Randomized, placebo-controlled, double-blinded chemo-immunotherapy clinical trial in a Pet Dog model of Diffuse Large B-cell Lymphoma

Laura Marconato 1,*, Patrick Frayssinet 2, Nicole Rouquet 2, Stefano Comazzi 3, Vito Ferdinando Leone 1, Paola Laganga 1, Federica Rossi 1, Massimo Vignoli 1, Lorenzo Pezzoli 4, Luca Aresu 5

Authors’ affiliations: 1 Centro Oncologico Veterinario, Sasso Marconi, Bologna, Italy; 2 Urodelia, St Lys, France; 3 Department of Veterinary Sciences and Public Health, University of Milan, Italy; 4 Epidemiology advisor, London, UK; 5 Department of Comparative Biomedicine and Food Science, University of Padova, Italy.

Running title: Chemo-immunotherapy for canine DLBCL

Key-words: diffuse large B-cell lymphoma, dog, active immunotherapy, heat shock proteins, hydroxylapatite

*Corresponding author:
Laura Marconato, Centro Oncologico Veterinario, via San Lorenzo 1-4, 40037 Sasso Marconi (BO), Italy; Ph/Fax: 0039 051 6751871; e-mail: marconato@centroncologicovet.it

Conflicts of interest: Two authors (P.F., N.R.) are employed by a company (URODELIA) whose product was studied in the present work.
Abstract

Purpose: Active immunotherapy is a promising antitumoral strategy; however its use in combination with chemotherapy in dogs with large B-cell lymphoma (DLBCL) remains largely untested. Heat shock proteins (HSPs) bind the small peptides they chaperone (HSPPCs), allowing for immunization of the host against a large repertoire of tumor-associated antigens. Hydroxylapatite (HA) vehicles HSPPCs and acts as an immunologic adjuvant. Aim of this study was to show that an autologous vaccine with HA and tumor-derived HSPPCs is safe and therapeutically effective in dogs with DLBCL.

Experimental Design: Nineteen dogs with naturally-occurring DLBCL were entered into a prospective randomized placebo-controlled double-blinded trial of HSPPCs-HA plus chemotherapy versus chemotherapy alone. Endpoints included time to progression (TTP), lymphoma-specific survival (LSS) and incidence of toxicoses.

Results: Median first TTP after randomization to the vaccine arm was 304 days versus 41 days for the control arm ($P = 0.0004$). There was also a statistically significant difference in duration of second remission between the two groups ($P = 0.02$). Median LSS was 505 days for the vaccinated dogs versus 159 days for the unvaccinated dogs ($P = 0.0018$). Six vaccinated dogs achieved molecular remission, as shown by clonal IgH rearrangement. Toxicoses were comparable between the two treatment arms.

Conclusions: The results of this trial demonstrate that the autologous vaccine tested here is safe and efficacious in prolonging TTP and LSS in dogs with DLBCL when used in combination with dose-intense chemotherapy. Based on these results, additional evaluation of this novel therapeutic strategy is warranted in human DLBCL.
Translational relevance

Despite the success of rituximab in patients with Diffuse Large B-cell Lymphoma (DLBCL), new therapeutic strategies are needed. In pre-clinical studies, the most frequently used animal models are engineered mice that over-express human translocations or oncogenes, but results have been disappointing, and most of the hits generated turned out to be invalid once tested. To address the urgent need for animal models in pre-clinical studies, authoritative international institutions have recommended using spontaneous occurring diseases in companion animals. The canine model of DLBCL offers several advantages, including developing spontaneous disease and having a high frequency. Clearly, the immune system has the capacity to recognize and react to lymphoma cells, and recent evidence directed the attention to the importance of mounting immune responses to complement the cytotoxic activity elicited by dose-intense chemotherapy. This study shows the therapeutic relevance of an autologous vaccine in a canine DLBCL model and has potential translational relevance for the treatment of human DLBCL.
Introduction

Non-Hodgkin's lymphoma is the fifth leading cause of cancer deaths in people in the United States (1), and for over 25 years, an anthracycline-based multidrug chemotherapy regimen has been the gold standard for the treatment of Diffuse Large B-cell Lymphoma (DLBCL). Although the addition of rituximab has altered the therapeutic landscape and improved prognosis, approximately one-third of patients experience relapse (2). The outlook for this subgroup is dismal, with a median survival time of 6 months or less, indicating that there is a clinical spectrum of sensitivity to the standard treatment (3). Therefore, considerable room for improved outcome remains, including the use of novel strategies acting in concert with cyclophosphamide-adriamycin-vincristine-prednisone (CHOP)-based protocols aimed at providing greater tumors specificity and less nonspecific toxicity (3).

DLBCL is the most common subtype of canine lymphoma (4, 5), and it shares many features with the human counterpart, including clinical presentation, biological behavior, tumor genetics and treatment response (6). Constitutive and increased NF-kB activities targeting gene expression were recently detected in primary canine DLBCL tissue, rendering the dog a spontaneous model for activated B-cell (ABC) DLBCL in people (7, 8).

