A phase I, pharmacokinetic and pharmacodynamic study of panobinostat, an HDAC inhibitor, combined with erlotinib in patients with advanced aerodigestive tract tumors

Jhanelle E. Gray1,2, Eric Haura1,2, Alberto Chiappori1,2, Tawee Tanvetyanon1, Charles C. Williams1, Mary Pinder-Schenk1,2, Julie A. Kish3, Jenny Kreahling2, Richard Lush2,4, Anthony Neuger2,4, Leticia Tetteh5, Angela Akar1, Xiuhua Zhao6, Michael J. Schell6, Gerold Bepler7, and Soner Altiok2

1Department of Thoracic Oncology, 2Chemical Biology and Molecular Medicine Program, 3Department of Head and Neck Oncology, 4Clinical Pharmacology Core, 5Department of Cutaneous Oncology, and 6Biostatistics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida; and 7Karmanos Cancer Institute, Detroit, MI

Corresponding Author:
Jhanelle Gray, MD, 12902 Magnolia Drive, FOB1, Tampa, FL 33612. Ph: 813-745-6895; Fax: 813-745-3027; Email: Jhanelle.Gray@moffitt.org

Running Title: Panobinostat and erlotinib in NSCLC and Head and Neck cancer

Trial Registration ID: ClinicalTrials.gov NCT00738751

Keywords: Non-Small Cell Lung Cancer, Head and Neck Cancer, panobinostat, Erlotinib, Histone Deacetylase Inhibitors, EGFR mutation, EGFR inhibitors, CHK1 and E-cadherin.

Financial support: The study was sponsored by Novartis Pharmaceuticals and Genentech. This work was also supported in part by the National Cancer Institute, part of the National Institutes of Health, through grant number P30-CA76292-14.

Portions of the study were presented in preliminary abstract only form at the 2010 Annual Meeting of the American Society of Clinical Oncology, June 4-8, 2010, Chicago, IL.

Translational Relevance: 148 (150max)

Number of tables: 2
Number of figures: 4
Abstract word count: 249 (250 max)
Manuscript word count: 4179 (5000 max)
Translational Relevance

This study provides a detailed evaluation of the safety, toxicity, pharmacokinetics (PK), and pharmacodynamics of panobinostat when combined with erlotinib in non-small cell lung cancer (NSCLC) and head and neck cancer patients. While erlotinib 150 mg daily plus panobinostat at 30 mg twice weekly had dose-limiting toxicities, erlotinib 100 mg daily and panobinostat 30 mg twice weekly were generally well tolerated. Evaluation of pharmacodynamic markers obtained on serial tumor biopsies demonstrated that CHK1 expression significantly correlated with progression-free survival and tumor response. We also describe a novel approach to evaluating drug-mediated changes in histone acetylation in subcutaneous abdominal adipose tissue obtained via fine needle aspiration. Further evaluation of CHK1’s predictive potential for efficacy assessment and the combination in a select NSCLC patient population should be considered. With over 100 current studies evaluating histone deacetylase inhibitors, assessment of fat pad biopsies is relevant for future clinical trial investigations.
Abstract

Purpose: Panobinostat, a histone deacetylase (HDAC) inhibitor, enhances anti-proliferative activity in non-small cell lung cancer (NSCLC) cell lines when combined with erlotinib. We evaluated this combination in advanced NSCLC and head-and-neck (H&N) cancer patients.

Experimental Design: Eligible patients were enrolled in a 3+3 dose-escalation design to determine the maximum tolerated dose (MTD) of twice weekly panobinostat plus daily erlotinib at 4 planned dose levels (DLs). Pharmacokinetics, blood, fat pad biopsies (FPB) for histone acetylation, and paired pre- and post-therapy tumor biopsies for CHK1 expression were assessed.

Results: Of 42 enrolled patients enrolled, 33 were evaluable for efficacy. Dose-limiting toxicities were prolonged-QTc and nausea at DL3. Adverse events included fatigue and nausea (grades 1-3), and rash and anorexia (grades 1-2). Disease control rates were 54% for NSCLC (n=26) and 43% for H&N (n=7). Of 7 NSCLC patients with epidermal growth factor receptor (EGFR) mutations, 3 had partial response, 3 had stable disease, and 1 progressed. For EGFR-mutant versus EGFR-wild-type patients, progression-free survival (PFS) was 4.7 versus 1.9 months (P=0.43) and overall survival was 41 (estimated) versus 5.2 months (P=0.39). Erlotinib pharmacokinetics was not significantly affected. Correlative studies confirmed panobinostat’s pharmacodynamic effect in blood, FPB and tumor samples. Low CHK1 expression levels correlated with PFS (P=0.006) and response (P=0.02).

Conclusions: We determined MTD at 30 mg (panobinostat) and 100 mg (erlotinib). Further studies are needed to further explore benefits of HDAC inhibitors in EGFR-
mutant NSCLC patients, investigate FPB as a potential surrogate source for biomarker investigations, and validate CHK1’s predictive role.
INTRODUCTION

The hypoacetylation of histones and key proteins, including oncogenes and tumor suppressor genes, plays an important role in carcinogenesis (1-3). Histone acetylation and deacetylation are tightly regulated by histone acetyltransferases and histone deacetylases (HDACs) in normal cells. However, in tumor cells, this process can be aberrant (4, 5). The blockade of HDACs leads to silencing of transcription via repression of genes and chromatin condensation in many tumor types (3, 6, 7).

