Conjunctival Melanomas Harbor BRAF and NRAS Mutations—Letter

Jaimie L. Weber¹, Keiran S.M. Smalley², Vernon K. Sondak², and Geoffrey T. Gibney²

In their recent study, Griewank and colleagues proposed that new therapies effective in cutaneous melanoma could hold promise in the management of conjunctival melanoma due to oncogenic BRAF and NRAS mutations and similarities in chromosomal gains and losses (1). Specifically, 27% of 78 primary or locally recurrent conjunctival melanoma samples harbored a BRAF V600E mutation. Another study also demonstrated BRAF V600E mutations in 58% of conjunctival melanomas (primary and metastatic) (2). The incidence of this mutation approximates that reported in cutaneous melanoma (3). Now that two phase III studies have demonstrated marked antitumor activity of the BRAF inhibitors vemurafenib and dabrafenib in patients with BRAF V600E–mutant cutaneous melanoma (3), Griewank and colleagues suggest that patients with BRAF V600E–mutant conjunctival melanoma might derive similar benefit.

We recently treated a BRAF V600E–mutant metastatic conjunctival melanoma patient with vemurafenib. This 45-year-old male developed metastatic disease 14 months after resection of a primary conjunctival melanoma on the right cornea. On evaluation, he had nodal, subcutaneous, pulmonary, and osseous metastases. Pyrosequencing demonstrated that his melanoma harbored the BRAF V600E mutation. He was initiated on vemurafenib 960 mg twice daily. After 1 month on therapy, he experienced clinical improvements in nodal, subcutaneous, and pulmonary disease. However, there was significant growth in a right paraspinal mass. Pyrosequencing demonstrated that the vemurafenib-resistant clone harbored a NRAS G12D mutation.

Figure 1. Staging scans at baseline and after 2 months of vemurafenib therapy in a patient with metastatic BRAF V600E–mutant conjunctival melanoma. A and B, marked growth in a left axillary lymph node mass. C and D, progression of a peripancreatic lymph node mass. E and F, modest regression in a mesenteric mass along with significant growth in a right paraspinal mass.
benefit with improvement in pain and subjective tumor regression. However, restaging scans after 2 months of treatment showed a mixed response, predominantly with disease progression (Fig. 1). This included progressive adenopathy in the left axilla and retroperitoneum, as well as an enlarging paraspinal mass, while regression occurred at a single mesenteric mass. Vemurafenib was discontinued and he pursued further systemic therapy options.

Although this is only one case example, the activity of selective BRAF inhibitors in BRAF-mutant conjunctival melanoma may not be identical to that seen with cutaneous melanoma. Of note, the Griewank and colleagues’ study found frequent copy number loss of the PTEN 10q23 locus, indicating probable loss of PTEN expression and concurrent activation of the phosphoinositide 3-kinase (PI3K) pathway (1). This is supported by another study of conjunctival melanoma, in which 55% of cells analyzed demonstrated weak to no PTEN expression by immunohistochemistry (4). Because concurrent PTEN loss has been described as an intrinsic resistance mechanism and is associated with shorter progression-free survival in patients with cutaneous BRAF-mutant melanoma treated with dabrafenib (5), perhaps a similar mechanism of resistance is common in conjunctival melanoma. Further prospective study of BRAF inhibitors, possibly in combination with a PI3K or AKT inhibitor, is warranted in BRAF V600E–mutant conjunctival melanoma.

Disclosure of Potential Conflicts of Interest
V.K. Sondak is a consultant to GSK. G.T. Gibney is a consultant/advisory board member to Genentech/Roche. No potential conflicts of interest were disclosed by the other authors.

Received July 23, 2013; revised August 16, 2013; accepted August 19, 2013; published OnlineFirst October 28, 2013.

References
Conjunctival Melanomas Harbor BRAF and NRAS Mutations —Letter

Clin Cancer Res Published OnlineFirst October 28, 2013.

Updated version Access the most recent version of this article at:

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.