Myeloid-derived suppressor cells predict survival of advanced melanoma patients: comparison with regulatory T cells and NY-ESO-1- or Melan-A-specific T cells

Benjamin Weide1,2,3, Alexander Martens4, Henning Zelba4, Christina Stutz2, Evelyna Derhovanessian4, Anna Maria Di Giacomo5, Michele Maio5, Antje Sucker3,6, Bastian Schilling3,6, Dirk Schadendorf3,6, Petra Büttner7, Claus Garbe1 and Graham Pawelec4

B.W and A.M. contributed equally to this work

1) Department of Dermatology, University Medical Center, Tübingen, Germany
2) German Cancer Research Center (DKFZ), Heidelberg, Germany
3) German Cancer Consortium (DKTK), Heidelberg, Germany
4) Department of Internal Medicine II, Section for Transplantation Immunology and Immunohematology, University of Tübingen, Germany
5) Department of Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Italy
6) Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen, Germany
7) Skin Cancer Research Group, School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Australia.
Running head: Prognostic impact of MDSCs and Tregs in stage IV melanoma

Key words: Melanoma, prognosis, myeloid-derived suppressor cells, regulatory T cells, NY-ESO-1, Melan-A

Financial support: The position of B.W. was in part funded by the Deutsche Forschungsgemeinschaft (DFG), grant SFB 685

Corresponding author:
Benjamin Weide
Dept. of Dermatology, University Medical Center
Liebermeisterstr. 25, 72076 Tübingen, Germany
Tel. +49 70712984555, Fax.:+49 7071 295265
benjamin.weide@med.uni-tuebingen.de

Conflicts of interest:
There is no conflict of interest for any of the authors to disclose

Word count: 3744
Number of Tables: 2
Number of Figures: 3
Statement of translational relevance

The level of myeloid-derived suppressor cells (MDSC) in the peripheral blood is strongly associated with survival of melanoma patients with distant metastasis. After further validation, the MDSC level may represents a candidate to serve as a prognostic factor for stratification/classification purposes and for patient counselling. The correlation between high levels of MDSCs and the absence of melanoma-antigen-specific T cells emphasizes their key role in the adaptive immune system. Our observations provide a rationale to investigate a potential predictive function of the MDSC levels regarding outcome of immunotherapies and to investigate MDSC-depleting strategies in the therapeutic setting, especially in combination with vaccination or T-cell-transfer approaches.
Abstract

PURPOSE:
To analyze the prognostic relevance and relative impact of circulating myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) compared to functional tumor-antigen-specific T cells in melanoma patients with distant metastasis.

EXPERIMENTAL DESIGN:
The percentage of CD14^+CD11b^+HLA-DR^low MDSCs, CD4^+CD25^+FoxP3^+ Tregs and the presence of NY-ESO-1- or Melan-A-specific T cells was analyzed in 94 patients and validated in an additional cohort of 39 patients by flow cytometry. Univariate survival differences were calculated according to Kaplan-Meier and log rank tests. Multivariate analyses were performed using Cox regression models.

RESULTS:
NY-ESO-1-specific T cells, the M-category and the frequency of MDSCs were associated with survival. The absence of NY-ESO-1-specific T cells and the M-category M1c independently increased the risk of death. In a second Cox model not considering results on antigen-specific T cells, a frequency of >11% MDSCs showed independent impact. Its association with survival was confirmed in the additional patient cohort. Median survival of patients with a lower frequency of MDSCs was 13 months vs. 8 months for others (p<0.001, combined cohorts). We observed a strong correlation between high levels of MDSCs and the absence of melanoma-antigen-
specific T cells implying a causal and clinically relevant interaction. No prognostic impact was observed for Tregs.

CONCLUSIONS:
Circulating \(\text{CD}14^{+}\text{CD}11b^{+}\text{HLA-DR}^{-/\text{low}} \) MDSCs have a negative impact on survival and inversely correlate with the presence of functional antigen-specific T cells in advanced melanoma patients. Our findings provide a rationale to investigate MDSC-depleting strategies in the therapeutic setting especially in combination with vaccination or T-cell-transfer approaches.
Introduction

The prognosis of melanoma patients with unresectable distant metastasis is poor, with a median survival time of 9 months (1). Lactate dehydrogenase (LDH) is the only well-established blood biomarker, and has been part of the AJCC staging system since 2001 (2). We have previously demonstrated that circulating functional T cells targeting certain melanoma-associated antigens have strong prognostic impact in melanoma patients (3). Whether other circulating immune cells such as regulatory T cells or myeloid-derived suppressor cells also have prognostic impact has so far only been analyzed in small cohorts of melanoma patients (4-7). In addition to prognostic information, which may influence therapeutic decisions, immune system-based biomarkers might serve as predictive markers for response to immunotherapies such as systemic high-dose IL-2 (8) or ipilimumab (9) and could shed light on the underlying mechanisms of (treatment-induced) immunological tumor rejection.