Panobinostat (LBH589), an oral pan-HDAC inhibitor, has demonstrated antitumor effects in preclinical studies (8-12), including in non-small cell lung cancer (NSCLC). In clinical trials, the main toxicities of panobinostat are diarrhea, nausea, and thrombocytopenia (13, 14). Previously, we showed that protein levels of checkpoint kinase 1 (CHK1), which has a major role in G2 cell cycle checkpoint regulation (15), was markedly reduced in lung cancer cells treated with pan-and selective HDAC inhibitors, including panobinostat (16), suggesting that CHK1 may be utilized as a pharmacodynamic marker to assess HDAC inhibitor efficacy in tumor tissue.

The epidermal growth factor receptor (EGFR) is an important therapeutic target in upper aerodigestive tract tumors, including NSCLC and head and neck (H&N) cancers. It impacts diverse oncogenic pathways that regulate cell proliferation, survival, and invasion (17). Erlotinib, an FDA-approved EGFR tyrosine kinase inhibitor (TKI), has been shown to improve outcomes in previously treated patients with NSCLC, with a standard single-agent dose of 150 mg daily (18). In the preclinical setting, we and others have shown that HDAC inhibition, including with panobinostat, in EGFR-mutant, TKI-sensitive NSCLC cell lines results in depletion of EGFR and induction of apoptosis.
In addition, these data suggest that the addition of panobinostat to erlotinib may not only enhance erlotinib efficacy but also overcome EGFR-TKI resistance.(8, 19-23)

Based on the enhanced effects observed with erlotinib in combination with panobinostat in NSCLC cell lines (8, 19-21), we conducted a phase I study with expansion in patients with advanced NSCLC and with H&N cancers. The objectives were to establish the safety and tolerability, to collect preliminary efficacy data, and to determine the pharmacokinetic and pharmacodynamic profiles in blood, paired tumor, peripheral blood mononuclear cells (PBMCs), and fat pad biopsies (FPBs).

PATIENTS AND METHODS

The Institutional Review Board at the University of South Florida approved the protocol for this single-institution study (ClinicalTrials.gov identifier NCT00738751). Informed consent was obtained from all patients enrolled on the study. Patients were recruited from the thoracic oncology and head and neck clinics at the H. Lee Moffitt Cancer Center and Research Institute. Eligible patients included those ≥18 years of age with advanced/metastatic NSCLC or H&N cancer who had failed at least one line of systemic therapy. Participants had measurable disease defined by RECIST (version 1.0), an Eastern Cooperative Oncology Group Performance Status ≤1, no prior systemic chemotherapy within 14 days, no cardiac dysfunction, and a baseline multi-gated acquisition scan or echocardiogram demonstrating a left ventricular ejection fraction equal to or above the lower limit of the institutionally normal value (50%). Patients with stable, asymptomatic pre-treated brain metastases no longer requiring steroids were allowed. Potentially fertile participants had to agree to use an approved contraceptive
method. Patients with significant laboratory abnormalities were excluded. There were no limits to number of prior therapies. Prior EGFR-TKI therapy was permitted.

Study Design

This was a dual-agent, phase I study with an expansion arm (n=20 patients) at the recommended phase II dose (RP2D). Eligible patients were enrolled at escalating dose levels of oral erlotinib in combination with oral panobinostat in a standard 3+3 design. The RP2D was defined as the highest dose level of panobinostat in combination with erlotinib that induced a dose-limiting toxicity (DLT) in fewer than 33% of patients. Cohorts of three to six eligible patients were treated with escalating doses of oral erlotinib and panobinostat oral capsules.

If a DLT occurred (see *Safety and Efficacy Analyses* below for definition), then three additional patients were entered at the same dose. If there were no more DLTs, dose escalation continued. Dose escalation was performed after all patients at the previous dose level completed 3 weeks of treatment. An additional 20 patients with NSCLC and H&N cancer were treated at the RP2D level to characterize the toxicity profile, perform the biomarker analysis, and evaluate for preliminary antitumor activity.

Treatment Delivery

Each cycle was defined as a 21-day period. Erlotinib was taken daily without interruption. Panobinostat was taken twice weekly, for 2 out of 3 weeks of each cycle. Four dose levels of panobinostat in combination with erlotinib were planned: 1) dose level 1 (DL1) = panobinostat 20 mg PO twice weekly for 2 out of 3 weeks + erlotinib 100
mg PO daily; 2) dose level 2 (DL2) = panobinostat 30 mg and erlotinib 100 mg; 3) dose level 3 (DL3) = panobinostat 30 mg and erlotinib 150 mg; and 4) dose level 4 (DL4) = panobinostat 40 mg and erlotinib 150 mg. Doses were not escalated over the course of treatment of an individual patient.

Safety and Efficacy Analyses

Toxicities at baseline and on study were graded according to the Common Terminology Criteria for Adverse Events (version 3.0). DLT was defined as grade 4 rash, grade 3/4 nausea/vomiting refractory to anti-emetics, grade 3/4 diarrhea refractory to anti-diarrhea medications, QTc prolongation ≥500 msec or >480 msec on ≥2 occasions, other grade 3/4 non-hematologic toxicity, grade 4 hematologic toxicity, or treatment-related death occurring within cycle 1. Dose modification guidelines for toxicity were available in the protocol. Treatment was continued until disease progression, unacceptable adverse effects, or withdrawal of informed consent. Radiologic assessments were performed every 2 cycles. To determine tumor progression or response, RECIST version 1.0 was used.

