Phase Ib study of buparlisib plus trastuzumab in patients with HER2-positive advanced or metastatic breast cancer that has progressed on trastuzumab-based therapy

Cristina Saura1*, Johanna Bendell2, Guy Jerusalem3, Shaun Su4, Qinhua Ru4, Stefan De Buck5, David Mills5, Sophie Ruquet6, Ana Bosch7†, Ander Urruticoechea8, Joseph T. Beck9, Emmanuelle DiTomaso10, David W. Sternberg4, Cristian Massacesi6, Samit Hirawat11, Luc Dirix12, Jose Baselga7†

1Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain; 2Sarah Cannon Research Institute, Nashville, TN; 3C.H.U. Sart-Tilman, Liege, Belgium; 4Novartis Pharmaceuticals, East Hanover, NJ; 5Novartis Pharma AG, Basel, Switzerland; 6Novartis Oncology, Paris, France; 7Memorial Sloan–Kettering Cancer Centre, New York, NY; 8Catalan Institute of Oncology, Barcelona, Spain; 9Highlands Oncology Group, Fayetteville, AR; 10Novartis Institutes for BioMedical Research, Cambridge, MA; 11Novartis Pharmaceuticals, Florham Park, NJ; 12Oncologisch Centrum AZ-St. Augustinus Oncology, Antwerp, Belgium

Running title: Buparlisib and trastuzumab in metastatic HER2+ breast cancer

Key words: phosphatidylinositol 3-kinase (PI3K), buparlisib, BKM120, trastuzumab, HER2-positive breast cancer

Financial support

GJ receives research funding from Novartis Pharmaceuticals Corporation (grant number BEL00034/2011).

*Corresponding author

Cristina Saura

Medical Oncology Department

Vall d’Hebron University Hospital

Vall d’Hebron Institute of Oncology (VHIO)

Passeig Vall d’Hebron 119

Edifici Maternoinfantil Planta 14

08035 BARCELONA

Tel: 0034 932746085

Fax: 0034 932746059

Email: csaura@vhebron.net
Ana Bosch was affiliated with Hospital Clínico Universitario, Valencia, Spain when this research was conducted; Jose Baselga was affiliated with Vall d’Hebron, Barcelona, Spain when this research was conducted.

Conflicts of interest

AB, AU, CS, JB, JTB, and LD have no conflicts of interest to confirm.

GJ has served on advisory committees for Novartis and receives research funding and speaker honoraria from Novartis.

JB serves as a consultant for Novartis and Genentech.

CM, DM, DWS, EDT, QR, SDB, SH, SR, and SS are employees of Novartis Pharmaceuticals.

Word count: 4431

Tables and figures: 3 tables and 3 figures
Abstract

PURPOSE: Phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway activation in patients with HER2-positive (HER2+) breast cancer has been implicated in de novo and acquired trastuzumab resistance. The purpose of this study was to determine the clinical activity of the PI3K inhibitor buparlisib (BKM120) in patients with HER2+ advanced/metastatic breast cancer resistant to trastuzumab-based therapy.

EXPERIMENTAL DESIGN: In the dose-escalation portion of this Phase I/II study, patients with trastuzumab-resistant locally advanced or metastatic HER2+ breast cancer were treated with daily oral doses of buparlisib and weekly intravenous trastuzumab (2 mg/kg). Dose escalation was guided by a Bayesian logistic regression model with overdose control.

RESULTS: Of 18 enrolled patients, 17 received buparlisib. One dose-limiting toxicity of Grade 3 general weakness was reported at the 100-mg/day dose level (the single-agent maximum tolerated dose) and this dose level was declared the recommended Phase II dose (RP2D) of buparlisib in combination with trastuzumab. Common (>25%) adverse events included rash (39%), hyperglycemia (33%), and diarrhea (28%). The pharmacokinetic profile of buparlisib was not affected by its combination with trastuzumab. At the RP2D, there were two (17%) partial responses, seven (58%) patients had stable disease (≥6 weeks), and the disease control rate was 75%. Pharmacodynamic studies showed inhibition of the PI3K/AKT/mTOR and RAS/MEK/ERK pathways.

CONCLUSIONS: In this patient population, the combination of buparlisib and trastuzumab was well tolerated and preliminary signs of clinical activity were observed. The Phase II portion of this study will further explore the safety and efficacy of this combination at the RP2D.
Statement of translational relevance

Although trastuzumab has provided important clinical benefits to patients with HER2-positive breast cancer, de novo or acquired resistance to HER2-directed therapy remains a major obstacle. Activation of the PI3K/AKT/mTOR pathway is observed in approximately 75% of HER2+ breast cancers. Inhibition of this pathway has been shown to restore sensitivity to trastuzumab in resistant breast cancer models. Importantly, preclinical models show that continued HER2 blockade is required for tumor regression in response to PI3K inhibition even after the development of trastuzumab resistance. Here we show that the combination of the PI3K inhibitor buparlisib and trastuzumab was well tolerated, and displayed preliminary clinical activity in patients with advanced or metastatic trastuzumab-resistant HER2+ breast cancer. Clinical responses to buparlisib and trastuzumab were reported in patients with PI3K pathway-activated tumors, and evidence of inhibition of both the PI3K/AKT/mTOR and RAS/MEK/ERK signaling pathways in patients treated with this combination was observed.
Introduction