Unfortunately, monoclonal antibodies are unavailable in veterinary oncology, and the present standard of care for canine DLBCL includes dose-intense multidrug chemotherapy (9, 10). Although chemotherapy improves the duration of remission and prolongs overall survival, the disease is essentially incurable (11). Similar to the human disease, relapsed lymphomas are refractory to subsequent treatments with the initial chemotherapy regimen and can exhibit cross-resistance to a wide variety of anticancer drugs. Ultimately, the emergence of acquired chemo-resistance poses a challenge, preventing the successful treatment of DLBCL.

In the last decade, much attention has been paid to immunotherapy, which attempts to direct the protective capacity of the immune system toward eliminating malignant cells (12). Active immunotherapy offers two main advantages: first, it elicits a tumor-specific immune response; second, it potentially establishes long-lasting tumor immunity via the capacity to exhibit memory, thereby limiting the likelihood of relapse (13).
Increasing evidence suggests that the immune system can be manipulated in different ways to recognize and fight cancer cells, and a number of immunotherapy-based strategies are being tested in ongoing clinical studies in human as well as in veterinary oncology (12-16).

The clinical experience of immunotherapy in canine lymphoma is still at an embryonic stage. The first study dates back two decades: an intralymphatic autochtonous vaccine administered in combination with chemotherapy significantly prolonged first remission compared to dogs receiving only chemotherapy (17). Later, an autologous tumor cell vaccine administered to dogs with B-cell lymphoma following chemotherapy did not improve outcome when compared to placebo-matched dogs (18).

More recently, in 14 dogs with B-cell lymphoma a genetic cancer vaccine targeting telomerase in combination with chemotherapy significantly increased survival time when compared with 8 historic controls treated by chemotherapy only (19). In this study, diagnosis was obtained by cytology; therefore different disease entities may have been included. Also, chemotherapy and type of vaccination differed among dogs. In the most recent study, Sorenmo et al demonstrated the immunogenicity of a cell-based vaccine in dogs with lymphoma using CD-40 activated B-cells, which act as antigen presenting cells (APC) (20). Nineteen dogs in complete remission (CR) after induction dose-intense chemotherapy were eligible to be vaccinated. Time to progression (TTP) and lymphoma-specific survival (LSS) were not significantly different between vaccinated and non-vaccinated dogs; however, vaccination potentiated the effects of rescue therapy and improved the rate of durable second remissions and LSS following salvage therapy (20).

Overall, the tolerability and efficacy of the vaccines in these studies were compelling enough to justify the evaluation of alternative vaccines aiming at easier/faster production, better cost-effectiveness, or stronger immune response.

Typically, active immunotherapy in human lymphoma patients consists on vaccines that use the immunoglobulin idiotype as a tumor-specific antigen. However, a possible disadvantage of active immunotherapy is its reliance on the patient’s immune system, which may be compromised or deregulated by the tumor itself or by previous
chemotherapy (21, 22). Also, an inefficient presentation of tumor antigens to the host’s immune system may enable cancer cells to evade the immune response, leading to immune-tolerance toward the tumor (23). As a consequence, efforts to enhance the efficacy of active immunotherapy are ongoing with an emphasis on optimization of antigen delivery and presentation, and modulation of the immune system toward counteracting immune-suppression.

One promising approach that has emerged is the delivery of an autologous vaccine consisting of hydroxyapatite ceramic powder and proteins purified from the patients’ tumors, such as Heat Shock Proteins (HSPs) (24). HSPs are synthesized under stress situations (including cancer) to protect cells from damage; among others, HSPs play a key role in bringing tumor-associated antigens (TAAs) to professional APC, thereby leading to the cross-priming of anti-tumor CD8+ and CD4+ T-cells through MHC class I and class II molecules (25). Of note, HSPs bind the small proteins and peptides they chaperone, forming heat shock protein-peptide complexes (HSPPCs), thereby providing a fingerprint of the tumor peptides, both normal and abnormal. Therefore, if purified from the patient’s own tumor, HSPs may enhance the patient’s immunity by inducing specific and non-specific cellular immune responses (26).

Hydroxylapatite (Ca_{10}(PO_{4})_{6}OH_{2}) is used in many biotechnology processes to purify proteins from biologic solutions by ion exchange chromatography. HA-nanoparticles showed vaccine adjuvant properties, i.e. making possible to use HA-particles loaded with proteins purified by an HA column (24). HSPs, such as gp 96 and HSP 70, showed a particular affinity for the HA-surface (24). Indeed, when injected into the dermis or subcutaneous tissue, HA behaves like a foreign body, thereby attracting monocytes and macrophages to the injection site. Also, if HSPPCs are adsorbed at its surface by means of chromatography, HA also acts as a vehicle of these molecules, which may then be released into APC to be presented to the immune system (24).