Pharmacokinetic Studies

Mandatory pharmacokinetic plasma sampling was performed on day 8 (erlotinib), day 9 (erlotinib and panobinostat), and day 15 (erlotinib and panobinostat) of cycle 1 at pre-dose and at 0.5, 2, 4, 6, 8-10, and 24 hours post-dose for all participants enrolled.

Plasma samples were collected and stored at −70°C until analysis. Methods for quantitation and pharmacokinetic analysis of erlotinib (24, 25) and panobinostat (26)
have been previously published. The disposition of erlotinib in the presence of panobinostat (days 9 and 15) was compared to that shown in the absence of panobinostat (day 8).

Correlative Studies

EGFR mutation analyses were performed on all NSCLC patients by direct sequencing of exons 18-21 in a CLIA-certified laboratory using available tumor specimens; a dedicated tumor biopsy prior to study enrollment for mutation assessment was not required.

All patients enrolled had pre- and post-treatment blood draws and subcutaneous adipose tissue sampling for histone acetylation. In addition, in those who consented, optional pre-treatment and C1D18+/-7 tumor biopsies under image guidance by a board-certified cytopathologist were obtained for correlative studies.

For immunohistochemical analyses, tumor slides were stained with E-cadherin (Cell Marque Corporation; 760-4440), CHK1 (Abcam, Cambridge, MA; ab47574), or acetylated alpha-tubulin (Abcam; ab24610) antibodies using a Ventana Discovery XT automated system (Ventana Medical Systems, Tucson, AZ) as per manufacturer's protocol with proprietary reagents. Allred scoring system was used to evaluate the percentage of positive stained cells and staining intensity (27). A proportion score was assigned representing the proportion of positively stained tumor cells (0 = none; 1 = <1/100; 2 = 1/100 to <1/10; 3 = 1/10 to 1/3; 4 = 1/3 to 2/3; 5 = >2/3). Average intensity of staining in positive cells was assigned as an intensity score (0 = none; 1 = weak; 2 = intermediate; 3 = strong). Proportion score and intensity score were added to obtain a
total score ranging from 0 to 8. Briefly, histone acetylation was assessed in FPB and in PBMCs by Western blot analysis using acetyl-histone H4 (Cell Signaling, Danvers, MA; 2591S) and β-actin (Sigma, St Louis, MO; A1978) antibodies, as previously described (16); β-actin was used as a loading control.

Statistical Analysis

Efficacy analyses were performed in both efficacy evaluable patients (defined as those who completed at least 75% of cycle 1 of the combination treatment) and theintent-to-treat patients. Median survival for patients who were EGFR-mutant was estimated assuming an exponential survival distribution. Progression-free survival (PFS) and overall survival (OS) times were estimated using Kaplan-Meier curves. Survival comparisons between the EGFR-mutant group and the other patient groups were performed using the log-rank test. Efficacy comparisons for response were performed using the Mantel-Haenszel test. Correlations with Allred scores were assessed using Spearman correlation. A P value of <0.05 was considered statistically significant. All analyses used SAS version 9.3 (Cary, NC).

RESULTS

Patients and Treatment

Forty-two patients were enrolled (3, 8, and 7 at consecutive dose levels and 24 at the RP2D, with all evaluable for toxicity and 33 evaluable for efficacy analyses) from January 2009 until February 2011. Table 1 summarizes patient characteristics. Reasons for patients being non-evaluable for efficacy included rapid clinical progression...
(n=3), patient withdrawal (n=3), adverse events (AEs) not related to panobinostat or erlotinib (n=1), and serious AEs related to study therapy (n=2; DLT). The median number of cycles received for patients at DL1, DL2, and DL3 and across all patients enrolled was 1, 1.5, 1, and 2 (maximum 35), respectively. Nine patients received 6 or more cycles of treatment. Four of the 8 patients with EGFR mutation had prior erlotinib treatment. The MTD and the RP2D were defined as oral erlotinib 100 mg daily and panobinostat 30 mg twice weekly for 2 weeks of the 21-day cycle. No patient received drugs at DL4.

Toxicity

In the DL1 group, no DLTs occurred in 3 evaluable patients. At DL2, 1 of the 6 evaluable patients experienced grade 3 atrial fibrillation, although the episode occurred during an albuterol nebulizer treatment. At DL3, 2 DLTs occurred in the 5 patients enrolled (grade 3 nausea and grade 3 prolonged QTc). All DLTs resolved with cessation of the study agents, and no permanent sequelae was observed.

There were 583 separate AEs recorded that were possibly, probably, or definitely related to study therapy (431, 122, 29, and 1 for grades 1, 2, 3, and 4, respectively). The most common AEs were fatigue and nausea (grades 1-3) and rash and anorexia (grades 1-2). Dose reductions were required for thrombocytopenia (n=1) and nausea (n=1). Table 2 provides an overview of treatment-related, grade 2 or higher AEs occurring in >10% of the patients. No patients died while on active treatment. Two patients died during their 30-day follow-up period from complications not felt to be related to study drug. One died of chronic obstructive pulmonary disease exacerbated
by multiple pulmonary emboli and the other from a myocardial infarction possibly triggered by direct tumor extension.

Pharmacokinetic Studies

Area under the curve was calculated for erlotinib at steady state on day 8, at first exposure to panobinostat on day 9, and when both drugs were at steady state on day 15. During each evaluated day, the AUC for erlotinib was proportional to dose. The dosing of panobinostat did not significantly affect the pharmacokinetics of erlotinib (Figures 1A and 1B).