Myeloid-derived suppressor cells (MDSCs) are heterogeneous populations of immature cells of myeloid origin, at different stages of differentiation (6, 7, 10, 11). Various populations of MDSCs with several distinct phenotypes have been described over the last years, with a shared common suppressive function on adaptive and innate immunity (12, 13). Circulating MDSCs have been shown to correlate with grading, stage and tumor burden (14-17) or with clinical outcome in patients with different types of cancer (18-20). At present, there are conflicting data on the prognostic significance of circulating MDSCs in melanoma (6, 21, 22).

Regulatory T cells (Tregs) are essential for maintaining self-tolerance and are assumed to hamper anti-tumor immune responses (23). Tregs are overrepresented in the blood of patients with metastatic melanoma (4, 24-27), and specifically recognise a broad range of melanoma-associated antigens (28). They are highly enriched in the tumor microenvironment (29, 30) and suppress ambient immune cells
in an antigen non-specific manner (bystander effect) after activation by specific antigen through their T cell receptor (23). Tregs are identified as expressing CD4, high levels of the α-chain of the IL-2 receptor (CD25) and the forkhead box P3 (FoxP3) transcription factor. The impact of circulating Tregs on the course of disease in melanoma patients has only been analyzed in small patient cohorts thus far and was recently reviewed by Jacobs et al (31).

The aim of the present study was to investigate the prognostic relevance of circulating immune cell subsets including Tregs, MDSCs and their relative impact compared to functional NY-ESO-1- and Melan-A-specific T cells on survival of melanoma patients with distant metastasis.

Patients and Methods

Patients

Cryopreserved peripheral blood mononuclear cells (PBMCs) were accessed from the Department of Medical Oncology and Immunotherapy, Siena (Italy) and the Departments of Dermatology, Essen and Tübingen (Germany). PBMCs had been immediately isolated from fresh blood by Ficoll/hypaque density gradient centrifugation and cryopreserved until usage. Inclusion criteria were presence of unresectable distant melanoma metastasis at the time of blood draw and available follow-up data after blood draw. If the number of available PBMCs allowed the full spectrum of analyses or if results of the analysis of NY-ESO-1 or Melan-A-responsive T cells was already known (n=48) from the already published related project (3) patients were allocated to cohort 1. In samples with a low cell number the analysis was limited to the ex-vivo analysis of Tregs and MDSCs (cohort 2). All patients gave
their written informed consent for biobanking. This study was approved by the Ethics Committee, University of Tübingen (approvals 425/2012BO2 and 524/2012BO2).

Analysis of immune cell subsets

All analyses were performed centrally by two investigators (A. M. and H. Z.). PBMCs were thawed using a step two procedure by incubation for 1-2 min in a 37°C water bath, followed by addition of equal amounts of 4°C cold RPMI 1640 (Life Technologies GmbH, Darmstadt, Germany), before and after incubation for 5 min at room temperature. After thawing, different populations of immune cells were evaluated immediately using multicolor flow cytometry. For analysis of MDSCs and Tregs, Fc receptors were initially blocked with Gamunex (human immunoglobulin; Bayer, Leverkusen, Germany), and dead cells were labeled for exclusion with ethidium monoazide (EMA, Invitrogen, Karlsruhe, Germany).

MDSCs were characterized by the CD14⁺CD11b⁺HLA-DR^{−/low} phenotype (6, 7, 18, 19, 32). PBMCs were stained with CD3/PerCP, CD4/PerCP, CD8/PerCP, HLA-DR/PerCP-Cy5.5, CD11b/APC-Cy7 (BD Biosciences, Toronto, Canada) and CD14/Pe-Cy7 (BioLegend, Fellbach, Germany). The percentage of MDSCs was calculated as the relation between CD14⁺CD11b⁺HLA-DR^{−/low} cells and all viable PBMCs.