HER2 is overexpressed in 15–30% of breast cancers, and is associated with aggressive disease and poor prognosis (1–3). Although use of the HER2 antibody trastuzumab has led to important clinical benefits for patients with HER2-positive (HER2+) breast cancer, 50–74% of patients with metastatic disease do not respond to treatment (4, 5), and approximately 75% progress within a year (4). For patients who do not respond, or who progress on single-agent trastuzumab, treatment options include the HER2 small-molecule inhibitor lapatinib (6), combination treatment with trastuzumab and another HER2 antibody pertuzumab (7), or the use of trastuzumab emtansine (T-DM1) (8), an antibody–drug conjugate. These treatment options have been shown to offer some additional benefit, with objective response rates of 22%, 24%, and 44%, respectively, and median progression-free survival times of 8.4, 5.5, and 9.6 months, respectively (6-8). Despite these new therapeutic options, disease progression on HER2-directed therapy is experienced by most patients, and new strategies are needed to delay or overcome the onset of tumor progression. In addition, the improved extracranial disease control and extended survival of patients treated with HER2-directed therapies, such as trastuzumab, is associated with an increased incidence of relapse within the brain (9), and thus there is a particular need for targeted therapies that can be safely and successfully combined with trastuzumab; can penetrate the blood–brain barrier; and can delay or control relapse at this site.

The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway is one of the most frequently dysregulated signaling pathways in cancer (10) and is important for the oncogenic function of HER2 (11). Activation of the PI3K/AKT/mTOR pathway – defined as mutation or amplification of the \(\text{PIK3CA} \) gene, which encodes the p110\(\alpha \) catalytic subunit of PI3K; loss of phosphatase and tensin homolog (PTEN) protein expression; or overexpression of AKT – was identified in 75% of HER2+ breast cancers in one study (12). Taking several studies into consideration, a recent review reported \(\text{PIK3CA} \) alterations occur in 20–25% of HER2+ breast cancers, PTEN alterations in 30–40%, and AKT alterations in 0% (13). Tumors with PTEN loss, which have been shown to be reliant on the p110\(\beta \) subunit of PI3K (14), have been associated with poor clinical outcome in patients with breast cancer (15). In addition, evidence suggests a direct link between trastuzumab resistance and PI3K/AKT/mTOR pathway activation through either PTEN loss or activating \(\text{PIK3CA} \) mutations (16-18). Furthermore, inhibition of the PI3K/AKT/mTOR pathway can restore sensitivity to trastuzumab in trastuzumab-resistant HER2+ breast cancer xenograft models (19-21).
Buparlisib (BKM120) is an oral pan-PI3K inhibitor that inhibits all four isoforms of class I PI3K (α, β, δ, and γ) with at least 50-fold selectivity compared with its activity against other proteins or lipid kinases (22). Single-agent buparlisib has demonstrated antitumor activity in a variety of cell lines, including HER2+ MDA453 and BT474 cells, and in xenograft models from cancers with or without alteration in PIK3CA and/or PTEN (20, 22). In a murine model of trastuzumab-resistant HER2+ breast cancer generated through long-term treatment of trastuzumab-sensitive BT474 cells, single-agent buparlisib inhibited tumor proliferation, but only the combination of trastuzumab and buparlisib was enough to induce tumor regression (20). In a Phase I, dose-finding study, the maximum tolerated dose (MTD) of single-agent buparlisib was established at 100 mg/day in patients with advanced solid tumors, including breast cancer (CBKM120X2101/NCT01068483) (23, 24). In this study, buparlisib was generally well tolerated and showed encouraging single-agent activity (23, 24).

The high frequency of PI3K/AKT/mTOR pathway alterations in HER2+ breast cancer, combined with the role of the pathway in resistance to trastuzumab, and preclinical evidence that combined PI3K inhibition restores sensitivity to trastuzumab and has greater antitumor activity than single-agent PI3K inhibition, supports the rationale for clinical evaluation of combined targeting of PI3K and HER2 in patients with HER2+ breast cancer. Here we report on the Phase I dose-escalation portion of this Phase I/II study, the primary aim of which was to determine the MTD and/or recommended Phase II dose (RP2D) of continuous daily buparlisib in combination with weekly trastuzumab in patients with HER2+ locally advanced or metastatic breast cancer whose disease had progressed on trastuzumab-based therapy.

Patients and methods

Patient population

Patients aged ≥18 years with HER2+ metastatic breast cancer and evidence of disease progression as per Response Evaluation Criteria In Solid Tumors version 1.0 (RECIST v1.0) and resistance to trastuzumab were included. Resistance to trastuzumab was defined as recurrence while on or within 4 weeks since the most recent infusion for patients who received trastuzumab for metastatic disease (or within 12 months for patients who received trastuzumab as adjuvant therapy). Resistance to T-DM1 was considered as equivalent to trastuzumab for the purpose of defining study eligibility. Other key inclusion criteria included World Health Organization performance status ≤2; provision of a representative tumor sample for the determination of tumor molecular status; ≥1 but ≤4 prior lines of HER2-directed therapy (trastuzumab, lapatinib, and/or T-DM1); ≤4 lines of prior cytotoxic chemotherapy.
Patients were excluded if they had received previous treatment with a PI3K inhibitor or had a contraindication to trastuzumab treatment. Patients with untreated brain metastases were also excluded; however, patients were eligible if the brain metastases were previously treated, they had completed therapy (including radiation and/or surgery) >4 weeks earlier, and were clinically stable (as determined by the investigator) with respect to the tumor at the time of study entry. Other exclusion criteria included a medically documented history of, or active, major mood or psychiatric disorder; Common Terminology Criteria for Adverse Events (CTCAE) ≥Grade 3 anxiety; poorly controlled diabetes mellitus (HbA1c >8%); and fasting plasma glucose >140 mg/dL or >7.8 mmol/L.

