and mitotic marker (phospho-histone H3). RH4 xenografts were harvested and analyzed by IHC for phospho-histone H3. Briefly, Formalin-fixed, paraffin-embedded tissues were cut into 5μm thick sections and immunostained with the polyclonal antibodies against cleaved caspase-3 (1:50; Cell Signaling, #9661) and histone H3 phospho S10 (1:2000: Abcam, #ab5716). Heat-induced epitope retrieval was performed and the ImmPRESS
Anti- Rabbit Ig Peroxidase Reagent Kit (Vector Laboratories, #MP-7401) was used for detection followed by DAB and hematoxylin staining.

LC/MS Plasma/ Intratumor Concentration

Plasma and intratumor drug concentration was studied after single or repeated drug administration. In RH4 xenograft model, blood/tumor samples were collected 24 hours after the first dosage of nab-paclitaxel (50mg/kg) or paclitaxel (30mg/kg). In the SK-N-BE(2) xenograft model, paclitaxel (20mg/kg) and nab-paclitaxel (50mg/kg) were administered on day 1, 8 and 15. Low-dose metronomic nab-paclitaxel (10mg/kg) was administered daily from day 1 to day 15. 24 hours after the last dosage of nab-paclitaxel/paclitaxel, blood and tumor samples were collected and analyzed for paclitaxel concentration by LC/MS/MS. The system consisted of HPLC (Agilent 1200), reverse phase column (Phenomenex Kinetex XB-C18, 2.6u, 100A, 50x3.0 mm) and mass spectrometer (Sciex 4000). The analytes were eluted by gradient flow. The mobile phase A was 0.1% formic acid in water and mobile phase B was 0.1% formic acid in acetonitrile. The mobile phase ratio was 65% A and 35%B till 2.5 min, gradual increase to 100% B till 3.5 min, 100% B till 5.5 min and finally return to initial condition i.e. 65% A and 35% till 10 min. The run time was 10 min and the flow rate was 300 µl/min. Samples were ionized by electrospray ionization in positive polarity mode and acquisition was done by multiple reaction monitoring. Following mass transitions were monitored: Paclitaxel (M+H): 854.5->286.1 m/z; Docetaxel (M+H): 808.5->527.2 m/z. Ratio of intratumoral vs plasma concentration was calculated and compared between nab-paclitaxel and DMSO-based paclitaxel treatment groups.

Statistical Analysis

Data from different experiments were presented as mean ± SD. For statistical analysis, Student's t test for independent means was used. A P value of < 0.05 was considered significant. To
compare the effects of different treatments on tumor growth in vivo, one-way ANOVA with Dunnett multiple comparison test was used. Mann-Whitney U test was used in tumor rechallenge experiments for the statistical evaluation of significant differences in growth patterns between two study groups. Survival curve comparisons were performed using Graphpad Prism software for Kaplan-Meier Survival Analysis.

Results

In vitro cytotoxicity of nab-paclitaxel against pediatric tumor cell lines

To determine the efficacy of nab-paclitaxel against a wide panel of pediatric cancer cells lines, 3 rhabdomyosarcoma (RH4, RH30 and RD), 7 neuroblastoma cell lines (CHLA-20, CHLA-15, CHLA-90, LAN-5, SK-N-BE(2), BE(2)C, and SH-SY5Y), and 1 osteosarcoma cell line (KHOS), were tested for viability with Alamar Blue assays after exposing cells to increasing concentrations of nab-paclitaxel in vitro for 72 hours. As shown in Fig. 1A, the cell viability of 3 rhabdomyosarcoma cell lines were reduced following increasing dose of nab-paclitaxel treatment. IC50 values were calculated and ranged from 0.56 to 4.68 nM. Limited response was observed with osteosarcoma cell line KHOS (Figure 1B).