Tregs, which were characterized by the CD25⁺FoxP3⁺ phenotype (33), were stained with CD25/PE, CD4/PerCP and CD8/APC-H7 (BD Biosciences). After fixation and permeabilization with Human FoxP3 buffer (BD Biosciences), cells were surface-stained with CD3/Pacific Orange (Invitrogen) and intracellularly stained with
FoxP3/Alexa647 (BD Biosciences). The percentage of Tregs was calculated as the relation between CD25⁺FoxP3⁺ cells and all CD4⁺ cells.

NY-ESO-1- and Melan-A-specific T cell responses were detected as described previously (3). Briefly, cells were stimulated with protein-spanning overlapping peptides (1 µg/mL; PepMix™; JPT Peptide Technologies, Berlin, Germany). After culture for 12 days, T cells were re-stimulated at a ratio of 1:2 with autologous, fluorescent-labelled PBMCs (5 µM CFSE; Invitrogen; replaced after February 2012 by 10µM Cell Proliferation Dye eFluor 450; eBioscience, San Diego, USA) either unpulsed (negative control) or presenting one of the antigens in the presence of Golgi-Plug (1 µL/mL; BD Biosciences) for 12 hours. Alternatively, if cell numbers were limited, T cell cultures were restimulated by addition of peptides alone. After blocking with Gamunex and labeling with EMA cells were fixed and permeabilized with CytoFix/CytoPerm (BD Biosciences) and stained with the following antibodies: CD3/Qdot655, CD4/Pacific Orange (both Invitrogen), CD8/APC-H7, IL-4/APC, IFN-γ/PE-Cy7 (all BD Biosciences), TNF/PE (Miltenyi Biotec, Bergisch Gladbach, Germany), IL-10/Pacific Blue, IL-17/PerCP-Cy5.5 (both eBioscience) and IL-2/Alexa700 (BioLegend). After February 2012, subsequent analyses were performed with an optimized panel that was identical except for the following positions: CD3/eFluor605 (eBioscience), CD4/PerCP (BD Biosciences), TNF/FITC (BioLegend), IL-10/PE (eBioscience). Antigen-specific T cells were defined as being present if the following criteria were met for at least one of the six analyzed cytokines: The cytokine-producing cell population had to be clearly distinguishable from non-producing cells and the ratio between the peptide-pulsed and unpulsed samples had to be greater than two. Samples were measured immediately using an LSR II and FACSDiva software (both BD Biosciences). Data were analyzed using FlowJo.
software (Tree Star Inc, Ashland, USA). A detailed illustration of the gating strategy for MDSCs and Tregs is presented in Supplemental Fig. 1. The gating strategy and data interpretation for the analysis of antigen-specific T cells was performed as described in detail elsewhere (3).

Statistics

The percentage of MDSCs and Tregs and age at the date of blood draw was dichotomized using the integral number next to the median of its distribution. In addition, gender and the AJCC M-category (M1a or b vs. M1c) and the presence or absence of NY-ESO-1- and Melan-A-specific T cells was considered in the analysis. The M1a category includes patients with distant metastasis limited to non-visceral soft-tissue and normal LDH. Patients with visceral metastasis are aligned to categories M1b in case of lung metastases and normal LDH or to M1c in case of visceral metastases other than lung and/or elevated LDH (34).

Follow-up time was defined from the date of blood draw of the analyzed sample to the date of last follow-up or death. Disease-specific survival probabilities have been calculated and only deaths due to melanoma have been considered, whereas deaths due to other causes were regarded as censored events. Estimates of cumulative survival probabilities according to Kaplan-Meier were described together with 95% confidence intervals (95%-CIs) and compared using log rank tests. Median survival times (MST) are presented. Multivariable Cox proportional hazard analyses were used to determine the independent effects of prognostic factors. Patients with missing data in variables analyzed in the given Cox regression model were excluded. Models were established using backward and forward stepwise procedures.
Remaining non-significant factors were assessed for potential confounding effects. Changes in the estimates of factors in a model by more than 5% were taken as indicative for confounding. Results of the Cox model were described by means of hazard ratios (HR) together with 95%-CIs, and p-values were based on the Wald test. Associations between presence of antigen-specific T cells and frequencies of MDSCs were calculated by the Chi square and Fisher’s exact tests. Throughout the analysis, p-values less than 0.05 were considered statistically significant. All analyses were carried out using SPSS Version 21 (IBM SPSS, Chicago, Illinois, USA).

