Imaging the Norepinephrine Transporter in Neuroblastoma: A Comparison of [18F]-MFBG and 123I-MIBG

Hanwen Zhang*1, Ruimin Huang*1, Nai-Kong V. Cheung2, Hongfen Guo2, Pat B. Zanizonico1,4, Howard T. Thaler5, Jason S. Lewis1,6 and Ronald G. Blasberg ¶1,3,6

Departments of 1Radiology, 2Pediatrics, 3Neurology, 4Medical Physics, 5Epidemiology and Biostatistics, 6Molecular Pharmacology and Chemistry Program and Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10065.

¶ Corresponding author:
Ronald G. Blasberg, M.D.
Departments of Neurology and Radiology, MH (Box 52)
Molecular Pharmacology & Chemistry Program, SKI
Memorial Sloan-Kettering Cancer Center
Zuckerman Research Center (ZRC), Z-2060
1275 York Avenue
New York, NY 10065
Tel: (646) 888-2211
Email: blasberg@neuro1.mskcc.org
FAX: (646) 422-0408

Total words: 6706.

Short title: [18F]-MFBG PET imaging of neuroblastoma

*Contributed equally to this paper.
TRANSLATIONAL RELEVANCE

The presence of metastatic disease is one of the strongest outcome prognostic factors for neuroblastoma, and sensitive imaging methods of tumor detection is the basis for accurate staging (1, 2). Meta-iodobenzylguanidine (MIBG) scintigraphy is now a world-wide standard for defining the extent of disease at diagnosis, to monitor disease response during therapy, and to detect residual and recurrent disease during follow-up. However, both 123I- and 131I-MIBG scintigraphic/SPECT imaging have limitations.

We hypothesized that meta-18F-fluorobenzylguanidine (meta-18F-MFBG), a more hydrophilic benzylguanidine analog than MIBG, should have lower binding to plasma proteins and would be cleared more rapidly from non-target tissues and from the body, and that this would result in superior tumor-to-background ratios at earlier times post-administration. Shorter image-acquisition times will facilitate the logistics of imaging in the pediatric population and improved tumor detection would likely result from the use of PET compared to SPECT. Our studies confirm these hypotheses and demonstrate that PET imaging with meta-18F-MFBG is a promising technique to quantitatively measure NET expression in neuroblastoma.
ABSTRACT

Purpose: The norepinephrine transporter (NET) is a critical regulator of catecholamine uptake in normal physiology and is expressed in neuroendocrine tumors like neuroblastoma. Although the norepinephrine analog, meta-iodobenzylguanidine (MIBG), is an established substrate for NET, 123I/131I-MIBG has several clinical limitations for diagnostic imaging. In the current studies, we evaluated meta-$[^{18}$F]-fluorobenzylguanidine ($[^{18}$F]-MFBG) and compared it to 123I-MIBG for imaging NET-expressing neuroblastomas.

Experimental Design: NET expression levels in neuroblastoma cell lines were determined by Western blot and 123I-MIBG uptake assays. Five neuroblastoma cell lines and two xenografts (SK-N-BE(2)C and LAN1) expressing different levels of NET were used for comparative in vitro and in vivo uptake studies.

Results: The uptake of $[^{18}$F]-MFBG in cells was specific and proportional to the expression level of NET. Although $[^{18}$F]-MFBG had a 3-fold lower affinity for NET and approximately 2-fold lower cell uptake in vitro compared to that of 123I-MIBG, the in vivo imaging and tissue radioactivity concentration measurements demonstrated higher $[^{18}$F]-MFBG xenograft uptake and tumor-to-normal organ ratios at 1 and 4 h post-injection. A comparison of 4 h $[^{18}$F]-MFBG PET imaging with 24 h 123I-MIBG SPECT imaging showed a ~3-fold higher tumor uptake of $[^{18}$F]-MFBG, but slightly lower tumor-to-background ratios in mice.