In a previous study, an autologous vaccine consisting of HA loaded with HSPs was administered to human patients with various malignancies (27). The vaccine was well tolerated, with only mild local side effects, and showed some antitumoral efficacy.
These results provided the rationale for this randomized placebo-controlled double-blinded trial, with the primary aim of showing that an autologous vaccine with HA and tumor derived HSPPCs is safe and therapeutically effective in dogs with DLBCL.

Materials and methods

Dog selection

Dogs with newly-diagnosed, previously untreated, multicentric DLBCL of any WHO clinical stage admitted to the Centro Oncologico Veterinario between June 2011 and December 2012 were consecutively enrolled.

To be eligible for recruitment, dogs were required to undergo a complete staging work-up, consisting of history and physical examination, complete blood cell count with differential, serum biochemistry profile, thoracic radiographs and abdominal ultrasound, cytological evaluation of liver and spleen regardless of the ultrasonographic appearance, and immunophenotype determined by flow cytometry (FC) on a lymph node (LN) aspirate, peripheral blood (PB) and bone marrow (BM) aspirate (Supplementary data, A; 28-30). The cut-off for BM infiltration was set at >3% of CD45+ cells, as it has been shown to negatively affect outcome in dogs with DLBCL (31).

Before the initiation of therapy (T0), all dogs also were required to undergo lymphadenectomy to confirm pathology, and provide material for the vaccine generation.

Additional entry criteria included an estimated life expectancy of at least 4 weeks and no previous therapy (chemotherapy and/or glucocorticoids). Concurrent serious systemic disorder incompatible with the study was regarded as an exclusion criterion.

Dog owners were required to give written informed consent.

Pathology

The diagnosis of DLBCL was confirmed by a single pathologist (L.A.) according to the WHO classification (32). Tissues were processed routinely for paraffin embedding, and stained with haematoxylin and eosin. Immunophenotyping was determined for all cases (Supplementary data, B).
Vaccine generation

Lymphoma tissue was obtained by lymphadenectomy. Part of the excised LN was shipped to the laboratory in a sterile container with dry ice. The tumor tissue and all material used to prepare the vaccine were handled in sterile conditions under a laminar flow. The frozen tumor tissue (200 mg) was homogenized using a bead tissue homogenizer. One ml of sodium carbonate (30 mM, pH 7) was added for 1 ml of homogenate. The resulting homogenate was then centrifuged for 15 min to remove all cellular fragments and placed at 4°C.

The supernatant containing the cytoplasmic proteins was used for protein purification by HA column chromatography as follows. Precipitations with ammonium sulphate (first at 50%, then at 70%) recovered the pellets. The last pellet was re-suspended in 2 ml phosphate buffer (20 mM, pH 7). The column was filled with 0.333 g HA (25-45 µm). The re-suspended pellet was then added and the column washed with a phosphate buffer solution. The powder was then suspended in 5 ml carboxymethylcellulose (CMC) solution (2% in distilled water); 0.5 ml of this solution was used for each vaccine shot.

To obtain the electrophoretic control, 0.2 ml of the previous solution was used. The solution was then centrifuged at 1000 rpm for 30 sec. The supernatant was discarded, and the powder in the pellet washed with 0.1 ml of a 0.5 M NaCl solution. The solution was again centrifuged and the supernatant was used for SDS-PAGE and for protein quantification using UV spectrometer. 10 µl of the solution was also used for dot blot with anti-HSP70 and anti-gp90 antibodies on a nitrocellulose membrane. For antibody labeling, a western breeze (Invitrogen) kit was used according to the manufacturer’s instructions.

The placebo consisted of the same amount of HA-powder in carboxymethyl cellulose solution without the tumor proteins. The placebo and the vaccine were indistinguishable based on their physical aspect.

Study design

This study was a double-blinded (responsible oncologist, L.M., and owners), centrally randomized, placebo-controlled clinical trial. Dogs were randomized to receive either chemotherapy and an autologous vaccine (Group 1) or chemotherapy and a placebo (Group 2) in a 2:1 ratio.

Treatment schedule
Dogs in both treatment groups received the same 20-week combination induction chemotherapy, consisting of L-Asparaginase, Vincristine, Cyclophosphamide, Doxorubicin, Lomustine, and prednisone (Table 1). Dogs also received either an intradermal injection of 0.5 ml vaccine (Group 1) or an equivalent number of 0.5 ml placebo-matched intradermal injections (Group 2) on weeks 4, 5, 6, 7, 12, 16, 20, and 24. The injection areas were shaved and aseptically prepared prior to vaccine or placebo administration.

Safety was assessed at each scheduled treatment session using the VCOG criteria (33). Treatment was delayed for a maximum of 1 week or dose was decreased by 20% for adverse safety changes. Safety assessments included adverse events, hematology, and clinical chemistry profiles. Concomitant medications, including antibiotics, antiemetic and antidiarrheal, were permitted to manage adverse events.