Approval was obtained from the ethics committees of participating institutions and regulatory authorities. All participating patients provided written informed consent and agreed to comply with the protocol. The study was conducted in accordance with the Declaration of Helsinki and guidelines for Good Clinical Practice as defined by the International Conference on Harmonization.

Study design and buparlisib dose escalation

This was a Phase Ib/II, multicenter, open-label, dose-escalation study of buparlisib in combination with trastuzumab. Here we report on the Phase Ib portion only, the primary objective of which was to determine the MTD and/or RP2D of buparlisib in combination with trastuzumab in this patient population. Patients received oral buparlisib as a once-daily hard gelatin capsule starting on Day 1 of a continuous 28-day cycle. The initial starting dose of buparlisib for this dose-escalation study was 50 mg/day.

The starting dose of 50 mg/day was selected based on the results of the Bayesian logistic regression model with overdose control (BLRM EWOC), where the highest possible starting dose derived from the prior distribution of DLT rates – taking into account the potential higher toxicity when buparlisib and trastuzumab are combined compared with the single agent – was 50 mg/day (to achieve a conservative safety margin, a median 50% increase in odds of DLT was assumed). This starting dose is also supported by the results of the first-in-man single-agent study of buparlisib (CBKM120X2101/NCT01068483), in which no DLTs were observed at doses ≤50 mg/day (23).

A 4-mg/kg loading dose of intravenous (IV) trastuzumab was administered on Day –7 at the discretion of the investigator if clinically indicated. This was followed by fixed weekly IV doses of 2 mg/kg trastuzumab starting on Cycle 1 Day 1. Treatment continued until disease progression, unacceptable toxicity, investigator decision, or patient withdrawal of consent.

Buparlisib dose escalation was guided by an adaptive BLRM EWOC (25), and each dose cohort consisted of newly enrolled patients, among whom three to six must be evaluable for dose
determination. Patients were considered evaluable as part of the dose-determining set if they experienced a DLT in the first cycle or they received buparlisib for ≥21 days, received all four scheduled doses of trastuzumab, and completed all safety evaluations required for dose-determining decisions in the first cycle. Dose-escalation beyond the single-agent MTD of 100 mg/day buparlisib (23) was not permitted, and intra-patient dose escalation was not permitted during the first four cycles of treatment. Before a dose could be declared to be the MTD, at least 15 evaluable patients had to be included in the dose-escalation part of the study, with at least six evaluable patients treated at the estimated RP2D (MTD or lower dose) level for one treatment cycle. The MTD was defined as the highest drug dose that does not cause medically unacceptable DLTs during the first cycle of treatment in more than 33% of treated patients. DLTs were defined as an adverse event or laboratory abnormality that were considered to be related to buparlisib treatment; met any of the CTCAE criteria outlined in Supplementary table 1; occurred <28 days following the first dose of buparlisib; and were considered unrelated to the disease, disease progression, inter-current illness, or concomitant medications.

Statistical analysis

A two-parameter BLRM was fitted on the Cycle 1 DLT data (i.e. absence or presence of DLT) accumulated throughout the dose escalation to model the dose–toxicity relationship of buparlisib in combination with trastuzumab. After each cohort of patients was treated and evaluated for DLTs, the next recommended dose of buparlisib to be administered in combination with trastuzumab was the one with the highest posterior probability of DLT in the target toxicity interval [16–33%] among the doses fulfilling the overdose criterion (<25% chance of excessive toxicity).

Safety assessments

Routine clinical and laboratory assessments, including hematology, coagulation, and biochemistry assessments, were conducted at baseline and at regular intervals throughout the study. Other safety assessments included glucose monitoring by urine dipstick test, blood markers of glucose homeostasis, and patient self-rating depression and anxiety questionnaires (PHQ-9 (26) and GAD-7 (27), respectively). Adverse events were recorded continuously from the start of study treatment until 28 days post treatment discontinuation, and were graded using the National Cancer Institute’s CTCAE v3.0. To be evaluable as part of the safety set, patients must have received at least one dose of buparlisib or trastuzumab and had at least one valid post-baseline assessment.
Efficacy assessments

Tumor radiologic response was assessed by computed tomography scan (preferred) or magnetic resonance imaging according to RECIST v1.0 at baseline and every 8 weeks thereafter until disease progression or end of treatment. Assessments at the end of treatment were only performed if the previous evaluation was >21 days earlier. Complete and partial responses (CR and PR) were defined as at least two determinations of CR or PR ≥4 weeks apart before progression; stable disease (SD) and prolonged SD were defined as at least one SD assessment or better ≥6 weeks and ≥24 weeks, respectively, after the start of treatment and not qualifying for CR or PR; progressive disease was defined as progression and not qualifying for CR, PR, or SD; all other cases were considered unknown.

Pharmacokinetic profiling

Blood samples for full pharmacokinetic profiling of buparlisib were collected on Days 1 and 8 of Cycle 1 and Day 1 of Cycle 2 at the following time points: pre-dose, 0.5 hours, 1 hour, 1.5 hours, 2 hours, 3 hours, 4 hours, 6 hours, 8 hours, and 24 hours post-dose. Serum levels of buparlisib were analyzed by liquid chromatography-tandem mass spectrometry.

PI3K pathway status determination

Archival biopsies of primary tumors were collected from all patients for the analysis of PI3K pathway activation status. Tumor tissue was assessed for the presence of PIK3CA mutations and PTEN mutations as determined by SNAPSHOT genotyping assay or Sanger sequencing, and loss of PTEN protein expression, as defined by an immunohistochemistry H-score <50.