For the 7 neuroblastoma cell lines, nab-paclitaxel exhibited dose-dependent cytotoxicity in vitro, as measured by cell viability (Figure 1C). Different cell lines displayed variable sensitivity for nab-paclitaxel. Among all these cell lines, CHLA-20 has the highest IC50 (36 nM), while LAN-5 and SK-N-BE(2) have the lowest EC50. Furthermore, when neuroblastoma cell lines were treated for 72 hours in vitro, all the tested cell lines showed more sensitivity to nab-paclitaxel
than to paclitaxel dissolved in the solvent DMSO (Figure 1D), suggesting that paclitaxel in albumin-bound formulation in solution more readily available for tumor cell uptake.

Nab-paclitaxel-induced apoptosis in Rhabdomyosarcoma cells

We further assessed cell apoptosis after in vitro drug treatment. Rhabdomyosarcoma RH4 cells were incubated with increasing concentrations of nab-paclitaxel for 48 hours and analyzed for apoptosis with annexin V-FITC. Annexin V-FITC conjugated protein binds to cell surfaces expressing phosphatidylserine, an early apoptosis marker. Increased apoptotic RH4 cells as shown by annexin V-FITC positive staining were observed following nab-paclitaxel treatment (Figure 1E). With the higher concentration of nab-paclitaxel (60 or 120 nM), most cells detached from the coveslips, but almost all the remaining cells showed annexin V-FITC positive staining.

In vivo anti-tumor activity of nab-paclitaxel against rhabdomyosarcoma

The in vivo anti-tumor activity of nab-paclitaxel was evaluated in multiple pediatric tumor xenografts. In rhabdomyosarcoma models, mice bearing RH4 and RD xenografts were treated intravenously with nab-paclitaxel (50mg/kg) and paclitaxel (30mg/kg). The 50 mg/kg weekly dose of nab-paclitaxel is estimated to be comparable to human maximum tolerated dose (MTD) (150 mg/m² weekly) based on the calculation from FDA dose conversion guidelines. The 30mg/kg dose of paclitaxel is the MTD in mice (26) and it is comparable to the highest dosage in adult patients too.

Both nab-paclitaxel and DMSO-paclitaxel treatments significantly inhibited RH4 tumor growth, with tumor regression observed after the 2nd dosage on day 8 (Figure 2A). However, animals treated with paclitaxel showed lower body weight compared to nab-paclitaxel and control animals (Figure 2B), and 1 out of 7 mice in paclitaxel group died on Day 10. Especially during
the first week after paclitaxel administration, all mice showed signs of inappetence, hunched posture, dry feces, and significant body weight loss. Necropsy of the dead animal showed that both cecum and colon were distended with hard stools. Our results demonstrated that paclitaxel, even at a lower dose, had higher toxicity compared with nab-paclitaxel. In the RH4 model, increased local relapse-free intervals were observed with nab-paclitaxel treatment (37.7±3.2 days) comparing to paclitaxel (13.6±2.07 days).

In RD xenograft model, both paclitaxel and nab-paclitaxel treatment significantly inhibited tumor growth, but tumor shrinkage was only observed in nab-paclitaxel treated tumors (Fig. 2C).

Efficacy of nab-paclitaxel in paclitaxel-resistant or relapsed rhabdomyosarcoma xenografts

In RH4 xenografts, either paclitaxel or nab-paclitaxel was administered on day 1, 8 and 15. Complete regression was observed in paclitaxel treated mice after day 31 (Fig. 2D). However, all paclitaxel treated animals demonstrated tumor relapse after 11-15 days. On day 52, when paclitaxel relapsed tumors reached 0.5 cm in diameter, we randomized animals into two treatment groups: nab-paclitaxel and paclitaxel. Drugs were given on day 52, 59 and 66 with the same schedule and dosage as above. As shown in Fig. 2D, relapse RH4 xenografts were drug resistant against paclitaxel, but remained sensitive to nab-paclitaxel treatment. Tumor regression was observed in all relapsed tumors which were treated again with nab-paclitaxel (P<0.05, Mann-Whitney U test).