Response assessment and follow-up
Response was evaluated at each treatment session by one oncologist (L.M.) blinded to treatment assignment according to previously published criteria (34). The remission status was assessed based on physical examination and mandatory LN cytology at each visit. In doubtful cases, FC was carried out. Responses were required to last for at least 28 days.

Two weeks after having completed the protocol (T1), all dogs underwent complete end-staging, including FC and polymerase chain reaction for antigen receptor rearrangement (PARR) on PB, BM and LN obtained from a second lymphadenectomy. Dogs were then rechecked through monthly physical examinations and LN cytological samples during the first year, and every other month thereafter.

Relapse was defined as clinical reappearance and cytological evidence of lymphoma in any anatomical site in dogs having experienced CR, whereas relapse for animals with partial remission (PR) was defined as progression.

Dogs that relapsed during or after the treatment protocol were offered standardized rescue chemotherapy.

Postmortem examinations were performed at the time of death or euthanasia, whenever possible.
Detection of minimal residual disease by polymerase chain reaction for antigen receptor rearrangements

Detection of antigen receptor gene rearrangements was assessed by PCR amplification of the complementarity determining region 3 (CDR3) of the antigen receptor genes, as previously reported (Supplementary data, C; 35).

In vivo assessment of immune response

In vivo immune responses were documented in all dogs by performing delayed-type hypersensitivity (DTH) skin tests and by evaluating the local inflammatory response generated by vaccination (Group 1) and placebo (Group 2). All intradermal injections were given in sites different from the vaccination sites prior to vaccination and 14 days after the last vaccination.

Briefly, the tumor extract to be injected in the dermis for DTH skin test was prepared as follows. After tumor homogenization, 100 µl of the homogenate were diluted in 0.5 ml of a CMC solution (2% in 20 mM NaCl); 0.1 ml of this solution was used for DTH. Responses to the DTH skin test were evaluated 48 h after each injection: a diameter of erythema > 2 mm was considered a positive response.

Statistics

Documented negative prognostic factors, such as stage, substage, BM infiltration, and weight were analyzed to detect any possible statistically significant difference between the 2 groups.

The primary endpoint of this study was to determine whether vaccination (Group 1) prolonged TTP and LSS compared with placebo (Group 2) in dogs with DLBCL receiving the same chemotherapeutic protocol. TTP and LSS were measured from the first day of chemotherapy to the clinical event in both groups (34). The secondary endpoint of this study was to investigate whether the second TTP was longer in vaccinated compared with unvaccinated dogs. All dogs that were randomized were included in remission and survival analysis to fulfill intention-to-treat criteria.

The hypotheses were tested comparing mean and median TTP and LSS between the 2 groups. Proportional hazards were calculated using Cox regression analysis with entry point at the date of recruitment.
Dogs that were lost to follow-up and dogs that died due to other causes than lymphoma or lymphoma treatment were right-censored at the last date of known status or when they died from other causes, respectively. The Kaplan Meier product limit method was used to estimate TTP and LSS for both groups. Mean TTP and LSS were compared with the Student’s t-test, median TTP and LSS with the Mann-Whitney test, and categorical variables with the chi-square test. Statistical calculations were performed using STATA (StataCorp. 2007. Stata Statistical Software: Release 10). For all statistical comparisons, significance was set at $P < 0.05$.

Results

Dogs characteristics and treatment administration

Nineteen consecutive treatment-naive dogs with DLBCL were enrolled. Table 1 provides a summary of the characteristics of dogs entering this trial using known or potential covariates for outcome in dogs with DLBCL. The 2 treatment arms were well balanced for baseline characteristics and there were no statistically significant differences in prognostic variables between Group 1 and 2 (Table 2). Twelve dogs were randomly assigned to receive the vaccine (Group 1), and 7 to receive the placebo (Group 2). Autologous vaccines were successfully produced for all 12 dogs (100%) randomized to receive immunization during chemotherapy. All dogs received the same chemotherapeutic protocol. All (100%) dogs in Group 1 and 4 (57.1%) dogs in Group 2 completed the chemotherapy protocol. In Group 1, all dogs received the 8 intended vaccinations according to schedule, and a total of 96 vaccinations were given within the trial. Conversely, 6 dogs in Group 2 did not complete the 8 intended placebo administration because they either relapsed ($n = 4$) or progressed ($n = 2$), resulting in death.

Clinical outcome

All 12 vaccinated dogs achieved CR; of the 7 dogs that received the placebo, 5 (71.4%) obtained CR while 2 (28.6%) dogs experienced progressive disease ($P = 0.05$). Four of the 12 vaccinated dogs in Group 1 never relapsed, after 648, 613, 342, and 154 days, respectively.
For all 19 randomly assigned dogs, median first TTP was 192 days (mean, 231 days; range, 19-648 days). First TTP was significantly longer in Group 1 when compared to Group 2 (Table 3). Median first TTP after randomization to the vaccine arm was 304 days (mean, 332 days; range, 154-648 days) versus 41 days (mean, 59 days; range, 19-140 days) for the control arm \((P = 0.0004)\). Kaplan Meier curves for TTP are shown in Fig. 1.