Conclusions: $[^{18}$F]-MFBG is a promising radiopharmaceutical for specifically imaging NET-expressing neuroblastomas, with fast pharmacokinetics and whole-body clearance. $[^{18}$F]-MFBG PET imaging shows higher sensitivity, better detection of small lesions with low NET expression, allows same day scintigraphy with a shorter image...
acquisition time, and has the potential for lower patient radiation exposure compared to \(^{131}\text{I}/^{123}\text{I}}\)-MIBG.

Key words: norepinephrine transporter (NET), neuroblastoma, \([^{18}\text{F]}\)-MFBG, PET/CT imaging, \(^{123}\text{I}}\)-MIBG
INTRODUCTION

Neuroblastoma is the most common extracranial solid cancer in childhood, with an annual incidence of about 650 cases per year in the US (1, 3). Approximately 50% of patients have metastatic disease at the time of diagnosis and are at high risk for relapse. Long-term survival among high-risk patients is generally less than 30% (4, 5). Neuroblastoma is derived from the neural crest progenitor cells and is classified as a neuroendocrine tumor; 90% of neuroblastomas overexpress the norepinephrine transporter (NET). The NET transmembrane protein is one of several monoamine transporters involved in the uptake of norepinephrine, epinephrine and dopamine across the cell membrane (6). The expression and transporter function of NET provide the basis and rationale for the use of radiolabeled norepinephrine analogs for targeted imaging and treatment of neuroblastoma.

Meta-iodobenzylguanidine (MIBG) is a metabolically stable analog of norepinephrine (7), and 131I-MIBG ($t_{1/2} = 8$ d; β^-, EC 97%, $E_\gamma = 606, 364$ keV) has been widely used for the targeted imaging (SPECT/planar) and treatment of NET-expressing cancer for several decades (8, 9). 123I-MIBG ($t_{1/2} = 13.3$ h; EC 89%, $E_\gamma = 159$ keV) was approved for diagnostic imaging in 2008, and is the current standard for clinical staging of neuroblastoma (10). However, both 123I- and 131I-MIBG have significant disadvantages as imaging tracers. These include: 1) only semi-quantitative measurements of $^{123/131}$I-MIBG tumor accumulation by routine single-photon imaging, 2) the inability to detect small metastatic lesions; 3) the potential for false-positive identification of metastasis due to high background and limited spatial resolution (11-13); 4) inconvenience of multiple hospital visits (injection of the radiopharmaceutical and next-day imaging). Consequently, a benzylguanidine analog labeled with positron emitter would be more useful for initial staging of neuroblastoma, and for the evaluation of treatment response.
(10) and detection of recurrent disease (2). A PET radiopharmaceutical would likely provide greater sensitivity and superior resolution for lesion detection, a shorter image acquisition time facilitating pediatric studies, and potentially lower radiation exposure. Among the potential radioisotopes (124I, 76Br, 18F and 11C) that are suitable for labeling benzylguanidine analogues, 18F-fluoride is the most promising radioisotope due to its wide availability, low cost and optimal physical half-life for same-day imaging.

In this study, we: 1) screen a panel of neuroblastoma cell lines for NET expression and correlate the results with 123I-MIBG uptake studies; 2) evaluate $[^{18}$F]-MFBG for imaging in neuroblastoma cells and xenografts with different endogenous levels of NET expression; and 3) perform a direct comparison of $[^{18}$F]-MFBG to 123I-MIBG (clinical formulation) for imaging NET expression. Our studies demonstrate that PET imaging with $[^{18}$F]-MFBG provides better images and a more quantitative measurement of NET expression in neuroblastoma animal models than 123I-MIBG single-photon SPECT imaging.