Results

Patients

For the most detailed investigations, 94 patients were included with enough PBMCs available for the full spectrum of analyses including the detection of NY-ESO-1- and Melan-A-specific T cells (cohort 1). The median survival time (MST) was 10 months. Median follow-up was 15 months for patients who were alive at the last follow-up, and 8 months for patients who died. Of 93 patients with known M-category, 67 were assigned to the M-category M1c (72%), and 13 (14%) each to M1a and M1b. Median age was 56 years with an interquartile range (IQR) of 48 to 69 years, and 63.8% were male. NY-ESO-1- or Melan-A-specific T cells were detectable in 52.1% and 39.4% of patients, respectively. The median percentage of MDSCs and Tregs was 11.3% and 6.7%, respectively.
Survival analysis

Kaplan-Meier analysis of 94 patients (Table 1) showed that the presence of functional NY-ESO-1-specific T cells (p<0.001), a low frequency of MDSCs (p=0.011) and the M categories M1a/M1b (p=0.012) were associated with prolonged survival. No differences in disease outcome were observed according to the frequency of Tregs (Figure 1). A trend for a more favorable outcome was evident in patients with detectable Melan-A-specific T cells (p=0.101) but no associations with prognosis were found for age or gender. In univariate analysis, the one-year survival rate was highest for M1a/M1b patients (62.8%). The largest differences in one-year survival rates were seen according to whether NY-ESO-1-specific T cells were present or absent (60.4% vs. 29.5%) and similarly according to the frequency of MDSCs (59.9% for ≤11% MDSCs vs. 30.4% for >11% MDSCs). The largest differences in long-term outcome were seen with the presence or absence of NY-ESO-1-specific T cells corresponding to 17% vs. 3.4% survival at 5 years.

The M-category represented the most powerful predictor of survival with an increased risk of death for M1c patients (HR 2.2; p=0.006) according to multivariable Cox proportional hazards analysis. In addition, the absence of NY-ESO-1-specific T cells independently worsened the prognosis (HR 1.7; p=0.041). The frequency of MDSCs did not add independent prognostic information in this model (Table 2, Model 1).

Next, we performed Cox proportional hazards analysis without consideration of NY-ESO-1- and Melan-A-specific T cells (Table 2, Model 2). In this second model, a high level of MDSCs was independently associated with impaired overall survival (HR 1.7; p=0.029) in addition to the predictive function of the M-category (HR 1.9; p=0.019 for M1c).

The association of the frequency of MDSCs with survival was validated in a second confirmatory cohort of 39 patients. Prognosis was very similar to that observed in the
first cohort confirming the worse overall survival of patients with a frequency of MDSCs >11% compared to those with ≤11% (p=0.011). A trend was observed for the M-category (p=0.103). No apparent association was observed for gender (p=0.394), age (p=0.733) or Tregs (p=0.917). The patient’s characteristics and the detailed survival analysis of cohort 2 can be found in Supplemental Table 1.

Analyzing both cohorts in combination, the MST of patients with a lower frequency of MDSCs was 13 months vs. 8 months for the others (p<0.001), while differences in prognosis according to the level of Tregs were not observed (Supplemental Figure 1).

The independent impact of the MDSCs frequency on survival is illustrated after stratification into different combinations of M-category and MDSCs levels (Figure 2).

The association between specific T cells and MDSCs

NY-ESO-1-specific T cells were more frequently observed in patients with low compared to those with high frequencies of MDSCs (65.2% vs. 39.6%; p=0.015) and similar albeit not significant results (50.0% vs. 31.3%; p=0.092) were observed for Melan-A-specific T cells (Fig. 3A). The same trend was observed when CD4+ and CD8+ T cells were analyzed separately (Fig. 3B). In the subgroup of Interferon-γ (IFN-γ)-releasing T cells, the differences in the detection rate according the MDSCs frequencies were more evident in CD8+ T cells than CD4+ T cells (Fig. 3C). No association was found between the M category and the frequencies of MDSCs, neither in patients of cohort 1 nor in the entire population (p=1.000 and p=0.565, respectively).

Discussion
The strongest associations with favorable survival of advanced melanoma patients in this study were the presence of NY-ESO-specific T cells ($p<0.001$) and a low frequency of MDSCs with the $CD14^+CD11b^+HLA-DR^{-/low}$ phenotype ($p=0.011$). In addition, the prognostic relevance of the M-category was likewise evident in our patients but less significant compared to the two immune cell subsets in univariate analysis ($p=0.012$). The presence of NY-ESO-1-specific T cells predicted favorable survival independent of the M-category and was the strongest factor to indicate the chance for long-term survival as we already reported before (3). The frequency of MDSCs did not add independent prognostic information according to Cox regression analysis if analyzed in addition to NY-ESO-1-specific T cells. In contrast, the MDSCs blood level predicted survival independently of the AJCC M-category in patients with distant metastasis if NY-ESO-1 and Melan-A-specific T cells were not considered. We found a high degree of correlation between high levels of MDSCs and the absence of functional antigen-specific T cells suggesting a causal interaction between these immune cell subsets.