Dogs in Group 1 were significantly less likely to experience a relapse compared with dogs in Group 2 (hazard ratio: 0.1834577; 95%CI: 0.05-0.72; Table 4).

Following progression of disease, 10 dogs randomized to this study received standardized rescue chemotherapy. For all 10 dogs, median second remission was 82 days (mean, 104 days; range, 29-333 days).

Seven of the 12 (58.3%) vaccinated dogs in Group 1 that relapsed were treated with salvage chemotherapy, and all of them achieved durable second remission (median 128 days; mean 135 days; range, 47-333 days). Two of these 7 vaccinated dogs with a chemotherapy-induced durable second remission are still alive with no evidence of lymphoma at 377 and 581 days, respectively, after the start of the initial chemotherapy. One dog died after 443 days after the start of chemotherapy because he was poisoned; there was no evidence of lymphoma at necropsy. The other 4 dogs relapsed during rescue chemotherapy and were euthanized due to their lymphoma.

In the unvaccinated Group 2, all 3 dogs that relapsed after the initial chemotherapy received rescue chemotherapy; however, none of them achieved a durable second remission, as they all progressed after 28, 29, and 43 days, respectively. There was a statistically significant difference in median duration of second remission between the 2 groups \((P = 0.02)\).

At data analysis closure, 4 (33.3%) dogs in Group 1 were still alive with a median follow-up of 598 days (range, 377-648 days). Five dogs had died due to lymphoma, whereas 3 were euthanized for lymphoma-unrelated causes.

All dogs in Group 2 had died: only one dog died because of lymphoma-unrelated causes, whereas all the other dogs \((n = 6)\) were euthanized due to advanced stage lymphoma.
For all 19 randomly assigned dogs, median LSS was 342 days (mean 346 days; range, 20-663 days). Median LSS was significantly longer in Group 1 when compared to Group 2 (Table 2). Median LSS after randomization to the vaccine arm was 505 days (mean, 468 days) versus 159 days (mean, 136 days) for the control arm ($P = 0.0018$). Kaplan Meier curves for LSS are shown in Fig. 2. Dogs in Group 1 were significantly more likely to live longer compared with dogs that received the placebo (hazard ratio: 0.043; 95%CI: 0.0049 - 0.378).

Minimal residual disease

LN, PB and BM samples were obtained at T0 and T1. At diagnosis, clonal IgH rearrangement by PCR was found in LNs of all dogs. In PB as well as in BM, rearrangements were detected in 5/19 (26%) dogs, including 2 dogs in Group 1 and 3 dogs in Group 2. This data was also confirmed by FC. At the end of treatment, 6 dogs in Group 1 achieved molecular remission, defined as LN negative results for the clonal IgH rearrangement. Three of these 6 dogs never relapsed; at data analysis closure 2 were alive in CR and 1 dog had died for lymphoma-unrelated causes. One dog relapsed after 423 days; however at this time point, histopathology showed a T-cell phenotype. On the other hand, all unvaccinated dogs showed LN clonality; the presence of neoplastic cells was also confirmed by FC.

Delayed-type hypersensitivity skin test

After the last injection of vaccine versus placebo, DTH skin tests were performed on all dogs that were still alive at that point to examine *in vivo* induction of immune responses to tumor cells. Positive DTH responses against tumor cells were observed in all vaccinated dogs (diameter > 2 mm). Meanwhile, the response against tumor cells was undetectable in dogs that received the placebo, suggesting specific DTH responses against tumor cells by autologous vaccination.

Toxicity

Safety was assessed in all dogs in both treatment arms. The type, frequency, and severity of treatment-emergent adverse events were comparable between the 2 treatment arms.

Overall, treatment with the vaccine was found to be safe and well-tolerated when combined with dose-intense chemotherapy in dogs with DLBCL.
limiting neutropenia, thrombocytopenia, and gastrointestinal or hepatic toxicity was seen in dogs treated with dose-intense chemotherapy + placebo versus dose-intense chemotherapy + vaccine (Table 5). Quality of life assessment, defined by a questionnaire completed by pet owners at each visit, did not reveal differences in quality of life in dogs receiving dose-intense chemotherapy + placebo versus dose-intense chemotherapy + vaccine (data not shown).

Adverse events during treatment cycles, when observed, were manageable, reversible, and dose and regimen dependent. Grade 3 adverse events were similarly reversible and were limited to transient vomiting (4 dogs), febrile neutropenia (1 dog), and elevation of alanine transaminase (1 dog). Grade 4 adverse events were limited to thrombocytopenia and neutropenia (1 dog), which were reversible. There were no vaccine-related deaths.