Pharmacodynamic assessments

Changes from baseline in levels of phosphorylated (Ser240)-S6 ribosomal protein (pS6) and phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) were determined using 3-mm diameter, full-thickness skin biopsies obtained during screening and between 3 and 6 hours post-dose on Day 1 of Cycle 2. Paired (pre- and post-treatment) tumor biopsies collected at baseline and on Day 28 of Cycle 1 were analyzed for changes from baseline in pAKT, p4E-BP1, Ki-67, pERK, and pMEK by immunohistochemistry, using the following rabbit monoclonal antibodies: pAKT473 (Cell Signaling® cat. #3787), p4E-BP1 (Cell Signaling® cat. #2855), Ki-67 (Ventana® cat. #790-4288), Phospho-p44/42 MAPK (Erk1/2; Thr202/Tyr204; Cell Signaling® cat. #4376), pMEK (Cell Signaling® cat. #2338).
Results

Patient characteristics

Eighteen female patients from seven centers located in three countries (Belgium, Spain, and USA) were enrolled into the dose-escalation portion of this study between May 27, 2010 and April 28, 2011. One patient received only a loading dose of trastuzumab, but did not receive buparlisib; this patient was evaluable for safety but not for dose determination or tumor response. Of the 17 remaining patients who received at least one dose of buparlisib, five received buparlisib 50 mg/day and 12 received buparlisib 100 mg/day. All 17 patients who received buparlisib had received prior antineoplastic therapy (chemotherapy, hormonal therapy, or targeted therapy), which included HER2-directed therapy. The median number of prior antineoplastic regimens, HER2-directed therapies, and cytotoxic chemotherapies for all patients were 4 (range: 1–8), 3 (range: 1–5), and 3 (range: 1–4), respectively (Table 1).

Activation of the PI3K pathway was detected in archival primary tumor samples from seven (41%) patients, of which five (29%) had a PIK3CA-activating mutation (one E545G, one E545K, one K1063E, and two H1047R) and three (18%) had a PTEN mutation (one P285S, one D375N, and one Q97X). One tumor sample had both an activating PIK3CA and a PTEN mutation. Loss of PTEN was not identified in any of the tumor samples.

Dose escalation and RP2D

Of the 18 patients enrolled on the study, one patient did not receive buparlisib and two patients discontinued without experiencing DLTs in the first cycle and prior to meeting the minimum drug exposure, as defined in the protocol, for dose determination (one patient discontinued due to disease progression after receiving 14 doses of buparlisib and four doses of trastuzumab; and another patient discontinued due to disease progression after receiving 21 doses of buparlisib and three doses of trastuzumab). Therefore, 15 patients (four patients in the buparlisib 50-mg/day cohort and 11 patients in the buparlisib 100-mg/day cohort) were evaluable for dose determination. Only one DLT of Grade 3 general weakness for >7 consecutive days was observed in a patient treated with buparlisib 100 mg/day. As dose escalation beyond the single-agent MTD of 100 mg/day was not permitted, the MTD of buparlisib in combination with trastuzumab as per the BLRM EWOC was not reached (Supplementary figure 1). The RP2D of buparlisib in combination with IV trastuzumab 2 mg/kg weekly was declared as 100 mg/day.
Patient disposition

As of June 22, 2012, all patients had discontinued treatment: 13 (77%) patients treated with buparlisib discontinued due to disease progression, including one who developed a new lesion in the central nervous system (CNS); one (6%) patient had a suspected study drug-related Grade 3 allergic reaction; and three (18%) patients withdrew consent (Supplementary table 2). The median exposure to study treatment was 10.9 weeks (range: 1.0–41.0): 8.0 weeks (range: 4.0–15.9) in the 50-mg/day cohort and 13.9 weeks (range: 4.0–41.0) in the 100-mg/day cohort (Supplementary table 3).

Safety and tolerability

The most common study drug-related all-grade adverse events in the full cohort were rash in seven (39%) patients, hyperglycemia in six (33%) patients, and diarrhea in five (28%) patients (Table 2; Supplementary table 4). No Grade 3/4 study drug-related adverse events were experienced by patients treated with buparlisib 50 mg/day. The most common Grade 3/4 study drug-related adverse events in patients treated with buparlisib 100 mg/day were alanine aminotransferase increase in three (25%) patients, and hyperglycemia, aspartate aminotransferase increase, and asthenia in two (17%) patients each. Grade 3 study drug-related psychiatric adverse events were experienced by two (17%) patients receiving buparlisib 100 mg/day: one patient experienced both Grade 3 anxiety and Grade 3 altered mood; the other patient experienced Grade 3 affective disorder.

Serious adverse events suspected to be study drug-related occurred in two patients treated at 100 mg/day (Supplementary table 5): one patient experienced Grade 3 asthenia and Grade 3 altered mood; and one patient experienced Grade 3 asthenia, Grade 2 and Grade 3 affective disorder, and Grade 2 depression. There were two on-treatment deaths during the study, both of which occurred after discontinuation of buparlisib: one patient who received buparlisib 50 mg/day died of disease progression 12 days after receiving the last dose of buparlisib; the other patient had received buparlisib 100 mg/day and died of respiratory failure 14 days after receiving the last dose of buparlisib. The latter patient was initiated on carboplatin and gemcitabine in combination with trastuzumab immediately after study treatment discontinuation, and the respiratory failure that occurred 2 weeks thereafter was suspected to be related to the study indication and the subsequent chemotherapy. Neither death was suspected to be buparlisib related.