Complete regression was observed in nab-paclitaxel treated mice after day 29 (Fig. 2E). Six out of seven animals developed relapsed tumor after 37-42 days. On day 75, when nab-paclitaxel relapsed tumors reached 0.5 cm in diameter, we randomized animals into two groups: nab-paclitaxel treatment and saline control. Nab-paclitaxel or saline was given on day 75, 82 and 87 with the same schedule and dosage as above. As seen in Fig. 2E, when we treated those relapsed
RH4 tumors with nab-paclitaxel (50mg/kg, weekly) again, refractory tumors remained responsive to nab-paclitaxel. We observed significant difference between nab-paclitaxel rechallenge and control tumor volumes (P<0.05, Mann-Whitney U test).

In RD xenograft model, paclitaxel (30mg/kg, weekly) or nab-paclitaxel (50mg/kg, weekly) was administered on day 1 and 8. Tumor regression was observed with nab-paclitaxel treatment. Comparing to control animals, paclitaxel treatment was able to slow the growth of RD tumors, but those tumors grew progressively with no signs of tumor regression. On day 15, when we replaced the paclitaxel drug treatment with nab-paclitaxel (50mg/kg, weekly), those tumors regressed rapidly after the first dosage of nab-paclitaxel (Fig. 2C)

Anti-tumor effects of nab-paclitaxel with different regimens in NB models

We further compared different schedules and doses of nab-paclitaxel, low-dose metronomic (LDM) and standard maximum tolerated dose (MTD) schedule in NB xenograft models. Subcutaneous mouse xenograft tumors (SK-N-BE(2) and CHLA-20) were treated with either vehicle alone, nab-paclitaxel at 2, 5, and 10 mg/kg daily or 50 mg/kg weekly. Control mice received saline. Increasing doses of nab-paclitaxel at 2, 5, 10 mg/kg i.v. daily clearly demonstrated greater tumor growth inhibition with SK-N-BE(2) in a dose-dependent manner (Figure 3A). The 2 mg/kg/day dosage showed no significant effect on tumor growth, while the 5 and 10 mg/kg daily doses significantly inhibited tumor growth (P<0.05, one-way ANOVA). The strongest anti-tumor activity was observed with nab-paclitaxel at 50 mg/kg i.v. weekly. In CHLA-20 xenograft model, nab-paclitaxel at 50 mg/kg i.v. weekly demonstrated similar anti-tumor activity compared with LDM therapy at 10 mg/kg daily (Figure 3B).

The animal survival from nab-paclitaxel treatment was further investigated in SK-N-BE(2) metastatic models. Tumor-bearing mice were treated with control vehicle or nab-paclitaxel (50
mg/kg i.v. weekly) with all treatments starting 14 days after tumor cell inoculation. As shown in Figure 3C, nab-paclitaxel treatment significantly prolonged animal survival compared with the control group (median survival of 59 days for nab-paclitaxel group vs. 32 days for control group; P<0.01). Nab-paclitaxel treatment significantly increased body weight in these mice (Fig. 3D) compared to control.

Plasma and tumor paclitaxel concentrations following nab-paclitaxel treatment

Plasma and intratumor drug concentration was measured after single or repeated drug administration (details in “Materials and Methods” section). Twenty-four hours after the last dose, blood and tumor samples were collected and analyzed for paclitaxel concentration by LC/MS. In both tumor models, nab-paclitaxel treatment displayed lower plasma paclitaxel concentrations compared to DMSO-paclitaxel, whereas the intratumor paclitaxel concentrations were higher with nab-paclitaxel groups (Figure 4A, 4B). As a consequence, nab-paclitaxel had a higher tumor/plasma paclitaxel ratio compared to DMSO-paclitaxel 24 hours after drug administration.

Nab-paclitaxel induced cell apoptosis and cell cycle arrest

To determine whether the anti-tumor activity of nab-paclitaxel was the result of tumor cells apoptosis and cell cycle arrest, SK-N-BE(2) xenografts treated with different dosages of nab-paclitaxel were harvested at the end of study and analyzed by immunohistochemistry (IHC) for the apoptotic marker (cleaved caspase-3) and mitotic marker (phospho-histone H3). Corresponding with results of tumor growth inhibition, nab-paclitaxel treatment significantly increased apoptotic cell population in a dose-dependent manner compared to control tumors (Figure 5A). Similarly, nab-paclitaxel treatment also increased phospho-histone H3 positive cells
in a dose-dependent manner (Figure 5B), suggesting that the suppression of tumor growth was attributed to the induction of apoptosis and cell cycle arrest by nab-paclitaxel.