Discussion

Naturally occurring canine tumors represent valuable tools for studying numerous aspects of human cancer as well as the potential use of this animal model for the development of new therapies (37). In particular, the evaluation of the efficacy of new treatment strategies in the context of a naturally occurring cancer model with phenotypic diversity may provide valuable information, that are currently difficult to obtain from conventional preclinical models or from human clinical trials alone. When considering DLBCL, the translational value of the canine model is further enhanced by the recent recognition of a common dysregulation of the NF-kB pathway (7, 8) which has been linked to the human ABC-DLBCL subtype. It must be stressed that, while gene expression signatures have identified relevant human DLBCL subsets, no successful targeted therapies other than rituximab have been developed yet, and many potential targets have been developed based on preclinical science in cell lines rather than in primary tumor specimens (38). Thus, the molecular classification of DLBCL requires clinical validation, and its role needs to be established within the current treatment paradigm. In this scenario, the dog as a cancer model may accelerate research.

Over the years, one of the more exciting and yet enigmatic concepts recurrent in the development and improvement of anti-tumoral strategies is the implication that the immune system can be harnessed and directed into a precision attack against neoplastic cells. Therapeutic cancer vaccines target TAAs to induce an active immune response,
and 4 early phase clinical trials in dogs with B-cell lymphoma have provided a strong rationale for this approach (17-20). Nevertheless, immunotherapeutic strategies have to face an important obstacle: the ability of tumor cells to evade the immune attack (23). Indeed, cancer cells may elude the immune-surveillance by several mechanisms, including down-regulation of MHC Class I molecules from the surface of tumor cells and consequent loss of immunogenicity, increased oxidative stress and recruitment of myeloid-derived suppressor cells and regulatory T-cells with suppressor function, or release of tumor-produced immunosuppressive cytokines (23, 39). Consequently, new strategies are warranted that exploit the immune response in an attempt to increase its strength and specificity to better control the disease.

Building on the premises of the prior Ciocca’s study (27), we evaluated an all-biologic, personalized immunotherapeutic approach in canine DLBCL consisting of active immunization with a patient-specific vaccine. It was hypothesized that active immunization would extend the time to disease progression after cyto-reduction with a CHOP-based chemotherapy. Indeed, such vaccines could theoretically spare healthy tissues, offer lifetime immunity against cancer, and possibly eradicate all cancer cells from the body.

CHOP-based chemotherapy was chosen for tumor debulking because it is the preferred treatment for dogs with aggressive B-cell lymphoma (9, 10). Although dose-intense chemotherapy can achieve complete responses and even in some cases long-term remission, relapse rates are high.

The vaccine used in this study consisted of HA-powder and HSP purified from the dogs’ tumors. It is well documented that the use of autologous tumor-derived HSSPCs, which function as chaperones of TAAs, may circumvent the immune evasion caused by cancer heterogeneity by immunizing the host against a large repertoire of individual TAAs (40, 41). By this mechanism, tumor-derived HSPPCs provide protection against tumors derived from the same cancer cells from which the complexes are purified. Indeed, the full repertoire of the TAAs of a single tumor, including the individual strong antigens that make each tumor antigenically different from the other, are presented to and recognized by the patients’ immune system.

To put the immune system into overdrive, thereby exacerbating the immune response, HA was used as an immunologic adjuvant, aiming at activating T-cells. It has been
previously shown that HA has several advantages, including its ability to purify proteins by means of chromatography, biocompatibility, attraction of monocytes and macrophages to the implantation area, and role as a vehicle to deliver proteins to APCs (27, 42). With respect to vaccine administration, intradermal vaccination was chosen to deliver the antigen to professional APCs of the skin. Taken together, the above findings, along with the demonstration of anticancer activity of HSPPCs in animal models (41, 43, 44), provided the rationale for HSPPC-based vaccination in dogs with DLBCL.

In the current study, dog characteristics were comparable in the 2 treatment arms. Treatment was usually well tolerated, and most adverse events were consistent with those expected with dose-intense chemotherapy. The type, incidence, and severity of adverse events were comparable between the 2 arms, providing additional assurance that blinding was maintained during the trial. No clinical signs of autoimmunity due to the injection of autologous HSPPCs were observed.

The study did confirm the hypothesized improvement in TTP and LSS with chemo-immunotherapy in randomly assigned dogs receiving the autologous vaccine. There was a significantly increased TTP in the group of dogs receiving chemo-immunotherapy compared with dogs receiving chemotherapy and the placebo.

At a median follow-up of 598 days, 2 of 12 (16.7%) dogs in Group 1 have remained in continuous first remission, remaining progression-free for +612 to +646 days. Two (16.7%) dogs had died for lymphoma-unrelated causes, still being in continuous first remission after 154 and 342 days, respectively. The remaining 8 (66.7%) dogs have progressed, with an overall median TTP of 304 days.