Pharmacokinetic analysis

All 17 patients who received buparlisib were evaluable for pharmacokinetics analysis. The buparlisib pharmacokinetic profile from Day 8 of Cycle 1 shows that it is rapidly absorbed following administration with a median time to reach peak plasma concentration of 1.3 hours (range: 0.5–2.0) and 1.5 hours (range: 1.0–4.0) in the 50-mg/day and 100-mg/day cohorts, respectively (Figure 1;
Supplementary table 6). After reaching peak drug concentration (C_{max}), the level of buparlisib in both the 50-mg/day and 100-mg/day cohorts decreased in a bi-exponential manner with a mean effective half-life (T_{1/2,acc}) at Day 8 of 38.4 and 43.3 hours, respectively. The pharmacokinetics of buparlisib when administered in combination with trastuzumab was, therefore, similar to that reported previously with single-agent buparlisib (23).

Clinical activity

Among the 17 patients evaluable for response, PRs were observed in two patients treated with buparlisib 100 mg/day. One of the patients who achieved a PR had received one prior cytotoxic therapy and one prior HER2-directed therapy in the adjuvant setting; the other had received four prior lines of cytotoxic therapy, and five prior lines of HER2-directed therapy, and the last line of trastuzumab-based treatment was in the metastatic setting. Both patients had PI3K pathway-activated tumors (Table 3, Figure 2). SD (≥6 weeks) as best overall response was achieved by seven (58%) patients in the 100-mg/day cohort, three of whom had PI3K pathway-activated tumors, and by one (20%) patient without a PI3K pathway-activated tumor in the 50-mg/day cohort. Prolonged SD (≥24 weeks) was experienced by one patient with HER2+, hormone receptor-negative breast cancer with an activating PIK3CA mutation (H1047R) receiving 100 mg/day of buparlisib. Two patients in the 50-mg/day cohort had an unknown response as they discontinued treatment prior to the first RECIST evaluation due to withdrawal of consent and symptomatic progression of disease. The disease control rate (DCR; CR, PR or SD ≥6 weeks) was 59% (75% in the 100-mg/day cohort and 20% in the 50-mg/day cohort); and the clinical benefit rate (CBR; CR, PR or SD ≥24 weeks) was 18% (25% in the 100-mg/day cohort and 0% in the 50-mg/day cohort).

Pharmacodynamic assessments

Pre- and post-treatment skin biopsies were available for three patients treated at buparlisib 50 mg/day and three patients treated at buparlisib 100 mg/day, and were evaluated for levels of pS6 and p4E-BP1. Reductions in pS6 were noted in four of the six evaluated paired biopsies, and the largest reduction was observed in a patient in the 100-mg/day cohort and who obtained a PR. In contrast, with the exception of one patient, treatment with buparlisib was not associated with a reduction in levels of p4E-BP1 in the skin (Figure 3).

Analysis of a paired tumor biopsy taken at baseline and at Cycle 1 Day 28 from a patient with a non-PI3K pathway-activated tumor who received 100 mg/day of buparlisib and had a 75% reduction in pS6 in the skin, revealed a 100% reduction in pAKT, a 28% reduction in p4E-BP1, a 20% reduction in tumor cell proliferation (Ki-67), a 73% reduction in pERK, and a 50% reduction in pMEK.
(Figure 3) following buparlisib/trastuzumab treatment. The best overall response in this patient was SD, and the patient remained on treatment for 3 months.

Discussion

This dose-escalation study provides evidence for the feasibility of combining buparlisib with a fixed weekly dose of trastuzumab in patients with locally advanced or metastatic HER2+ breast cancer that has progressed following trastuzumab-based therapy. As only one DLT was observed at the 100-mg/day dose of buparlisib, and dose escalation beyond 100 mg/day (the single-agent MTD) was not permitted, the MTD of buparlisib in combination with trastuzumab was not reached. The RP2D of buparlisib in combination with trastuzumab was declared as buparlisib 100 mg/day and trastuzumab 2 mg/kg weekly.

The combination of buparlisib and trastuzumab was generally well tolerated, and the safety profile was similar to that reported previously with single-agent buparlisib (23) and with other PI3K inhibitors (28-32). The pharmacokinetic profiles of buparlisib at both the 50-mg/day and 100-mg/day dose levels when administered in combination with trastuzumab were similar to those reported previously by Bendell et al. (23) for single-agent buparlisib. This observation indicates that the drug disposition of buparlisib is not affected by its combination with trastuzumab.

Hyperglycemia, which has been reported here and in some other trials of PI3K/AKT/mTOR pathway inhibitors (23, 33-35), is a likely on-target effect of PI3K inhibition, as this signaling axis mediates the actions of insulin, including glucose transport and glycogen synthesis (36-39); thus PI3K inhibition might be expected to cause an increase in blood glucose and the compensatory release of insulin and C-peptide from pancreatic β cells (39). The hyperglycemia observed in this trial was generally controlled through the use of concomitant glucose-lowering medications, such as metformin and insulin and/or buparlisib dose interruption and reduction.

A recurrent side-effect associated with buparlisib treatment was the occurrence of psychiatric adverse events, and this observation is likely associated with penetration of buparlisib across the blood–brain barrier and inhibition of PI3K/AKT/mTOR signaling in the CNS (40, 41). In separate studies, dysregulation of the PI3K pathway has been associated with changes in serotonin levels and in psychiatric disturbances, such as anxiety and depression (42-44). In the current study, the median time-to-first occurrence of psychiatric adverse events (regardless of study drug relationship) was 7.1 weeks (7.1 weeks in the 50-mg/day cohort and 6.1 weeks in the 100-mg/day cohort). Psychiatric adverse events were generally well managed through buparlisib dose modification and the use of concomitant treatments, such as benzodiazepine derivatives and selective serotonin re-uptake inhibitors. Two patients (11%) developed Grade 3 suspected study...
drug-related psychiatric adverse events and no patients permanently discontinued treatment due to such events.