Efficacy Analyses

Of 42 patients enrolled, 33 were evaluable for response (Figure 2). One patient who experienced a DLT (prolonged QTc) was not included in the efficacy assessments, as the patient did not complete at least 75% of cycle 1. When we combined patients regardless of tumor type or histology, we found that there were 3 (9%) partial responses (PR) and 14 (42%) patients with stable disease (SD); disease control rate (DCR) was 52%.

By Histology

By tumor type, the DCR was 54% for NSCLC (n=26) and 43% for H&N (n=7). By histology for those with NSCLC, the adenocarcinoma (n=18) versus squamous cell lung cancer (SQCLC; n=7) patients had a better response profile: 3 (17%) versus 0 (0%) with PR, 10 (55%) versus 1 (14%) with SD, and 5 (28%) versus 6 (86%) with progressive
disease, respectively ($P=0.015$). One additional patient with neuroendocrine lung cancer had progressive disease. Among the 7 H&N cancer patients, 3 (43%) achieved SD and 4 (57%) progressed. Of the 17 participants who went on to receive further treatment, 1 was non-evaluable, 4 achieved a PR (subsequent therapies included carboplatin plus paclitaxel, pemetrexed, and docetaxel), 4 had progressive disease, and 8 had SD to subsequent therapies.

EGFR mutant

A total of 7 evaluable patients had EGFR mutations; all had adenocarcinoma of the lung. The 3 PRs achieved at the RP2D occurred in patients with an exon 21 EGFR mutations (L858R) who were EGFR-TKI naïve. Two of these patients remained on therapy for more than 30 cycles. In the remaining lung adenocarcinoma patients with EGFR mutations (n=7 total), 3 had SD (1 was EGFR-TKI naïve with exon 20 mutation [T785T] and exon 21 [L858R]), 2 had prior EGFR-TKI exposure (with 1 having a point mutation in exon 18 [G719A] and another with an exon 19 deletion), and 1 progressed (had prior EGFR-TKI exposure and EGFR exon 21 mutation [L858R]). In summary, 3 EGFR-mutant patients had prior erlotinib exposure, with a median time between erlotinib treatments of 3 months (range: 14 days to 1.5 years), whereas their prior duration of erlotinib treatment ranged from 1 to 3.5 years. Of the 10 lung adenocarcinoma patients with SD, 5 patients had prior exposure to erlotinib for ≥3 months. One patient with an EGFR exon 19 deletion, who was initiated on study within 3 months after having documented progression following 1 year of erlotinib plus bevacizumab, achieved SD on study for 10 cycles.
EGFR wild-type

Seven evaluable patients were identified with *EGFR* wild-type NSCLC: 5 (72%) patients had SD (all adenocarcinoma, with 2 having prior EGFR-TKI exposure), and 2 (28%) patients had progressive disease (1 with adenocarcinoma and prior EGFR-TKI exposure, and 1 with SQCLC). Of the 3 *EGFR* wild-type patients with prior EGFR-TKI exposure, 1 patient with SD had an 18% reduction in tumor burden by RECIST. This patient was a lifetime never-smoker with lung adenocarcinoma who had been previously treated with erlotinib for 2 years, with the first year receiving a combination treatment with bevacizumab. This patient enrolled on study at time of overt radiographic progression and remained on treatment for 11 cycles until development of intolerable nausea. Repeat molecular testing performed confirmed the prior results of *EGFR* wild-type and noted that the patient did not harbor any detectable abnormalities in *KRAS*, *ALK*, *BRAF*, or *PI3K*.

Although the numbers are small, we present some comparisons here among those with known *EGFR* status and eligible for the efficacy analyses. The DCRs were similar for *EGFR*-mutant (85%; n=7) and *EGFR* wild-type patients (71%; n=7).

EGFR-TKI naïve versus prior exposure

Of the 26 NSCLC patients evaluable for efficacy, 7 lung adenocarcinoma patients had prior EGFR-TKI exposure, whereas 19 NSCLC (11 adenocarcinoma, 7 SQCLC, 1 neuroendocrine) patients did not. Of the 14 NSCLC patients with known *EGFR* mutation status, 6 had prior *EGFR-TKI* exposure and 8 were *EGFR-TKI* naïve. Among the 7 patients with an *EGFR* mutation, 2 of the 3 *EGFR-TKI* exposed patients were non-
progressors compared to 4 of 4 *EGFR*-TKI naïve patients. In the 7 *EGFR* wild-type patients, 2 of 3 *EGFR*-TKI exposed were non-progressors compared to 3 of 4 *EGFR*-TKI naïve patients. Of the 12 NSCLC patients with unknown *EGFR* status, the one patient (mentioned above) with prior *EGFR*-TKI exposure had SD, whereas 2 of the 11 *EGFR*-TKI naïve patients were non-progressors. None of the 7 H&N patients had prior *EGFR*-TKI exposure.

Of those 7 patients with prior *EGFR*-TKI exposure, their course on study were reviewed. 1 patient was removed for toxicity; 1 patient withdrew consent; 3 patients developed slow progression over a time of at least 6 cycles (2 of the 3 were *EGFR* mutant), while 2 developed rapid progression within the first 2 cycles (1 was *EGFR* mutant).