It was shown before, that MDSCs are responsible for induction of antigen-specific T cell tolerance (12, 35-37), but the present study is the first to demonstrate directly the triple-correlation between MDSCs, antigen-specific T cells and clinical outcome.

There are two possible interpretations of the inverse correlation between MDSCs and the detection of antigen-specific T cells observed in our study. The first interpretation is that differences in the detection rate of antigen-specific T cells in our assays reflect true in vivo differences in the frequency of pre-existing specific memory T cells. In this case the assumed interaction between MDSCs and the detection of specific T cells takes place in vivo. The second possibility is that MDSCs which are present during the expansion period of our assay impact the proliferation of antigen-specific T
cells *in vitro* depending on the MDSC frequency. If present at high concentrations, MDSCs would exert their suppressive effects on T cells during the expansion period making it less likely that T cells proliferate to detectable levels. We did not obtain conclusive results in additional MDSC-depletion experiments to investigate the impact of MDSCs in the expansion phase of our assay to detect antigen-specific T cells in ten patients with available PBMCs (data not shown). Studies supporting both possibilities can be found in the literature, and an *in-vivo* correlation was demonstrated in different mouse models (36, 38-40). On the other hand, co-culture experiments show that MDSCs can effectively suppress not only CD3+ T cell proliferation in general (22, 41) but also CD4+ and CD8+ T cells (6, 17) and can affect the quality of antigen presenting DCs *in-vitro* (37). Clarification in future studies is clearly required, because MDSCs might influence the results of broadly used in-vitro assays analyzing specific T cell responses after re-stimulation.

The prognostic impact of MDSCs was not restricted to patients with limited stage IV disease, because this study was driven by 72% of patients with visceral metastases other than lung, and/or with elevated LDH. The association of a high frequency of these cells with poor patient survival as shown in our study supports the hypothesis that MDSCs have a clinically relevant immunosuppressive function, at least in malignant melanoma (32). There are other recent studies which are in line with our findings. Filipazzi *et al.* analyzed stage II/III melanoma patients with no evidence of disease and found a trend for better disease-free survival in patients with low amounts of CD14+CD11b+HLA-DR−/low MDSCs compared to those with a high frequency of these cells (p=0.08), but their patient cohort (n=33) was very small (21). A negative impact of this particular MDSCs population on survival was also observed in a completely different setting by Walter *et al.*, who reported a strong association
with outcome after multipeptide vaccination and survival in patients with renal cell cancer (19).

Generally, we did not observe substantial differences in the frequencies of Tregs or MDSCs according to prior therapies (Supplemental Table 2). In two patients who received systemic IL-2-based therapies within 4 weeks before blood draw for this study, unusually high frequencies of Tregs were observed. An increase of Tregs after IL-2 has been described before (42, 43). Therefore we cannot rule out that the high levels were related to the treatment. Nevertheless, the lack of association between Tregs and survival remained basically unchanged if these patients were not considered in univariate analysis (p=0.509). There was no pre-treatment with fludarabine or cyclophosphamide and no other meaningful differences were observed in the frequencies of Tregs or MDSCs for other systemic treatments comparing patients treated within four weeks before blood draw to the others. Moreover, no differences were observed between 99 pretreated patients irrespective of the kind of therapy compared to those 34 without any prior systemic therapy. Based on these data, the impact of prior treatments in general, as well as the timing of blood draw seems to be limited regarding treatment-induced changes in frequency of these immune-cell subsets. Nevertheless, the treatment-related short-term effects need to be analyzed in subsequent studies.