In a separate experiment, RH4 xenografts were harvested 48 hours after administering nab-paclitaxel (50 mg/kg, iv) or paclitaxel (30 mg/kg, iv), and tumor sections were stained for phospho-histone H3 by IHC. Significant increased population of phospho-histone H3 positive cells were observed after nab-paclitaxel and paclitaxel treatment (Figure 5C). Combining with similar findings in neuroblastoma xenografts, it was concluded that nab-paclitaxel and paclitaxel treatment induced G2/M cell cycle arrest in tumors in vivo.

Discussion

Paclitaxel has been approved worldwide for the treatment of adult solid tumors, including breast, ovarian, lung, prostate, esophageal, gastric cancer, and etc. (27) Conventional formulation of paclitaxel is inconvenient and associated with significant and poorly predictable side effects largely due to the pharmaceutical vehicle Cremophor EL. In this study, we assessed a novel formulation of paclitaxel prepared by high-pressure homogenization of paclitaxel in the presence of human serum albumin, which results in a nanoparticle colloidal suspension.

Clinical studies demonstrated that nab-paclitaxel has several advantages over solvent-based paclitaxel. These included ability to dose at higher levels of paclitaxel (MTD of 300 mg/m² for nab-paclitaxel every 3 weeks versus 175 mg/m² for conventional paclitaxel); elimination or diminution of premedication requirements for solvent-related hypersensitivity reaction; shorter infusion durations; and elimination of the need for specialized IV infusion apparatus to accommodate corrosive effects of solvent (23, 28).
Furthermore, a recent phase III trial in patients with metastatic breast cancer compared nab-paclitaxel with paclitaxel. Nab-paclitaxel resulted in significantly higher response rates and time to tumor progression than paclitaxel. There was no incidence of grade 3/4 hypersensitivity reactions in the group of patients treated with nab-paclitaxel, despite the absence of premedication. Toxicity data showed that nab-paclitaxel resulted in less grade 4 neutropenia than paclitaxel, and although the incidence of grade 3 sensory neuropathy was higher with nab-paclitaxel, the time until the neuropathy decreased to grade 2 was significantly less with nab-paclitaxel compared with paclitaxel (29).

Our results have shown that nab-paclitaxel is effective against both rhabdomyosarcoma and neuroblastoma in preclinical models. We also shown that nab-paclitaxel is more active than paclitaxel in all tumor models tested. With this new formulation, we were able to administer 50mg/kg of nab-paclitaxel to testing animals, a much higher dosage compared to paclitaxel (30mg/kg). No mortality and significant body weight loss were observed in nab-paclitaxel treated animals. Toxicity studies performed by Abraxis BioScience compared the effects of single and repeated doses of nab-paclitaxel and Taxol in a number of animal species. In all cases, the MTD of nab-paclitaxel was higher than for Taxol [26]. These data suggested that nab-paclitaxel were less toxic than Taxol, and our results showed that nab-paclitaxel was better tolerated than DMSO-paclitaxel.