Progression-free and overall survival

In the intent-to-treat population (n=42), PFS and OS curves are presented in **Figures 3**. For the NSCLC and H&N patients, median OS was 7.4 versus 8.2 months (*P* = 0.67) and median PFS was 2.5 versus 2.1 months (*P* = 0.75), respectively (**Figure 3A**). For NSCLC patients with adenocarcinoma versus SQCLC, median PFS was 4.5 months versus 1.9 months (*P* = 0.10) and OS was 8.9 versus 5.5 months (*P* = 0.12), respectively (**Figure 3B**). The PFS and OS results across the 4 groups (NSCLC: *EGFR*-mutant, *EGFR* wild-type, and *EGFR* unknown lung cancers; H&N cancer) are presented in **Figure 3C**. Assuming survival to follow an exponential distribution, the estimated median OS for the 8 *EGFR*-mutant patients was 41 months, compared to at most 8.2 months for the other subgroups. Five of the 8 known *EGFR*-mutant patients were still alive at ≥21 months. When H&N patients are removed from Figure 3C leaving only the
35 NSCLC patients, in three subgroups the PFS is not significant \((P = 0.43)\), whereas the OS remains significantly different \((P = 0.039)\) (data not shown). It is notable that, although 3 of the 6 \(\text{EGFR}\)-mutant patients who ultimately progressed remain alive, all 25 with progression from the \(\text{EGFR}\) wild-type and unknown groups have died \((P = 0.0003)\).

CHK1 expression inversely correlates with E-cadherin expression and tumor response to panobinostat and erlotinib therapy

G2/M cell cycle checkpoint regulators, including CHK1 and CDC2, play an important role in HDAC inhibitor-mediated cytotoxicity in NSCLC cells (16, 27), where overexpression of CHK1 leads to resistance to HDAC inhibitors, including panobinostat. We investigated whether percent change is tumor size to panobinostat and erlotinib correlated with CHK1 expression by immunohistochemistry analysis on pretreatment tumor tissue available from six patients participating in this trial. As shown in Figure 4A, CHK1 was highly expressed in the nuclei and cytoplasm of tumors that showed progressive disease, whereas its expression was lowest in those with tumor shrinkage, two lung adenocarcinomas and one SQCLC. No changes were observed in the CHK1 expression in pre-and post treatment biopsy samples (data not shown). A strong negative correlation was observed between CHK1 score and percent decrease in tumor size \((P = 0.02)\) and PFS \((P = 0.006)\).

Previous studies have shown that high E-cadherin expression levels confer increased sensitivity to HDAC inhibitor + EGFR-TKI combination treatment in NSCLC (19, 28). We evaluated E-cadherin expression in pretreatment tumor tissues and related
this to response and CHK1. As illustrated in Figure 4A, E-cadherin score was marginally associated with percent change in tumor size ($P = 0.06$). Tumors that showed increased tumor size expressed low to no E-cadherin, whereas tumors with the highest levels of E-cadherin expression had the greatest decrease in tumor size. We also showed that E-cadherin expression positively correlated with PFS ($P = 0.02$). Furthermore, CHK1 score and E-cadherin expression showed a strong negative correlation ($P = 0.003$).

Adipose tissue as surrogate target for HDAC inhibitor therapy

In preclinical studies, we have previously demonstrated that fat tissue obtained from patients by fine needle aspiration (FNA) biopsy of the subcutaneous adipose tissue can be used to detect the activity of signaling pathways and histone acetylation, suggesting that the subcutaneous fat pad might serve as a surrogate tissue to assess the efficacy of the HDAC inhibitors *in vivo* (29). We collected pre- and post-treatment abdominal fat pad biopsies (FPBs), and treatment effect was measured as change in the activity of acetylation of histone H4 in 17 matching FPB and PBMC samples. An increase in H4 acetylation was observed in 8 PBMC samples and in 10 FPB samples, 7 of which overlapped. No change in acetyl-H4 levels was observed in 9 PBMC samples and 7 patients with FPBs, 5 of which overlapped. Figure 4B illustrates a representation of 5 matching tumor, PBMC, and fat pad biopsies. In 4 patients, the pre-and post-treatment levels of acetyl-tubulin in tumor tissue closely correlated with the levels of histone acetylation in PBMC and in fat pad samples, and, in one patient increased acetyl-tubulin in tumor tissue correlated with increased acetyl-histone levels only in fat pad but not in
PBMC samples. Furthermore, our results showed that in 67% (8 of 12) of patients with clinical response of SD and PR there was increased histone acetylation in fat pad samples while only 36% patients (4 of 11) in these response category showed increased histone acetylation in PBMC. In both sample types there was increased histone acetylation in 1 of 3 patients with the clinical response of PD. These results suggest that histone acetylation in fat pad likely correlates with changes in tumor size in patients treated with HDACi, however, additional clinical studies with larger sample size are needed to better understand the correlation between fat pad histone acetylation and clinical response to HDACi treatment.

DISCUSSION

In this study, we established the MTD of panobinostat to be 30 mg PO twice weekly, for 2 out of 3 weeks of each cycle, in combination with erlotinib at 100 mg PO daily. At the MTD/RP2D, the combination was a well-tolerated in patients with NSCLC or H&N cancer. The main AEs were fatigue, nausea, rash, and thrombocytopenia. Prolonged QTc and nausea led to a DLT in the DL3 cohort. No new AEs were revealed compared with that shown in prior single-agent studies of erlotinib (18) and panobinostat (13). The pharmacokinetic parameters for erlotinib and panobinostat (14) seen in this study are consistent with the previously reported literature.

Our overall DCR of 52% among evaluable patients was comparable to prior studies that only enrolled erlotinib-naïve patients (18). This is of interest as the study included patients who progressed on prior erlotinib. In the NSCLC EGFR-mutant group, the median OS in these previously treated patients, including 4 patients with prior erlotinib
treatment (mean number of lines of prior therapy was 2.3), was estimated to be 41 months. Prospective randomized trials evaluating EGFR-mutant NSCLC patients treated with first-line single-agent EGFR-TKIs (have demonstrated an OS of 19.3-30.9 months (30-32). Despite the post hoc nature of the analysis, small sample size, reference to historical controls, and exclusion of NSCLC patients with EGFR unknown status, our findings are in line with a previous report that included patients with known EGFR status (28).