The ability of buparlisib to cross the blood–brain barrier and inhibit the PI3K/AKT/mTOR pathway, combined with evidence of antitumor activity in the brain of a mouse model of HER2+ metastatic breast cancer (40) as well as preliminary clinical activity in patients with brain metastases treated with single-agent buparlisib (23, 41), support the evaluation of buparlisib in combination with trastuzumab in patients with HER2+ breast cancer and brain metastases. In the current trial, one patient (two prior lines of cytotoxic chemotherapy and two prior lines of HER2-directed therapy) had a baseline brain lesion (non-target). This patient remained on treatment for 49 days, and achieved an unconfirmed PR in target lesions (liver and lymph nodes). An additional arm of this trial will evaluate buparlisib in combination with trastuzumab and capecitabine in patients with HER2+ breast cancer brain metastases.

Biomarker analysis of paired pre- and post-treatment skin biopsies and tumor biopsies, as well as the occurrence of hyperglycemia, demonstrate that buparlisib in combination with trastuzumab successfully inhibits the PI3K/AKT/mTOR pathway in patients with advanced trastuzumab-resistant HER2+ breast cancer. Similar to previous reports of dose-dependent inhibition of pS6 in the skin with single-agent buparlisib (45), the most prominent inhibition of pS6 was seen at the highest dose of buparlisib. Furthermore, of the skin biopsies analyzed, the greatest reduction in pS6 was associated with the best clinical response, and thus further investigation into the use of pS6 levels in skin as a surrogate biomarker for response is warranted. In contrast, changes in p4E-BP1 in skin biopsies were generally not observed. In the paired tumor biopsies, in addition to evidence of successful PI3K/AKT/mTOR pathway inhibition (reduced pAKT and p4E-BP1), reductions in pERK and pMEK were also observed, and most likely reflect inhibition of the RAS/MEK/ERK pathway through successful inhibition of HER2 by trastuzumab.

Preliminary signs of clinical activity were observed in this study (two PRs; 75% DCR; and 25% CBR at the RP2D), and although the sample size in this present trial is small, the activity was similar to that reported previously with the mTOR inhibitor everolimus in combination with trastuzumab (35% CBR) (46). Preclinical data have demonstrated that continued HER2 blockade is required for potent tumor regression in response to PI3K inhibition even after the development of trastuzumab resistance (19, 20). Furthermore, in the present study, inhibition of the PI3K/AKT/mTOR and RAS/MEK/ERK pathways has been observed in paired tumor biopsies. Taken together, these data suggest that the clinical activity observed in this trial is likely the result of the combined activities of both buparlisib and trastuzumab and that PI3K inhibition with buparlisib can restore sensitivity to trastuzumab. However, single-agent buparlisib has also been shown to have activity in patients with
advanced solid tumors (23, 47) and specifically in patients with metastatic breast cancer (24), and so the possibility of the observed activity in this trial being the result of single-agent buparlisib cannot be ruled out.

Tumor activation of the PI3K pathway through PIK3CA and/or PTEN alteration was present in both of the 2/17 (12%) patients who responded to treatment and in almost half (3/7) of those who achieved SD. The ongoing Phase II portion of this trial, as well as other studies of buparlisib in breast cancer and other tumor types, will serve to delineate any predictive value of PI3K pathway activation for buparlisib clinical activity. In addition to alterations in PIK3CA and PTEN, it is likely that there are other genes whose expression may be associated with response to combined treatment with buparlisib and trastuzumab, such as overexpression of other receptor tyrosine kinases, or expression of oncogenic RAS. Comprehensive gene expression profiling of tumor samples to identify a gene expression signature associated with response to combined PI3K and HER2 inhibition may therefore be informative in defining predictive biomarkers of sensitivity and resistance. Similar studies have recently identified a gene expression signature associated with in vitro response to the PI3K inhibitor GDC-0941 (48).

In conclusion, the combination of buparlisib plus trastuzumab had a tolerable safety profile, and the study determined the RP2D to be buparlisib 100 mg/day and trastuzumab 2 mg/kg weekly. Buparlisib and trastuzumab produced a pharmacodynamic response in both the PI3K/AKT/mTOR and RAS/MEK/ERK signaling relay and preliminary evidence of clinical activity has been observed. The Phase II portion of this trial is further evaluating the safety and efficacy of combined buparlisib and trastuzumab in this patient population.

Acknowledgments

The authors thank Xumei Zhao of Novartis Pharmaceutical Corporation.

Financial support for medical editorial assistance was provided by Novartis Pharmaceuticals. We thank Amanda Quinn PhD for medical editorial assistance with this manuscript.

Grant support

GJ receives research funding from Novartis Pharmaceuticals Corporation (grant number BEL00034/2011).
References

29. Peyton JD, Rodon Ahnert J, Burris H, Britten C, Chen LC, Tabernero J, et al. A dose-escalation study with the novel formulation of the oral pan-class I PI3K inhibitor BEZ235, solid dispersion...