We also demonstrated that, in tumor-bearing mice in vivo, increased intratumor and correspondingly lower plasma paclitaxel levels were observed with nab-paclitaxel compared to DMSO-paclitaxel, resulting in higher tumor/plasma paclitaxel drug ratio for nab-paclitaxel. A higher intratumoral concentration produces a greater cytotoxic effect since tumor cell death is proportional to drug concentration. The lower plasma drug concentration may limit total body
exposure to the cytotoxic agent resulting in reduced systemic toxicity. Nab-paclitaxel, the 130-nm nanoparticle formulation albumin-bound paclitaxel, utilizes the natural properties of albumin to reversibly bind paclitaxel, transport it across the endothelial cell and concentrate in tumors. The underlying mechanism is reported to involve an endothelial cell-surface albumin receptor (gp60) and an albumin-binding protein expressed by tumor cells and secreted into the tumor interstitium (secreted protein, acidic and rich in cysteine, SPARC). gp60 is believed to mediate transcytosis of the albumin nanoparticles through endothelial cells, and binding to SPARC purportedly leads to drug accumulation in tumor tissues and thereby enhances the therapeutic efficacy of nab-paclitaxel compared to the paclitaxel free drug (30, 31). Additional retention of the nanoparticles in the tumor interstitium is believed to be due to the aberrant tumor angiogenesis and compromised clearance via lymphatics. This so-called “enhanced permeability and retention effect” results in an important intratumoral drug accumulation that is even higher than that observed in plasma and normal tissues (32, 33). Clinically, nab-paclitaxel has been shown to enhance the binding of paclitaxel to albumin, microtubules, and cells and increase the tissue availability of paclitaxel when compared to solvent-based paclitaxel, since the albumin-bound paclitaxel is not trapped in the plasma compartment by Cremophor EL micelles (23, 34, 35). The results from the current study were consistent with previous data in that nab-paclitaxel had lower plasma concentration (faster tissue distribution) and higher tumor accumulation compared with a solvent-based paclitaxel (25). Recent publication by Cossimo and colleagues demonstrated that some oncogene transformed cells appear to use macropinocytosis to transport extracellular protein into the cell (36), which potentially contributes to the uptake of albumin-associated nab-paclitaxel by some tumor cells.
As with other chemotherapeutic drugs, resistance is commonly seen with paclitaxel treatment. Different mechanisms of paclitaxel resistance have been reported including overexpression of multidrug resistance (MDR-1) gene (37), molecular alterations in the target molecule (β-tubulin) (38), changes in apoptotic regulatory and mitosis checkpoint proteins (39), and changes in lipid composition and potentially the overexpression of interleukin 6 (IL-6) (40). Recent studies with array-based technology have demonstrated that paclitaxel resistance is associated with simultaneous changes in numerous genes (41, 42). It is likely that multiple intracellular and extracellular pathways are involved in the paclitaxel resistant phenotype. Certain types of nanoparticles were found to be able to overcome multidrug resistance mediated by the P-glycoprotein efflux system localized at the cancerous cell membrane. The drug export transporter P-glycoprotein (P-gp) can remove a large range of drugs from the cell, and upregulation of P-gp makes it possible for cancer cells to become completely resistant to some of the drugs intensively used in the clinic, notably taxanes, anthracyclines, epipodophytoxins and Vinca alkaloids (43). P-gp reversion by nanoparticles was explained by a local delivery of the drug in high concentration close to the cell membrane. Such high local microconcentration of cytotoxic drugs was able to saturate P-glycoprotein (44). In this study, we observed that paclitaxel relapsed tumors developed resistance against paclitaxel treatment, while those tumors are responsive to nab-paclitaxel treatment. We believe that the superior efficacy of nab-paclitaxel vs. paclitaxel in the series of rechallenging experiments most possibly derived from the higher intratumor drug distribution and improved anti-tumor activity by nab-paclitaxel, as demonstrated in the in vitro cytotoxicity study (Figure 1) and xenograft study (Figure 2A). Since the P-gp expression in RH4 tumors remained undetectable before and after paclitaxel treatment (data not shown), it is possible that other drug export transporters, such as BCRP (ABCG2) and other MDR Proteins,
are involved in paclitaxel resistance in RH4 cell lines. Interestingly, nab-paclitaxel-relapsed tumors remained sensitivity to nab-paclitaxel treatment. All tumors shrank after 1 week treatment. This finding suggests that nab-paclitaxel is less likely to trigger drug resistance compared to paclitaxel. Further studies are required to uncover the less susceptibility of nab-paclitaxel to drug resistance mechanisms.

Overall, this study demonstrated improved anti-tumor activity of nab-paclitaxel against pediatric solid tumors both in vitro and in vivo. Results of this nonclinical study support further testing of nab-paclitaxel in clinical studies with pediatric solid tumor patient population.