Our findings highlight the role of MDSCs to serve as a prognostic marker, whereas the applicability of the detection of antigen-specific T cells to serve as a prognostic marker is limited. This is because the frequency of tumor antigen-reactive memory T cells \textit{in vivo} is too low to be detected directly \textit{ex vivo} by intracellular cytokine staining. Therefore, an initial in vitro stimulation period is applied to ensure expansion of memory T cells to a measurable extent. This requires the availability of fully equipped
laboratories able to perform T cell culturing and more sophisticated flow cytometry. A large number of PBMCs is also required and the minimum amount of blood draw is 25 ml to ensure sufficient cells to perform the analysis of antigen-specific T cells. The complex protocol requirements and data analysis require the involvement of specially trained and experienced personal but nevertheless a high degree of inter-observer variability has to be assumed. Compared to the detection of NY-ESO-1-specific T cells the analysis of MDSCs alone was less powerful to predict survival of melanoma patients with distant metastases. Nevertheless, prognosis prediction was considerably improved by the analysis of MDSCs compared to the classification based on the M-category alone. Moreover, the analysis of MDSCs can be performed ex vivo without the need for in vitro pre-sensitization and in contrast to the detection of antigen-specific T cells, only PBMCs corresponding to 5 ml peripheral blood are needed. Therefore, the feasibility of analyzing the frequency of MDSCs in clinical practice can be assumed.

The threshold of the MDSCs frequency was established based on the median value measured among all cohort 1 patients (11.3%), but was adapted to the next integral number (11%) to allow reasonable clinical usage and further validation.

The high clinical relevance of specific T-cell immunity is again highlighted by our study and further provides a rationale to pursue vaccination and T cell transfer strategies targeting NY-ESO-1, at least in melanoma. Our findings also provide a rationale to investigate MDSC-depleting strategies in the therapeutic setting especially in the frame of specific immunotherapies, such as anti-cancer vaccination or adoptive T cell transfer. Another strategy in addition to their depletion might be to block the suppressive effects of MDSCs. This can be achieved by inhibition of the
cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway (39, 41, 44, 45) or after application of phosphodiesterase-inhibitors (40).

In contrast to MDSCs, the level of circulating Tregs was not associated with prognosis in our patients. This finding is in contrast to an initial report by Baumgartner et al. (5), who analyzed 14 melanoma patients. No prognostic relevance has been reported in patients with head and neck cancer (46), but poor survival was described in patients who had high levels of circulating Tregs in ovarian (47) and renal cell cancer (48). Schwartzentruber et al. even observed higher blood levels of Tregs in patients with clinical response after high-dose IL-2/vaccine treatment compared to those with progressive disease (49). Summarizing the prognostic role of circulating Tregs, in contrast to other malignancies, there is no compelling clinical evidence either in the literature, or based on our own data reported here, to suggest an important unfavorable prognostic impact of their cell frequencies in the peripheral blood of melanoma patients.

In conclusion, circulating CD14$^+$CD11b$^+$HLA-DR$^-$/low MDSCs have strong prognostic impact in melanoma patients with distant metastasis and are inversely correlated with the presence of functional antigen-specific T cells. A frequency greater than 11% was independently associated with poor survival and was as important as the M-category in predicting outcome according to Cox regression analysis. The role of MDSCs to serve as a prognostic marker in stage IV melanoma needs to be confirmed in independent studies. Our findings warrant further investigation of MDSCs-depleting strategies in the therapeutic setting especially in combination with vaccination or T-cell-transfer approaches.
References

29. Jandus C, Bioley G, Speiser DE, Romero P. Selective accumulation of
differentiated FOXP3(+) CD4 (+) T cells in metastatic tumor lesions from melanoma
patients compared to peripheral blood. Cancer Immunol Immunother 2008;57:1795-
805.

30. Ahmadzadeh M, Felipe-Silva A, Heemskerk B, Powell DJ, Jr., Wunderlich JR,
Merino MJ, et al. FOXP3 expression accurately defines the population of intratumoral
regulatory T cells that selectively accumulate in metastatic melanoma lesions. Blood
2008;112:4953-60.

31. Jacobs JF, Nierkens S, Figdor CG, de Vries IJ, Adema GJ. Regulatory T cells in
melanoma: the final hurdle towards effective immunotherapy? Lancet Oncol
2012;13:e32-e42.

32. Filipazzi P, Huber V, Rivoltini L. Phenotype, function and clinical implications of
myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother

33. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the

34. Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, et

35. Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI. Mechanism of T cell
tolerance induced by myeloid-derived suppressor cells. J Immunol 2010;184:3106-
16.