Table 1. Patient baseline characteristics and tumor status (full analysis set)

<table>
<thead>
<tr>
<th></th>
<th>All (N=17)</th>
<th>50 mg/day (n=5)</th>
<th>100 mg/day (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years (range)</td>
<td>47 (28–70)</td>
<td>47 (41–55)</td>
<td>47 (28–70)</td>
</tr>
<tr>
<td>≥65 years, n (%)</td>
<td>1 (6)</td>
<td>0</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>17 (100)</td>
<td>5 (100)</td>
<td>12 (100)</td>
</tr>
<tr>
<td>Postmenopausal, n (%)</td>
<td>10 (59)</td>
<td>3 (60)</td>
<td>7 (58)</td>
</tr>
<tr>
<td>WHO performance status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8 (47)</td>
<td>2 (40)</td>
<td>6 (50)</td>
</tr>
<tr>
<td>1</td>
<td>9 (53)</td>
<td>3 (60)</td>
<td>6 (50)</td>
</tr>
<tr>
<td>Median no. prior antineoplastic regimens (range)</td>
<td>4 (1–8)</td>
<td>4 (3–5)</td>
<td>4 (1–8)</td>
</tr>
<tr>
<td>Median no. prior cytotoxic chemotherapy (range)</td>
<td>3 (1–4)</td>
<td>3 (2–4)</td>
<td>3 (1–4)</td>
</tr>
<tr>
<td>Median no. prior HER2-directed therapies (range)*</td>
<td>3 (1–5)</td>
<td>3 (1–4)</td>
<td>3 (1–5)</td>
</tr>
<tr>
<td>Setting of last trastuzumab treatment, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjuvant</td>
<td>5 (29)</td>
<td>2 (40)</td>
<td>3 (25)</td>
</tr>
<tr>
<td>Metastatic</td>
<td>12 (71)</td>
<td>3 (60)</td>
<td>9 (75)</td>
</tr>
<tr>
<td>Hormonal status, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER and/or PgR positive</td>
<td>8 (47)</td>
<td>2 (40)</td>
<td>6 (50)</td>
</tr>
<tr>
<td>ER and PgR negative</td>
<td>9 (53)</td>
<td>3 (60)</td>
<td>6 (50)</td>
</tr>
<tr>
<td>Most common site of metastases, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nodes</td>
<td>10 (59)</td>
<td>4 (80)</td>
<td>6 (50)</td>
</tr>
<tr>
<td>Bone</td>
<td>9 (53)</td>
<td>2 (40)</td>
<td>7 (58)</td>
</tr>
<tr>
<td>Liver</td>
<td>9 (53)</td>
<td>2 (40)</td>
<td>7 (58)</td>
</tr>
<tr>
<td>Lung</td>
<td>8 (47)</td>
<td>1 (20)</td>
<td>7 (58)</td>
</tr>
<tr>
<td>Brain</td>
<td>1 (6)</td>
<td>0</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Skin</td>
<td>1 (6)</td>
<td>1 (20)</td>
<td>0</td>
</tr>
<tr>
<td>Others</td>
<td>4 (24)</td>
<td>2 (40)</td>
<td>2 (17)</td>
</tr>
<tr>
<td>Mutational status of tumor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activating mutation of PIK3CA</td>
<td>5 (29)</td>
<td>1 (20)</td>
<td>4 (33)</td>
</tr>
<tr>
<td>PTEN mutation</td>
<td>3 (18)</td>
<td>1 (20)</td>
<td>2 (17)</td>
</tr>
<tr>
<td>Total patients with activated PI3K pathway</td>
<td>7 (41)</td>
<td>2 (40)</td>
<td>5 (42)</td>
</tr>
</tbody>
</table>
ER, estrogen receptor; PI3K, phosphatidylinositol 3-kinase; PgR, progesterone receptor; PTEN, phosphatase and tensin homolog; T-DM1; trastuzumab emtansine; WHO, World Health Organization.

*Includes HER2-directed agents defined for eligibility determination (trastuzumab, T-DM1, and lapatinib), as well as experimental HER2-directed agents that were not considered for eligibility purposes.

†PI3K pathway activation is defined as PIK3CA mutation, PTEN mutation, PTEN null or low expression by immunohistochemistry (H-score <50).
Table 2. Summary of adverse events suspected to be study-drug related (safety set)

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>All (N=18*)</th>
<th>50 mg/day (n=5)</th>
<th>100 mg/day (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All n (%)</td>
<td>G3/4 n (%)</td>
<td>All n (%)</td>
</tr>
<tr>
<td>Any</td>
<td>16 (89)</td>
<td>8 (44)</td>
<td>4 (80)</td>
</tr>
<tr>
<td></td>
<td>4 (80)</td>
<td>0</td>
<td>12 (100)</td>
</tr>
<tr>
<td>Rash</td>
<td>7 (39)</td>
<td>1 (6)</td>
<td>1 (20)</td>
</tr>
<tr>
<td></td>
<td>1 (20)</td>
<td>0</td>
<td>6 (50)</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>6 (33)</td>
<td>2 (11)</td>
<td>1 (20)</td>
</tr>
<tr>
<td></td>
<td>2 (11)</td>
<td>0</td>
<td>5 (42)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>5 (28)</td>
<td>0</td>
<td>1 (20)</td>
</tr>
<tr>
<td></td>
<td>1 (20)</td>
<td>0</td>
<td>4 (33)</td>
</tr>
<tr>
<td>Asthenia</td>
<td>4 (22)</td>
<td>2 (11)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2 (11)</td>
<td>0</td>
<td>4 (33)</td>
</tr>
<tr>
<td>Mood altered</td>
<td>4 (22)</td>
<td>1 (6)</td>
<td>2 (40)</td>
</tr>
<tr>
<td></td>
<td>1 (6)</td>
<td>2 (40)</td>
<td>2 (17)</td>
</tr>
<tr>
<td>Nausea</td>
<td>4 (22)</td>
<td>0</td>
<td>2 (40)</td>
</tr>
<tr>
<td></td>
<td>2 (40)</td>
<td>0</td>
<td>2 (17)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>4 (22)</td>
<td>0</td>
<td>1 (20)</td>
</tr>
<tr>
<td></td>
<td>1 (20)</td>
<td>0</td>
<td>3 (25)</td>
</tr>
<tr>
<td>Alanine aminotransferase increased</td>
<td>3 (17)</td>
<td>3 (17)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3 (17)</td>
<td>0</td>
<td>3 (25)</td>
</tr>
<tr>
<td>Aspartate aminotransferase increased</td>
<td>3 (17)</td>
<td>2 (11)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2 (11)</td>
<td>0</td>
<td>3 (25)</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>3 (17)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3 (17)</td>
<td>0</td>
<td>2 (40)</td>
</tr>
<tr>
<td></td>
<td>2 (40)</td>
<td>0</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Affective disorder</td>
<td>2 (11)</td>
<td>1 (6)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1 (6)</td>
<td>0</td>
<td>2 (17)</td>
</tr>
<tr>
<td>Anxiety</td>
<td>1 (6)</td>
<td>1 (6)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1 (6)</td>
<td>1 (6)</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Blood glucose increased</td>
<td>1 (6)</td>
<td>1 (6)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1 (6)</td>
<td>0</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td>1 (6)</td>
<td>1 (6)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1 (6)</td>
<td>0</td>
<td>1 (8)</td>
</tr>
<tr>
<td>Photosensitivity reaction</td>
<td>1 (6)</td>
<td>1 (6)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1 (6)</td>
<td>0</td>
<td>1 (8)</td>
</tr>
</tbody>
</table>