Acknowledgments

This work was supported by Celgene Corporation and James Birrell Neuroblastoma Research Fund. We thank Drs. Shihe Hou, Daniel Pierce, Carla Heise and Ileana Elias for their comments on our study. Mass Spectrometry analysis was performed by Michael Leadley and Ashley St. Pierre at the Analytical Facility for Bioactive Molecules (AFBM) of the Centre for the Study of Complex Childhood Diseases (CSCCD) at the Hospital for Sick Children, Toronto, Ontario. CSCCD was supported by the Canadian Foundation for Innovation (CFI).
References

2. Davenport KP, Blanco FC, Sandler AD. Pediatric malignancies: neuroblastoma, Wilms's tumor,
characteristics can predict pattern and risk of relapse in localized rhabdomyosarcoma. J Clin Oncol.
6. McCarville MB, Spunt SL, Pappo AS. Rhabdomyosarcoma in pediatric patients: the good, the bad,
7. Howman-Giles R, Shaw PJ, Uren RF, Chung DK. Neuroblastoma and other neuroendocrine
J Clin Oncol.17:189.
11. Ding AH, Porteu F, Sanchez E, Nathan CF. Shared actions of endotoxin and taxol on TNF
12. Carboni JM, Singh C, Tepper MA. Taxol and lipopolysaccharide activation of a murine
macrophage cell line and induction of similar tyrosine phosphoproteins. J Natl Cancer Inst Monogr.
1979;277:665-7.
15. Rabinovsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC. Clinical toxicities
hypersensitivity reaction to paclitaxel: a critical review of premedication regimens. Br J Cancer.
2004;90:304-5.
17. Szalay JS, Muggia FM, Alving CR. Complement activation by Cremophor EL as a possible
activity of CPT-11, a DNA-topoisomerase I inhibitor, against peripheral primitive neuroectodermal
pharmacological study of a 3-hour paclitaxel infusion in children with refractory solid tumours: a SFOP

Figure Legends:

Figure 1. Effects of nab-paclitaxel on pediatric tumor cell lines in vitro. Alamar Blue assays were performed after exposing tumor cells to increasing concentrations of nab-paclitaxel in vitro for 72 hours. Cell viability was plotted with GraphPad Prism software on three rhabdomyosarcoma cell lines, RH4, RH30 and RD (A), the osteosarcoma cell line, KHOS (B), and seven neuroblastoma cell lines, CHLA-20, CHLA-15, CHLA-90, LAN-5, SK-N-BE(2), BE(2)C, and SH-SY5Y (C). (D) Neuroblastoma cell lines were treated with the same concentration of paclitaxel in vitro. Cell viability was compared between paclitaxel and nab-paclitaxel. (E) Cell apoptosis was analyzed by annexin V-FITC fluorescence staining. RH4 cells were treated with 12, 60 or 120nM nab-paclitaxel in vitro for 48 hours followed by annexin V-FITC staining. Untreated cells are shown for comparison (control).

Figure 2. Effects of nab-paclitaxel on the growth of rhabdomyosarcoma xenografts. Small arrows indicate time points of drug administration. (A) In RH4 xenografts, when xenograft tumors reach above 0.5 cm in diameter, mice were randomized into 3 groups (control, nab-paclitaxel treatment and paclitaxel treatment) with 7 animals in each group. Paclitaxel or nab-paclitaxel was administered on day 1, 8 and 15 at the dose of 30mg/kg and 50mg/kg respectively. Tumor volume was measured and calculated as width$^2 \times$ length \times 0.5. Complete regression was observed in both paclitaxel and nab-paclitaxel treated RH4 tumors. (B) Animal body weight was measured in RH4 model to monitor the potential drug toxicity. (C) Tumor growth was assessed in RD xenograft model with paclitaxel/nab-paclitaxel treatment. In nab-paclitaxel treatment group (n=10), tumor-bearing mice received nab-paclitaxel (50mg/kg, weekly) treatment. In paclitaxel treatment group (n=10), since tumor sizes are reaching the endpoint after 2-week
paclitaxel treatment in paclitaxel group, we randomized those mice into two groups with 5 animals in each group on day 15: one group of animals continued receiving 30mg/kg of paclitaxel (tumor growth curve shown in red) and the other group received 50mg/kg of nab-paclitaxel instead (shown in orange curve). (D) On day 52, when relapsed tumors from paclitaxel treatment reached 0.5 cm in diameter, we randomized these animals into two treatment groups: nab-paclitaxel and paclitaxel. Drugs were given on day 52, 59 and 66 with the same schedule and dosage as above. Tumor growth was monitored in this paclitaxel-relapsed tumor model. (E) In nab-paclitaxel-relapsed tumor model, on day 75, when relapsed tumors from nab-paclitaxel treatment reached 0.5 cm in diameter, we randomized animals into two groups: nab-paclitaxel treatment and saline control. Drugs were given on day 75, 82 and 87 with the same schedule and dosage as above.