In the placebo arm (Group 2), the observed median first TTP of 41 days was dramatically inferior to the published studies (9-11). This difference may be attributable to various reasons. Most published studies are retrospective in nature; considered lymphoma as a general entity; and used more dose-intense CHOP-based protocols than the one used here (data not shown). According to a recent prospective study conducted by our research group, dogs with high-grade B-cell lymphoma (in 28% of them, DLBCL was histologically confirmed) receiving a CHOP-based protocol obtained a median TTP of 87 days and a median LSS of 188 days (29). When stratified based on BM infiltration, dogs with a cut-off >3% obtained a median TTP of 69 days and a median LSS of 155 days (29). Dose-intensity, TTP and LSS were similar to those used
or obtained in the current study. Also, 4 out of 7 non-vaccinated dogs had a BM infiltration level >3%, representing a negative prognostic factor. Finally, another critical point is the assessment of the remission status. In the majority of the published studies using CHOP-based protocols as first-line treatment, the remission status was based on subjective or radiological assessment of LN size reduction/enlargement, obviously leading to a great under-estimation of relapse/progressive disease. Here, the clinical findings were supported by at least cytological evaluation of peripheral LNs. This more accurate definition provides a critical view of therapeutic efficacy.

Notably, a primary concern of administering dose-intense chemotherapy is to exert a strong suppressive effect on host immunological functions, thereby rendering concurrent active immunotherapy pointless. Here, we sought to optimize the immune response by integrating a less dose-intense chemotherapeutic protocol with therapeutic vaccination in schedules that maximized the activity of each modality. Indeed, while a less dose-intense chemotherapeutic approach appears reasonable when concurrent immunotherapy is administered to avoid impairment of the immune responses, and to give time for the dog’s immune system to recover after chemotherapy, the long interval between chemotherapy administrations and the low dose-intensity of the chemotherapeutic regimen used here were deleterious for dogs treated by means of chemotherapy only, leading to a poor outcome.

The median duration of chemotherapy-induced second remission among vaccinated dogs was significantly longer than the median duration of chemotherapy-induced second response in the unvaccinated dogs. This finding has important clinical implications. Indeed, following standard dose-intense chemotherapy, both relapsed and refractory disease shorten the survival of DLBCL dogs. Based on our results, active immunotherapy has the potential to fight residual DLBCL cells, leading to a prolonged second remission and, ultimately, to prolonged LSS.

Interestingly, 50% of the vaccinated dogs achieved molecular remission, as documented by the negative minimal residual disease at the end of treatment. Clinical follow-up supported these results, as 3 of these dogs never relapsed, and 1 developed a T-cell lymphoma after 423 days from the initial diagnosis of DLBCL. In people, disappearance of minimal residual disease after immunization in follicular lymphoma...
patients has been reported (45).

The long-term maintenance of antitumor immune responses may maintain the tumor load at an undetectable level. Relapse of lymphoma may well represent disruption of this delicate balance.

Taken together, our results document that active immunization provokes a cognate immune response that engages the adaptive response, leading to the establishment of immunologic memory. The development of an anamnestic response provides sustained protection and reactivity against any lymphoma recurrence long before a relapse becomes clinically apparent.

A limitation of this study is the small population. Nevertheless, as previously suggested, randomized trials may overcome limitations of small sample size and yield valid conclusions if they are double-blinded and if baseline characteristics are well balanced (46, 47). Also, as a result of resource constraints, immune assays were not performed, and immune responses were assessed by means of DTH. However, DTH responses have been shown to correlate with protection to a subsequent tumor challenge in an animal model (48). Furthermore, to validate immunogenicity, the production of interferon-gamma by cytotoxic T-lymphocytes was measured (data not shown). Briefly, BALB/c mice were inoculated with 4T1 tumor cells to generate breast cancer. Tumors were then removed to generate the vaccine as previously described. Murine-derived dendritic cells were maturated in vitro with vaccine particles and then co-cultured with cytotoxic T-lymphocytes derived from mice challenged to 4T1 cells. Interferon-gamma was produced in response to TAAs, showing that cytotoxic T-lymphocytes recognized the TAAs presented at the surface of the dendritic cells after their contact with the vaccine particles.

Finally, another limitation of the HSP vaccination approach consists of the requirement of tumor tissue to be removed by surgery. However, once the LN has been removed, the time necessary for vaccine manufacturing is in the order of a few hours, so that immunotherapy can be started without any delay.

In conclusion, the results of this trial indicate feasibility, good tolerability, and potent immunologic activity of the autologous vaccination strategy tested, leading to improved
TTP and LSS in dogs with DLBCL. Given the fact that spontaneous DLBCL in dogs shares a wide variety of epidemiologic, biologic, and clinical features with human DLBCL, the acquired information may be applied for clinical applications in human cancer patients.