MATERIALS AND METHOD

General

All chemicals were obtained from commercial sources and were used without further purification. $[^{18}$F]-MFBG (~19 GBq/μmol) was synthesized at MSKCC. 123I-MIBG (~0.31 GBq/μmol) was obtained from Nuclear Diagnostics Products (Rockaway, NJ). Neuroblastoma cell lines, including SK-N-BE(2)C, SK-N-BE(2)N, SK-N-BE(1)N, and SK-N-SH were derived at MSKCC, and LAN1 was kindly provided by Dr. Robert Seeger (Children’s Hospital of Los Angeles, CA); they were all cultured using RPMI-1640 medium with 10% fetal bovine serum (HyClone, Logan, UT). Radioactivity was measured using an appropriately calibrated WIZARD™ 3" 1480 γ-counter (PerkinElmer, Waltham, MA) or a dose calibrator (CAPINTEC ®CRC-30BC, Ramsey, NJ).
Screening of NET expression in neuroblastoma cell lines

Immunoblots. Total protein was isolated using the RIPA buffer (Millipore, Billerica, MA) following the manufacturer's instruction. Twenty-five µg of the total protein was run on a precast 4-12% SDS-PAGE gel (Invitrogen, Carlsbad, CA), electrophoretically transferred to a PVDF membrane and blotted with an anti-NET antibody (1:2000, NET17-1, MAb Technologies, Stone Mountain, GA) and an anti-β-actin antibody (1:5000, ab6276, Abcam, Cambridge, MA). The blots were visualized using the Western Lighting Plus-ECL (PerkinElmer, Waltham, MA). The density of Western blot band was quantified using Image J software (National Institutes of Health, Bethesda, MD).

Competitive inhibition of MFBG and MIBG binding to the NE transporter. Competitive affinity studies were performed in SK-N-BE(2)C cells using 123I-MIBG and various concentrations of MIBG and MFBG. Triplicate samples containing ~0.5 × 10⁶ cells, ~3.7 kBq 123I-MIBG and 0.005-50 nmol MFBG (or MIBG) in 0.5 mL cell culture medium were incubated at 37°C for 2 h. The cells were collected with glass microfiber filters, washed with 3 × 2 mL of ice-cold TBS (pH 7.4), and radioassayed with a γ-counter. 123I-MIBG uptake in SK-N-BE(2)C cells was plotted versus the MFBG (or MIBG) concentration, and IC₅₀ values were estimated using a least-squares fitting routine (GraphPad Prism 5, San Diego, CA).

Uptake of 123I-MIBG and 18F-MFBG. Triplicate samples contained approximately 11.1 kBq of 18F-MFBG or 3.7 kBq of 123I-MIBG and 1.0 × 10⁶ cells in a total volume of 1.0 mL cell culture medium. The samples were gently shaken at 37°C for 2 h. Two hundred µM of MIBG or 50 µM of Desipramine (DMI, final concentration) were used in blocking experiments to determine the specificity of accumulation. After incubation, the cells were collected and analyzed using the method described above for the competitive inhibition
studies. For kinetic uptake studies, the samples were gently shaken at 37°C for 5, 20, 50, and 120 min. The uptakes of $[^{18}\text{F}]-\text{MFBG}$ and $^{123}\text{I}-\text{MIBG}$ were plotted versus time of incubation and analyzed using a one-component kinetic model.

In vivo imaging

All animal experiments were approved by the Institutional Animal Care and Utilization Committee of MSKCC. Neuroblastoma cells were suspended in 200 µL of cell culture medium/matriigel (BD Bioscience, Franklin Lakes, NJ) (v/v=1/1). SK-N-BE(2)C (2×10^6) or LAN1 (10×10^6) cells were injected subcutaneously in the left shoulder of female athymic Ncr-nu/nu mice (7 to 9-weeks old, Taconic, Albany, NY). Twenty to 30 days after the inoculation, tumors were ~200 mm3 in size, and imaging and tissue sampling studies were performed.

PET and PET/CT imaging with $[^{18}\text{F}]-\text{MFBG}$

For PET imaging studies ($n=12$ animals for SK-N-BE(2)C and $n=10$ animals for LAN1 xenografts – Fig. 5A), $[^{18}\text{F}]-\text{MFBG}$ (3.7 to 11.1 MBq in 100 to 200 µL saline) was injected through the tail vein. PET imaging was performed at 1 and 4 h p.i. on a R4 microPET scanner (Concorde Microsystems, Knoxville, TN) (14), with the tumors centered in the field of view, and the animal under 2% isoflurane anesthesia. Ten-minute acquisitions were collected with an energy window of 350-750 keV and a coincidence-timing window of 6 ns. A 3D region-of-interest (VOI) analysis of the acquired images was performed using ASIPro software (Siemens, Malvern, PA), and the observed mean radioactivity concentration (%ID/cc) derived.