Figure 3. Anti-tumor effects of nab-paclitaxel with different regimens in neuroblastoma models. (A) Subcutaneous mouse xenograft tumors (SK-N-BE(2)) were established and animals were randomized into 5 groups. Each treatment groups (n=7) received either standard maximum tolerated dose of nab-paclitaxel (MTD; 50mg/kg, weekly) or low-dose metronomic nab-paclitaxel (LDM; 2, 5, or 10 mg/kg, daily). Control mice received saline. Tumor volume was plotted as shown. (B) Tumor growth was also evaluated in CHLA-20 xenograft model. Tumor bearing mice with 10 animals in each group were treated with either standard maximum tolerated dose of nab-paclitaxel (MTD; 50mg/kg, weekly) or low-dose metronomic nab-paclitaxel (LDM; 10 mg/kg, daily). (C) The animal survival from nab-paclitaxel treatment was further investigated in SK-N-BE(2) metastatic models. Tumor-bearing mice were treated with control vehicle or nab-paclitaxel (50 mg/kg iv weekly) with all treatments starting 14 days after tumor cell inoculation. Meier survival curves for nab-paclitaxel treatment and control animals are presented. (D) Animal
body weight was monitored in SK-N-BE(2) metastatic models with/without nab-paclitaxel treatment.

Figure 4. Plasma and intratumor paclitaxel concentrations following nab-paclitaxel treatment. Mice bearing human rhabdomyosarcoma (RH4) and neuroblastoma (SK-N-BE(2)) xenografts were intravenously administered different dosages of paclitaxel (20 mg/kg weekly or 30 mg/kg weekly) or nab-paclitaxel (10 mg/kg/day for 5 consecutive days or 50 mg/kg weekly). Twenty-four hours after the last dose, blood and tumor samples were collected and analyzed for paclitaxel concentration by LC/MS. Plasma and intratumor concentrations were plotted in graphs for both RH4 (A) and SK-N-BE(2) (B) models. Ratio of intratumoral and plasma concentration was calculated and compared between nab-paclitaxel and DMSO-based paclitaxel treatment groups.

Figure 5. Nab-paclitaxel induced cell apoptosis and cell cycle arrest in SK-N-BE(2) and RH4 tumors. SK-N-BE(2) xenografts treated with different dosages of nab-paclitaxel were harvested at the end of study and analyzed by immunohistochemistry (IHC) for the cleaved caspase-3 (A) and phospho-histone H3 (B). C. In a separate experiment, RH4 xenografts were harvested 48 hours after administering nab-paclitaxel (50 mg/kg, iv) or paclitaxel (30 mg/kg, iv), and tumor sections were stained for phospho-histone H3 by IHC.
Fig. 3