All responses were among EGFR-mutant, EGFR-TKI naïve patients. Among all NSCLC groups evaluated, whether EGFR-mutant, EGFR wild-type, or EGFR unknown, those who were EGFR-TKI naïve were more likely to benefit from the combination treatment than those with prior EGFR-TKI exposure. Still radiographic and meaningful clinical benefits were observed in those with prior exposure to EGFR-TKI, including a patient with EGFR wild-type lung adenocarcinoma who was a lifetime never-smoker with a near PR following treatment with the combination treatment.

In the preclinical setting, HDAC inhibitors can eradicate and prevent drug-tolerant populations (21) and have shown activity against EGFR-TKI-resistant NSCLC cell lines (8, 19). Treatment with HDAC inhibitors may reverse or prevent drug resistance to EGFR-TKIs, and this could in part explain the study observations. HDAC inhibitors have broad mechanisms of action, as they affect the expression of numerous genes involved in apoptosis (33), angiogenesis (10), immune response (34, 35), and tumor growth inhibition (4). Due to a host of complex epigenetic activities leading to direct and indirect inhibitor effects, within a clinical setting the precise actions of HDAC inhibitors have proven challenging to illuminate and are likely multifactorial. Other factors may also play
a role. Retrospective studies have demonstrated the potential benefit of re-treatment or continuation treatment with single agent EGFR-TKI in patients post progression (36-41). Further clinical and preclinical studies are required to better elucidate the clinical benefit and refine time to resistance of erlotinib and panobinostat in EGFR-mutant NSCLC patients.

Published studies have demonstrated the feasibility of erlotinib, alone or in combination with a rexinoid or chemotherapy in patients with metastatic or refractory H&N cancer (42-44). These studies also demonstrate the rationale behind the use of erlotinib in H&N patients, although it is not indicated by the FDA. Because H&N patients have limited options in the salvage setting, our findings are of interest, despite our limited sample size. Three of the seven evaluable patients with H&N cancer achieved SD. These included one who received 9 cycles of therapy and another patient treated for 6 cycles prior to progression. Interestingly, we observed that those with H&N cancer achieved a higher DCR (43%) and OS (8.2 months) than patients with SQCLC of the lung (DCR = 14%; OS = 5.5 months).

We observed that high E-cadherin expression levels correlated with improved outcomes independent of EGFR mutation status and tumor histology. Prior studies have demonstrated that epithelial-mesenchymal transition results in acquired resistance to EGFR-TKIs in patients with EGFR mutation (41, 45, 46) and that high E-cadherin expression (a marker of epithelial phenotype) correlates with EGFR-TKI activity (47-49). In a recent clinical trial, E-cadherin expression has been shown to predict response to EGFR-TKI and HDAC inhibitor combination in NSCLC patients. Here, we also observed a strong negative correlation between CHK1 immunohistochemistry score and E-
cadherin expression, PFS, and percent decrease in tumor size with statistical significance. This finding is consistent with our preclinical data (16), in which we found that overexpression of CHK1 led to resistance to panobinostat. Despite the small sample size, our results suggest that expression levels of high E-cadherin plus low CHK1 in tumor tissue might indicate a favorable outcome and may help to identify subgroups of NSCLC patients to determine tumor sensitivity or resistance at the early stages of therapy.

Attempts to establish a correlation between surrogate markers such as histone hyperacetylation in PBMCs and drug efficacy in tumor tissue are not always consistent with measured pharmacokinetic profiles of HDAC inhibitors, as findings can vary from patient to patient (50) and data interpretation poses challenges in the setting of background noise (51). The reasons why PBMCs differ from tumor tissue in their response to HDACi are not completely understood and could be related to insufficient drug penetration particularly in solid tumors due to differences in tissue architecture and haemodynamics. Additionally, PBMCs are a mixed population of T cells, B cells, monocytes, and natural killer cells, and it has been shown that each individual cell population contributes differently to the histone acetylation detected after treatment with HDACi (51) indicating that histone acetylation levels in PBMCs after treatment with an HDACi might not be directly comparable across patients. In this study, we hypothesized that given its homogeneity, mature adipose tissue might be an appropriate surrogate tissue to assess the pharmacodynamic efficacy of HDACi treatment that would allow direct comparison of drug response across patients and studies. Abdominal FPB is a minimally invasive and well-established routine diagnostic method for amyloid detection.
(52, 53) that can provide highly cellular samples to perform correlative studies. Given the abundance and easy accessibility, fat tissue allows repeated sampling during the course of therapy to monitor the efficacy of HDAC inhibitor treatment. To our knowledge, we show here for the first time that serial fat pad FNA biopsy sampling can be used to monitor the efficacy of HDAC inhibitors in vivo. Correlation of the degree of induction of histone acetylation in fat pad samples and inhibition of HDAC activity in tumor tissue showed the applicability of fat tissue as a surrogate of HDAC inhibitor response. Whether a correlation between the HDAC enzyme activity in fat pad and the therapeutic response exists needs to be determined in future studies. Documentation of drug-mediated changes in the activity of signaling pathways in fat cells also suggests that fat tissue could be used as a surrogate to monitor the efficacy of other targeted drugs in future clinical studies. With over 100 current studies evaluating HDAC inhibitors (clinicaltrials.gov), our assessment of FPB is relevant.