References

Table 1. Chemotherapeutic protocol administered to vaccinated and unvaccinated dogs.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 7</th>
<th>Week 10</th>
<th>Week 13</th>
<th>Week 16</th>
<th>Week 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Asparaginase (400 UI/kg SQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vincristine (0.75 mg/m² IV)</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclophosphamide (250 mg/m² PO)</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxorubicin (30 mg/m² IV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lomustine (60 mg/m² PO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prednisone (1 mg/kg PO until week 4, then 0.5 mg/kg PO)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Baseline characterization of dogs randomized to vaccine (Group 1) versus placebo (Group 2) for known and potential covariates of outcome in canine lymphoma.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Group 1 (n = 12)</th>
<th>Group 2 (n = 7)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years; median)</td>
<td>7</td>
<td>6</td>
<td>0.6668</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-male</td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>-female</td>
<td>5</td>
<td>2</td>
<td>0.568</td>
</tr>
<tr>
<td>Weight (kg; median)</td>
<td>30.5</td>
<td>35</td>
<td>0.6121</td>
</tr>
<tr>
<td>Stage</td>
<td>-I (%)</td>
<td>-III (%)</td>
<td>-IV (%)</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>1 (8.3)</td>
<td>3 (25)</td>
<td>5 (41.7)</td>
</tr>
<tr>
<td></td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (42.9)</td>
</tr>
</tbody>
</table>

0.311 0.539
Table 3. Clinical outcome comparing vaccinated Group 1 to unvaccinated Group 2.

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 12</td>
<td>n = 7</td>
<td></td>
</tr>
<tr>
<td>First TTP (mean; days)</td>
<td>332</td>
<td>59</td>
<td>0.0004</td>
</tr>
<tr>
<td>First TTP (median; days)</td>
<td>304</td>
<td>41</td>
<td>0.0004</td>
</tr>
<tr>
<td></td>
<td>n = 12</td>
<td>n = 7</td>
<td></td>
</tr>
<tr>
<td>LSS (mean; days)</td>
<td>468</td>
<td>136</td>
<td>0.0001</td>
</tr>
<tr>
<td>LSS (median; days)</td>
<td>505</td>
<td>159</td>
<td>0.0018</td>
</tr>
<tr>
<td></td>
<td>n = 6</td>
<td>n = 3</td>
<td></td>
</tr>
<tr>
<td>Second TTP (mean; days)</td>
<td>140</td>
<td>35</td>
<td>0.10</td>
</tr>
<tr>
<td>Second TTP (median; days)</td>
<td>127</td>
<td>32</td>
<td>0.0167</td>
</tr>
</tbody>
</table>
Table 4. Hazard ratios for first TTP, second time to progression, both times at once, and LSS in Group 1 compared with Group 2 estimated by Cox regression.

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Group 1 (n)</th>
<th>Group 2 (n)</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>First TTP</td>
<td>12</td>
<td>7</td>
<td>0.18 (0.05-0.72)</td>
<td>0.016</td>
</tr>
<tr>
<td>LSS</td>
<td>12</td>
<td>7</td>
<td>0.04 (0.00-0.38)</td>
<td>0.005</td>
</tr>
<tr>
<td>Second TTP</td>
<td>6</td>
<td>3</td>
<td>0.19 (0.02-1.89)</td>
<td>0.158</td>
</tr>
<tr>
<td>First and Second TTP</td>
<td>12</td>
<td>7</td>
<td>0.21 (0.07-0.64)</td>
<td>0.006</td>
</tr>
</tbody>
</table>
Table 5. Treatment-related toxicity comparing vaccinated Group 1 to unvaccinated Group 2.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Group 1 (n = 12)</th>
<th>Group 2 (n = 7)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM toxicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>6 (50%)</td>
<td>3 (42.8%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4 (33.3%)</td>
<td>2 (28.6%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 (16.7%)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1 (14.3%)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1 (14.3%)</td>
<td>0.322</td>
</tr>
<tr>
<td>Gastrointestinal toxicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8 (66.7%)</td>
<td>4 (57.1%)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2 (16.7%)</td>
<td>1 (14.3%)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2 (16.7%)</td>
<td>2 (28.6%)</td>
<td>0.828</td>
</tr>
<tr>
<td>Hepatic Toxicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>10 (83.4%)</td>
<td>6 (85.7)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 (8.3%)</td>
<td>1 (14.3)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 (8.3%)</td>
<td>0 (0)</td>
<td>0.692</td>
</tr>
</tbody>
</table>
Figure legends

Figure 1. Kaplan Meier curves comparing vaccinated Group 1 to unvaccinated Group 2 for first TTP ($n = 19$).

Figure 2. Kaplan Meier curves comparing vaccinated Group 1 to unvaccinated Group 2 for LSS.

Figure 3. Kaplan Meier curves comparing vaccinated Group 1 to unvaccinated Group 2 for second time to progression ($n = 9$).
Figure 1

Proportion in remission vs. First TTP (days)

--- Group 2
--- Group 1
Figure 3

Proportion in remission vs. second TTP (days).

- Group 2
- Group 1
Randomized, placebo-controlled, double-blinded chemo-immunotherapy clinical trial in a Pet Dog model of Diffuse Large B-cell Lymphoma

Laura Marconato, Patrick Frayssinet, Nicole Rouquet, et al.

Clin Cancer Res Published OnlineFirst December 3, 2013.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-13-2283

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2013/12/03/1078-0432.CCR-13-2283.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.