(A) Nab-paclitaxel treatment in SK-N-BE(2) xenograft model

(B) Nab-paclitaxel treatment in CHLA-20 xenograft model

(C) Survival Curve of SK-N-BE(2) metastatic model

(D) Mouse body weight in metastatic SK-N-BE(2) model
<table>
<thead>
<tr>
<th>Group</th>
<th>Plasma Conc. (ng/ml)</th>
<th>Intratumor Conc. (ng/g)</th>
<th>Tumor/plasma Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nab-paclitaxel (50mg/kg)</td>
<td>4.29 ± 2.23</td>
<td>1906.67 ± 128.97</td>
<td>448.69</td>
</tr>
<tr>
<td></td>
<td>(5.02±1.61nM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nab-paclitaxel (10mg/kg)</td>
<td>450.80 ± 128.97</td>
<td>1906.67 ± 128.97</td>
<td>448.69</td>
</tr>
<tr>
<td></td>
<td>(5.02±1.61nM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nab-paclitaxel (5mg/kg)</td>
<td>450.80 ± 128.97</td>
<td>1906.67 ± 128.97</td>
<td>448.69</td>
</tr>
<tr>
<td></td>
<td>(5.02±1.61nM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nab-paclitaxel (1mg/kg)</td>
<td>105.08 ± 448.69</td>
<td>1906.67 ± 128.97</td>
<td>448.69</td>
</tr>
<tr>
<td></td>
<td>(5.02±1.61nM)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SK-N-BE(2)

<table>
<thead>
<tr>
<th>Group</th>
<th>Plasma Conc. (ng/ml)</th>
<th>Intratumor Conc. (ng/g)</th>
<th>Tumor/plasma Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nab-paclitaxel (10mg/kg)</td>
<td>4.52 ± 0.71</td>
<td>2170.22 ± 1424.22</td>
<td>88.95</td>
</tr>
<tr>
<td></td>
<td>(5.29±0.89nM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nab-paclitaxel (5mg/kg)</td>
<td>2170.22 ± 1424.22</td>
<td>1906.67 ± 128.97</td>
<td>448.69</td>
</tr>
<tr>
<td></td>
<td>(5.29±0.89nM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nab-paclitaxel (2mg/kg)</td>
<td>88.95 ± 448.69</td>
<td>1906.67 ± 128.97</td>
<td>448.69</td>
</tr>
<tr>
<td></td>
<td>(5.29±0.89nM)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RH4

<table>
<thead>
<tr>
<th>Group</th>
<th>Plasma Conc. (ng/ml)</th>
<th>Intratumor Conc. (ng/g)</th>
<th>Tumor/plasma Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nab-paclitaxel (10mg/kg)</td>
<td>4.52 ± 0.71</td>
<td>2170.22 ± 1424.22</td>
<td>88.95</td>
</tr>
<tr>
<td></td>
<td>(5.29±0.89nM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nab-paclitaxel (5mg/kg)</td>
<td>2170.22 ± 1424.22</td>
<td>1906.67 ± 128.97</td>
<td>448.69</td>
</tr>
<tr>
<td></td>
<td>(5.29±0.89nM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nab-paclitaxel (2mg/kg)</td>
<td>88.95 ± 448.69</td>
<td>1906.67 ± 128.97</td>
<td>448.69</td>
</tr>
<tr>
<td></td>
<td>(5.29±0.89nM)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 5A

Cleaved Caspase 3 staining in SK-N-BE(2) xenografts

Control Nab-paclitaxel (10mg/kg) Nab-paclitaxel (50mg/kg)

Low Field 100X

High Field 200X
Fig. 5B

p-Histone H3 staining in SK-N-BE(2) xenografts

Low Field
100X

<table>
<thead>
<tr>
<th>Control</th>
<th>Nab-paclitaxel (10mg/kg)</th>
<th>Nab-paclitaxel (50mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

High Field
200X

<table>
<thead>
<tr>
<th>Control</th>
<th>Nab-paclitaxel (10mg/kg)</th>
<th>Nab-paclitaxel (50mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 5C

p-Histone H3 staining in RH4 xenografts

Control
Nab-paclitaxel (50mg/kg)
Paclitaxel (30mg/kg)

Low Field
100X

High Field
200X
Abraxane (nab-paclitaxel) is an active drug in preclinical model of pediatric solid tumors

Libo Zhang, Paula Marrano, Sushil Kumar, et al.

Clin Cancer Res Published OnlineFirst August 29, 2013.