For PET/CT imaging studies ($n=5$ animals for both SK-N-BE(2)C and LAN1 xenografts – Fig. 4), the animal was immobilized in a home-made restraint device for the
co-registration of PET and CT (X-ray computed tomography) imaging data. After 15 min of data acquisition on PET (Focus 120 microPET scanner), the animal was moved to a microCAT II (Imtek Inc., Knoxville, TN) scanner under 2% isoflurane anesthesia. CT acquisition was performed for 10 min at 60 kVp and 0.8 mA with 2 mm aluminum filtration. PET images were reconstructed by both maximum a priori (MAP) and 3D filtered back-projection, and the reconstruction using a ramp filter with a cut-off frequency was equal to the Nyquist frequency into a 128 × 128 × 95 matrix. The reconstructed data of PET and CT images were rendered in 3D using Amira 5.0 (Visage Imaging GmbH, Berlin, Germany) or Inveon Research Workstation (Siemens, Malvern, PA).

SPECT/CT imaging with 123I-MIBG

The same group of animals imaged with PET/CT was also imaged by SPECT/CT the following day. Animals were administrated 18.5-44.4 MBq of 123I-MIBG through the tail vein, and imaging was performed at 1, 4 and 24 h p.i. on a NanoSPECT/CT Plus scanner (BIOSCAN, Washington, DC). CT data was acquired for 8-10 min at a 45-kVp voltage and 500-ms exposure before each SPECT scan. The SPECT image parameters were 1.0 mm/pixel, 256×256 frame size and 70-90 s per projection with a total of 24 projections. The acquisition time was approximately 60 min at 1 h, 90 min at 4 h and 170 min at 24 h p.i. During imaging, the animal was anesthetized with 1.5% isoflurane in 2.0 L/min O_2 and the body temperature was maintained with warm air (37°C). InVivoScope 1.37 software (Bioscan) was used for reconstruction. A color threshold was optimized to visualize tumor clearly on the SPECT/CT fusion image.

Immunohistochemistry (IHC) staining for NET expression

The neuroblastoma xenografts were collected from the imaging studies and fixed by formalin. Paraffin-embedded tissue sections (5 µm) were immunostained using the
Discovery XT biomarker platform (Ventana, Tucson, AZ). The primary antibody, anti-SLC6A2/NET polyclonal antibody (MBL, BMP029, Nagoya, Japan), was diluted at 1:100. Biotin-labeled anti-rabbit antibody (1:300, BA-1000, Vector Laboratories, Burlingame, CA) was used as the secondary antibody.

Radiation exposure (absorbed dose estimates)

Data from the murine biodistribution studies of 18F-MFBG and 123I-MIBG (Supplemental Table 1 and 2) and from human 123I-MIBG SPECT imaging studies in patients were each fitted to an exponential function using least-squares regression (Excel, Microsoft Corp, Redmond, WA). The fitted time-activity concentration functions were integrated (incorporating the effect of the physical decay of 18F, 123I and 124I) and converted from concentrations to total-organ values using the 33-kg ten-year-old child organ masses to yield the respective organ residence times (h). The rest-of-body residence time was calculated as the difference between the total-body residence time and the sum of the normal-organ residence times. For walled organs (heart, large intestine, small intestine, stomach, and urinary bladder), the residence time was assigned entirely to the organ contents, with the large intestine residence time divided evenly between the upper and lower large intestines. The bone residence time was likewise evenly divided between cortical and trabecular bone. The red marrow cumulated activity was estimated from the blood residence time, assuming instantaneous equilibration of MFBG (or MIBG) between plasma and marrow extracellular space, a plasmacrit of 0.6, and a marrow fractional extracellular space of 0.4. Finally, the mean normal-organ radiation doses (cGy/MBq administered) and the effective dose (cSv/MBq administered) for 18F-MFBG, 123I-MIBG and 124I-MIBG were
calculated for a 33-kg standard anatomic model (10-year-old child equivalent) and the “MIRD formalism”, as implemented in the OLINDA EXM program.