In summary, we provide evidence that erlotinib plus panobinostat is a tolerable combination in patients with advanced NSCLC and H&N cancer. The potential benefit of this combination in the EGFR-mutant population and evidence of activity in a population with acquired resistance to erlotinib are intriguing and require additional studies. Although our sample size is small, the data presented here suggest that fat pad tissue obtained by FNA may have application in monitoring the in vivo efficacy of HDAC inhibitors. Our correlative data lay the foundation for a biomarker-driven clinical trial to confirm these findings, to investigate fat pad FNA biopsy, and to validate the predictive role of CHK1 expression in response to treatments involving HDACis.
ACKNOWLEDGMENTS

We thank Rasa Hamilton (Moffitt Cancer Center) for editorial assistance.

AUTHORS DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Employment or leadership position: N/A
Consultant or Advisory Role: N/A
Stock Ownership: N/A
Honoraria: Alberto Chiappori, MD (from Genentech)
Research Funding: N/A
Expert Testimony: N/A
Other Remuneration: N/A

AUTHOR CONTRIBUTIONS

1. Conception and Design: Jhanelle E. Gray, Soner Altiok, Eric B. Haura.
2. Provision of Study materials or patients: Jhanelle E. Gray, Alberto Chiappori, Tawee Tanvetyanun, Charles C. Williams, Mary Pinder-Schenk, Julie A Kish, Gerold Bepler, Eric Haura.
5. Manuscript Writing: All authors.
6. Final Approval of Manuscript: All authors.
REFERENCES

Table 1. Summary of Patient Characteristics (N = 42)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No. of Patients</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>60.8</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>47-78</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>23</td>
<td>55</td>
</tr>
<tr>
<td>Male</td>
<td>19</td>
<td>45</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSCLC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>Neuroendocrine carcinoma</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Adeno-squamous cell carcinoma</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Head and neck</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>EGFR status-lung adenocarcinoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutant</td>
<td>8</td>
<td>32*</td>
</tr>
<tr>
<td>Wild-type</td>
<td>9</td>
<td>36*</td>
</tr>
<tr>
<td>Unknown</td>
<td>8</td>
<td>32*</td>
</tr>
<tr>
<td>Mean number of prior regimens</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Former</td>
<td>31</td>
<td>74</td>
</tr>
<tr>
<td>Never</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>Prior Erlotinib</td>
<td>9</td>
<td>21</td>
</tr>
<tr>
<td>Adverse Event</td>
<td>DL1: Erlotinib 100 mg + panobinostat 20 mg (grade)</td>
<td>DL2: Erlotinib 100 mg + panobinostat 30 mg (grade)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Albumin, serum low (hypoalbuminemia)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Anorexia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constipation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cough</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dehydration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspnea (shortness of breath)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue (asthenia, lethargy, malaise)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal/GERD/gastritis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose, serum-high (hyperglycemia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hair loss/alopecia (scalp or body)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukocytes (total white blood count)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphopenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mood alteration- anxiety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle weakness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucositis/stomatitis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuropathy: sensory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrophils/granulocytes (ANC/AGC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphate, serum low (hypophosphatemia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platelets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolonged QTc interval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTT (partial thromboplastin time)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*DL1: Erlotinib 100 mg + panobinostat 20 mg (grade) DL2: Erlotinib 100 mg + panobinostat 30 mg (grade) DL3: Erlotinib 150 mg + panobinostat 30 mg (grade) Dose Expansion (grade) Total
<table>
<thead>
<tr>
<th></th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash/desquamation/pruritus</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Rigors/chills</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Thyroid function, low (hypothyroidism)</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Vomiting</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Weight loss</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Totals</td>
<td>15</td>
<td>3</td>
<td>12</td>
<td>1</td>
<td>50</td>
</tr>
</tbody>
</table>

Occurring in greater than 10% of patients. Grand totals across all grades: Grade 2 was 94, Grade 3 was 19, and Grade 4 was 1.
FIGURE LEGENDS

Figure 1. Pharmacokinetic analyses. A, Erlotinib exposure (AUC$_{0-24 hr}$) with and without the presence of panobinostat in the dose escalation cohorts. Includes only those patients who completed all 3 days of pharmacokinetic blood draws. B, Panobinostat time versus mean plasma concentration (+/- standard deviation) in the dose escalation cohorts. Includes only those patients who completed all 3 days of pharmacokinetic blood draws. SS, steady state.

Figure 2. Best percent change in target lesions based on RECIST v1.0. +Erlotinib-naïve, EGFR mutant; #EGFR mutant with prior erlotinib exposure; *Progressive disease based on new lesions.

Figure 3. Progression-free survival (PFS) and overall survival (OS) for the intent-to-treat population. A, No difference in PFS or OS for NSCLC versus head and neck cancer patients. B, Excluding the head and neck patients (see Table 1 for number of patients), when comparing squamous cell lung cancer (SQCLC) versus non-SQCLC, no significant differences in PFS or OS were observed. C, OS was not yet reached for the EGFR-mutant NSCLC group but in a post-hoc analysis was estimated to be 41 months ($P = 0.0087$) compared with the other groups. EGFR+, EGFR mutant adenocarcinoma of the lung; EGFR-, EGFR wild-type NSCLC; Head/Neck, head and neck cancer; Unknown, EGFR mutation status unknown.
Figure 4. A, CHK1 score inversely correlates with E-cadherin expression, percent decrease in tumor size, and PFS in NSCLC. Adenoca, adenocarcinoma; Large cell NE, large cell neuroendocrine carcinoma; AS: Allred score. B, Panobinostat plus erlotinib therapy induces tubulin acetylation in tumor cells as well as histone H4 acetylation (ac H4) in subcutaneous fat tissue and PBMC, as assessed by Western blot analysis. β-Actin was used as a loading control.
Figure 1

A

Figure 1A: Mean plasma concentration-time profiles of Erlotinib and Panobinostat by cohort and day.