Table 1: Patient characteristics and analysis of overall survival in cohort 1

<table>
<thead>
<tr>
<th>Prognostic Factor</th>
<th>n</th>
<th>%</th>
<th>% Dead</th>
<th>1 Year survival rate [95%-CI] (%)</th>
<th>2 Year survival rate [95%-CI] (%)</th>
<th>p<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>94</td>
<td>100.0</td>
<td>76.6</td>
<td>45.4 [35.0; 55.9]</td>
<td>23.3 [13.7; 32.8]</td>
<td>0.861</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>60</td>
<td>63.8</td>
<td>78.3</td>
<td>42.6 [29.7; 55.5]</td>
<td>22.9 [11.0; 34.7]</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>34</td>
<td>36.2</td>
<td>73.5</td>
<td>50.7 [33.3; 68.1]</td>
<td>23.4 [7.5; 39.3]</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.274</td>
</tr>
<tr>
<td>≤ 55 years</td>
<td>46</td>
<td>48.9</td>
<td>78.3</td>
<td>39.4 [24.8; 53.9]</td>
<td>18.8 [6.0; 31.5]</td>
<td></td>
</tr>
<tr>
<td>> 55 years</td>
<td>48</td>
<td>51.1</td>
<td>75.0</td>
<td>51.3 [36.6; 66.0]</td>
<td>27.7 [13.8; 41.6]</td>
<td></td>
</tr>
<tr>
<td>M-category</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.012</td>
</tr>
<tr>
<td>M1a or M1b</td>
<td>26</td>
<td>28.0</td>
<td>65.4</td>
<td>62.8 [43.4; 82.2]</td>
<td>43.5 [22.8; 64.2]</td>
<td></td>
</tr>
<tr>
<td>M1c</td>
<td>67</td>
<td>72.0</td>
<td>82.1</td>
<td>38.0 [26.0; 50.0]</td>
<td>13.7 [4.1; 23.3]</td>
<td></td>
</tr>
<tr>
<td>Missing data</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY-ESO-1-specific T cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Present</td>
<td>49</td>
<td>52.1</td>
<td>65.3</td>
<td>60.4 [46.1; 74.7]</td>
<td>32.8 [17.8; 47.8]</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>45</td>
<td>47.9</td>
<td>88.9</td>
<td>29.5 [15.8; 43.1]</td>
<td>13.6 [2.9; 24.4]</td>
<td></td>
</tr>
<tr>
<td>Melan-A-specific T cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.101</td>
</tr>
<tr>
<td>Present</td>
<td>37</td>
<td>39.4</td>
<td>73.0</td>
<td>55.9 [39.7; 72.1]</td>
<td>32.6 [16.2; 49.1]</td>
<td></td>
</tr>
<tr>
<td>Absent</td>
<td>57</td>
<td>60.6</td>
<td>78.9</td>
<td>38.2 [24.8; 51.5]</td>
<td>16.9 [5.9; 27.9]</td>
<td></td>
</tr>
<tr>
<td>Tregs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.64</td>
</tr>
<tr>
<td>≤ 7%</td>
<td>46</td>
<td>54.8</td>
<td>80.4</td>
<td>43.8 [28.7; 59.0]</td>
<td>17.7 [5.2; 30.2]</td>
<td></td>
</tr>
<tr>
<td>> 7%</td>
<td>38</td>
<td>45.2</td>
<td>78.9</td>
<td>43.8 [27.8; 59.8]</td>
<td>26.5 [12.0; 41.0]</td>
<td></td>
</tr>
<tr>
<td>Missing Data</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDSCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.011</td>
</tr>
<tr>
<td>≤ 11%</td>
<td>48</td>
<td>51.1</td>
<td>79.2</td>
<td>30.4 [16.4; 44.3]</td>
<td>15.8 [3.0; 28.6]</td>
<td></td>
</tr>
<tr>
<td>> 11%</td>
<td>46</td>
<td>48.9</td>
<td>73.9</td>
<td>59.9 [45.6; 74.3]</td>
<td>30.0 [15.9; 44.0]</td>
<td></td>
</tr>
</tbody>
</table>

^a 95%-CI = 95% confidence interval; ^b p-values are results of log rank tests excluding cases with missing values. Tregs - regulatory T cells; MDSCs – myeloid-derived suppressor cells.
Table 2: Cox models for disease-specific death