G, Grade.

Table includes all study drug-related adverse events that occurred in >2 patients and all adverse events that occurred at G3 or G4.

*One patient received loading dose trastuzumab, but no buparlisib. No study drug-related adverse events were observed in this patient.
Table 3. Best overall response (full analysis set)

<table>
<thead>
<tr>
<th>Best overall response (RECIST)</th>
<th>All (N=17)</th>
<th>50 mg/day (n=5)</th>
<th>100 mg/day (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR, n (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PR, n (%)</td>
<td>2 (12)</td>
<td>0</td>
<td>2 (17)</td>
</tr>
<tr>
<td>SD, n (%)</td>
<td>8 (47)</td>
<td>1 (20)</td>
<td>7 (58)</td>
</tr>
<tr>
<td>SD ≥24 weeks, n (%)</td>
<td>1 (6)</td>
<td>0</td>
<td>1 (8)</td>
</tr>
<tr>
<td>PD, n (%)</td>
<td>5 (29)</td>
<td>2 (40)</td>
<td>3 (25)</td>
</tr>
<tr>
<td>Unknown, n (%)</td>
<td>2 (12)</td>
<td>2 (40)</td>
<td>0</td>
</tr>
<tr>
<td>DCR (CR or PR or SD), n (%)</td>
<td>10 (59)</td>
<td>1 (20)</td>
<td>9 (75)</td>
</tr>
<tr>
<td>90% CI for DCR*</td>
<td>(36.4–78.8)</td>
<td>(1.0–65.7)</td>
<td>(47.3–92.8)</td>
</tr>
<tr>
<td>CBR (CR or PR or SD ≥24 weeks), n (%)</td>
<td>3 (18)</td>
<td>0</td>
<td>3 (25)</td>
</tr>
<tr>
<td>90% CI for CBR</td>
<td>(5.0–39.6)</td>
<td>(0.0–45.1)</td>
<td>(7.2–52.7)</td>
</tr>
</tbody>
</table>

CBR, clinical benefit rate; CI, confidence interval; CR, complete response; DCR, disease control rate; PD, progressive disease; PR, partial response; SD, stable disease.

*90% CIs for DCR and CBR were obtained using the exact binomial 90% CI test.
Figure legends

Figure 1. Plasma pharmacokinetic profile of buparlisib in blood serum on Cycle 1 Day 8

Dots represent mean plasma concentrations and error bars represent standard deviation of the mean.

Figure 2. Waterfall plot of best percentage change from baseline in sum of longest diameters and best overall response by PI3K pathway activation status

PD, progressive disease; PR, partial response; SD, stable disease.

*Patients with missing best percentage change from baseline and unknown overall response are not included.

†Unconfirmed PR.

‡Patients with missing best percentage change from baseline.

Figure 3. Changes from baseline in biomarkers in skin and tumor

A. Percentage change from baseline H-score in skin biopsy biomarkers: pS6 and p4E-BP1.

B. Inhibition of the PI3K/AKT/mTOR and RAS/RAF/MEK pathway and reduction in cellular proliferation in tumor tissue following 1 cycle of treatment.

4E-BP1, eukaryotic translation initiation factor 4E-binding protein 1; BOR, best overall response; C, Cycle; D, Day; ERK, extracellular signal-regulated kinase; MEK, mitogen-activated protein kinase/ERK kinase; p, phosphorylated; PD, progressive disease; PI, proliferation index; PR, partial response; RECIST, Response Evaluation Criteria In Solid Tumors; SD, stable disease.

Arrows point to tumor cells with changes in expression.
Figure 1

Buparlisib concentration (ng/mL) vs. Time (hours)

- Grey line: 50 mg/day buparlisib
- Black line: 100 mg/day buparlisib
Figure 2

Setting of last trastuzumab (metastatic [M] or adjuvant [A]): M M M A M M A M M M A M M M M A

PI3K pathway activation status: = PI3K pathway activated = PI3K pathway non-activated = unknown
Phase Ib study of buparlisib plus trastuzumab in patients with HER2-positive advanced or metastatic breast cancer that has progressed on trastuzumab-based therapy

Cristina Saura, Johanna C Bendell, Guy Jerusalem, et al.

Clin Cancer Res Published OnlineFirst January 27, 2014.

Updated version
Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-13-1070

Supplementary Material
Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2014/01/27/1078-0432.CCR-13-1070.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.