- **Cohort 1 - Day 9**
- **Cohort 1 - Day 15**
- **Cohort 2 - Day 9**
- **Cohort 2 - Day 15**
- **Cohort 3 - Day 9**
- **Cohort 3 - Day 15**

Legend:
- Cohort 1
- Cohort 2
- Cohort 3

B

Figure 1B: Mean plasma concentration-time profiles of Panobinostat by cohort and day.

- **Cohort 1 - Day 9**
- **Cohort 1 - Day 15**
- **Cohort 2 - Day 9**
- **Cohort 2 - Day 15**
- **Cohort 3 - Day 9**
- **Cohort 3 - Day 15**

Legend:
- Cohort 1
- Cohort 2
- Cohort 3
Figure 2

RECIST TUMOR RESPONSE (%)

NSCLC
Squamous NSCLC
Adenocarcinoma

Non-Squamous

Head and Neck

Patients

++

-100 80 60 40 20 0 20 40 60 80

Non-Squamous

++

* * *
Figure 3

A

Progression-free survival probability

- Head/Neck
- NSCLC

<table>
<thead>
<tr>
<th>Cancer_status</th>
<th>N</th>
<th>Event</th>
<th>Censored</th>
<th>Median PFS (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head/Neck</td>
<td>7</td>
<td>7 (100%)</td>
<td>0 (0%)</td>
<td>2.1 (1.3, 7.6)</td>
</tr>
<tr>
<td>NSCLC</td>
<td>35</td>
<td>31 (89%)</td>
<td>4 (11%)</td>
<td>2.5 (1.6, 4.5)</td>
</tr>
</tbody>
</table>

Log-rank p = 0.7500

B

Progression-free survival probability

- Adenocarcinoma
- SQCLC

<table>
<thead>
<tr>
<th>Cancer_status</th>
<th>N</th>
<th>Event</th>
<th>Censored</th>
<th>Median PFS (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma</td>
<td>25</td>
<td>21 (84%)</td>
<td>4 (16%)</td>
<td>4.5 (1.7, 6.4)</td>
</tr>
<tr>
<td>SQCLC</td>
<td>8</td>
<td>8 (100%)</td>
<td>0 (0%)</td>
<td>1.9 (0.6, 3.0)</td>
</tr>
</tbody>
</table>

Log-rank p = 0.0974

C

Progression-free survival probability

- EGFR MT
- EGFR UKN
- EGFR WT
- Head/Neck

<table>
<thead>
<tr>
<th>Mutational_status</th>
<th>N</th>
<th>Event</th>
<th>Censored</th>
<th>Median PFS (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR MT</td>
<td>8</td>
<td>6 (75%)</td>
<td>2 (25%)</td>
<td>4.7 (0.6, NA)</td>
</tr>
<tr>
<td>EGFR UKN</td>
<td>15</td>
<td>15 (100%)</td>
<td>0 (0%)</td>
<td>2.0 (1.5, 4.7)</td>
</tr>
<tr>
<td>EGFR WT</td>
<td>12</td>
<td>10 (83%)</td>
<td>2 (17%)</td>
<td>1.8 (1.2, 5.9)</td>
</tr>
<tr>
<td>Head/Neck</td>
<td>7</td>
<td>7 (100%)</td>
<td>0 (0%)</td>
<td>2.1 (1.3, 7.8)</td>
</tr>
</tbody>
</table>

Log-rank p = 0.6589

Log-rank p = 0.0163
Figure 4

A

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Histology Changes in Tumor Size</th>
<th>AS-E-cad</th>
<th>CHK1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma</td>
<td>27.6% Increase</td>
<td>37</td>
<td>SQCLC</td>
</tr>
<tr>
<td>Large Cell NE</td>
<td>15.6% Increase</td>
<td>2</td>
<td>Adenocarcinoma</td>
</tr>
<tr>
<td>SQCLC</td>
<td>12.6% Increase</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>Tumor (acetyl-tubulin)</th>
<th>Day0</th>
<th>Day18</th>
<th>PBMC</th>
<th>Fat pad</th>
<th>Day0</th>
<th>Day18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenocarcinoma</td>
<td>ac H4</td>
<td>β-actin</td>
<td>ac H4</td>
<td>β-actin</td>
<td>ac H4</td>
<td>β-actin</td>
<td>ac H4</td>
</tr>
<tr>
<td>Large Cell NE</td>
<td>ac H4</td>
<td>β-actin</td>
<td>ac H4</td>
<td>β-actin</td>
<td>ac H4</td>
<td>β-actin</td>
<td>ac H4</td>
</tr>
</tbody>
</table>

Note: The images show histological changes and protein expression over time.
Clinical Cancer Research

A phase I, pharmacokinetic and pharmacodynamic study of panobinostat, an HDAC inhibitor, combined with erlotinib in patients with advanced aerodigestive tract tumors

Jhanelle Gray, Eric B Haura, Alberto Chiappori, et al.

Clin Cancer Res Published OnlineFirst January 15, 2014.

Updated version Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-13-2235

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://clincancerres.aacrjournals.org/content/early/2014/01/15/1078-0432.CCR-13-2235. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.