<table>
<thead>
<tr>
<th>Prognostic factor</th>
<th>Model 1</th>
<th></th>
<th>Model 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nb</td>
<td>% Dead</td>
<td>Hazard ratio (95% CI)a</td>
<td>p-value</td>
</tr>
<tr>
<td>M-category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1a or M1b</td>
<td>26</td>
<td>65.4%</td>
<td>1</td>
<td>2.2 (1.3, 4.0)</td>
</tr>
<tr>
<td>M1c</td>
<td>67</td>
<td>82.1%</td>
<td>1</td>
<td>1.9 (1.1, 3.4)</td>
</tr>
<tr>
<td>NY-ESO-1-specific T cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>48</td>
<td>66.7%</td>
<td>1</td>
<td>1.7 (1.02, 2.9)</td>
</tr>
<tr>
<td>Absent</td>
<td>45</td>
<td>88.9%</td>
<td>1</td>
<td>Not considered</td>
</tr>
<tr>
<td>Melan-A-specific T cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present</td>
<td>38</td>
<td>73.7%</td>
<td>1</td>
<td>1.6 (0.97, 2.8)</td>
</tr>
<tr>
<td>Absent</td>
<td>55</td>
<td>80.0%</td>
<td>1</td>
<td>Not considered</td>
</tr>
<tr>
<td>MDSCs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 11%</td>
<td>45</td>
<td>75.6%</td>
<td>1.4 (0.84, 1.3)</td>
<td>p=0.199</td>
</tr>
<tr>
<td>> 11%</td>
<td>48</td>
<td>79.2%</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

* 95% CI = 95% confidence interval; b 1 patient had an unknown M-category and was excluded.

Significant findings in the final models are highlighted by bold letters. Model 1 was adjusted for the confounding effects of Melan-A-specific T cells and CD14+CD11b-HLA-DR^low MDSCs (MDSCs) and no confounding or significant interactions were detected in Model 2.
Legends to figures

Fig 1. Kaplan-Meier survival curves of non-resectable stage IV patients according to the frequency of circulating CD14+CD11b+HLA-DRflow myeloid-derived suppressor cells (MDSCs) (A), CD4+CD25+FoxP3+ Tregs (B), the presence of NY-ESO-1-specific T cells (C), and according to the M-category (D).

Fig 2. Kaplan-Meier survival curves according to the frequency of circulating myeloid-derived suppressor cells (MDSCs) and M-category in combination demonstrating the independent impact of both factors.

Fig 3. Correlation between myeloid-derived suppressor cells (MDSCs) and antigen-specific T cells. NY-ESO-1- and Melan-A-specific T cells were more frequently observed in patients with low compared to those with high frequencies of MDSCs (A). The same trend was observed when CD4+ and CD8+ T cells were analyzed separately (B). The correlation was stronger regarding CD8+ compared to CD4+ T cells, if patients are analyzed for the presence of Interferon-γ-releasing NY-ESO-1- or Melan-A-specific T cells (C).
Figure 1

A

CD14+CD11b+HLA-DR–/low MDSCs

B

CD4+CD25+FoxP3+Tregs

C

NY-ESO-1 specific T cells

D

M category

Specific T cells present
Specific T cells absent

p < 0.001

≤ 7%
P = 0.011

> 7%
P = 0.640

M1a/M1b
M1c
p = 0.012
Figure 2

M category and MDSCs combined

- M1c, MDSCs > 11%
- M1c, MDSCs ≤ 11%
- M1a/M1b, MDSCs > 11%
- M1a/M1b, MDSCs ≤ 11%

p < 0.001
Figure 3

A

\[\text{% of patients} \]

\[\begin{array}{c}
\text{NY-ESO-1} \\
\text{Melan-A}
\end{array} \]

\[p = 0.015 \]

\[p = 0.092 \]

MDSCs > 11%

MDSCs ≤ 11%

B

\[\text{% of patients} \]

\[\begin{array}{c}
\text{CD4} \\
\text{CD8} \\
\text{NY-ESO-1} \\
\text{Melan-A}
\end{array} \]

\[p = 0.098 \]

\[p = 0.050 \]

\[p = 0.059 \]

\[p = 0.233 \]

MDSCs > 11%

MDSCs ≤ 11%

C

\[\text{% of patients} \]

\[\begin{array}{c}
\text{CD4} \\
\text{CD8} \\
\text{NY-ESO-1} \\
\text{Melan-A}
\end{array} \]

\[p = 0.203 \]

\[p = 0.0013 \]

\[p = 0.103 \]

\[p = 0.002 \]

MDSCs > 11%

MDSCs ≤ 11%
Clinical Cancer Research

Myeloid-derived suppressor cells predict survival of advanced melanoma patients: comparison with regulatory T cells and NY-ESO-1- or Melan-A-specific T cells

Clin Cancer Res Published OnlineFirst December 9, 2013.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-13-2508

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2013/12/09/1078-0432.CCR-13-2508.DC1
http://clincancerres.aacrjournals.org/content/suppl/2014/03/14/1078-0432.CCR-13-2508.DC2

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.