Statistical analysis

The mouse xenograph data presented comprise results of several factorial experiments to compare the uptake of two radioactive probes (123I-MIBG vs. $^{[18]}$F-MFBG), in two tumor types (SK-N-BE(2)C vs. LAN1), time elapsed from probe administration (5 min, 20 min, 1 h, 4 h, 24 hr) and data acquisition modality (Bio-distribution vs. PET). Bio-distribution (Bio-D) measurements of tumors were made only once per mouse (sacrifice is required to obtain specimens), whereas PET allows repeated measurements at successive time points in the same mouse. The factorial designs comprised independent experiments with the exception that $^{[18]}$F-MFBG Bio-distribution measurements for SK-N-BE(2)C at 1 h and 4 h were used both in the probe x tumor type x time analysis and in the Bio-distribution vs PET comparison. Both types of measurement had skewed statistical distributions within and across experimental conditions. Thus, statistical analyses were performed using log-transformed measurements as the outcome, or dependent variable. This reduced the effects of potential outliers and allowed data to more closely conform to implicit assumptions of the statistical methods. We could partition the time curve for each probe into mean, linear, quadratic, and cubic components and test whether there were differences between the two probes.

Data on estimated surface integral exposure (absorbed radiation dose), in Table 1 for humans and Supplemental Tables S1 and S2 for mouse xenografts are presented for descriptive purposes only, without statistical significance comparisons. Thus, they are reported as simple mean ± SD, calculated using Microsoft Excel. In mouse experiments,
statistical significance for comparisons of prior interest between two specific combinations of experimental conditions (xenograph, data acquisition method, probe, time post-injection) are reported based on Student t-tests of log-transformed measurements (a two-sample test when comparing or observations in two sets of animal or a paired test when comparing two measurements in the same animals). When assessing statistical significance for trends involving several combinations of experimental conditions, Anova F-tests were used. For example, when comparing the two probes in SK-N-BE(2)C xenografts from 5 min to 4 h, the time effect was parsed into linear, quadratic and cubic effects using orthogonal polynomials. Values of $P < 0.05$ were considered statistically significant.
RESULTS

Screening for NET expression in neuroblastoma cell lines

The expression of NET in five human neuroblastoma cell lines was assessed using 123I-MIBG uptake and Western blotting assays (Figure 1). Both assays showed that the endogenous expression of NET in SK-N-BE(2)C cells was high, moderate in SK-N-BE(2)N and SK-N-BE(1)N cells, and low in LAN1 and SK-N-SH cells (Figure 1A and 1B). The 123I-MIBG uptake results were consistent with endogenous NET expression levels, as determined by Western blotting analysis (Figure 1C). Both MFBG and MIBG (Figure 2) showed high competitive affinity (IC_{50}: MFBG: $3.29\pm0.62 \mu M$; MIBG: $1.23\pm0.17 \mu M$) to NET endogenously expressed in SK-N-BE(2)C cells. A representative competitive uptake curve is shown in Figure 2.

$[^{18}F]$-MFBG and 123I-MIBG uptake in different NET-expressing neuroblastoma cell lines

In vitro $[^{18}F]$-MFBG uptake studies were performed in four neuroblastoma cell lines, and showed corresponding high uptake in SK-N-BE(2)C, moderate uptake in SK-N-BE(2)N and SK-N-BE(1)N, and low uptake in LAN1 cells (Figure 3A, open bars). These results can be directly compared to those obtained with 123I-MIBG (Figure 3B) and the NET expression levels (Figure 1C). The uptake of 123I-MIBG was always higher than that of $[^{18}F]$-MFBG in all tested cell lines (Figure 1B and 3A). The time-dependent uptake of $[^{18}F]$-MFBG and 123I-MIBG was measured in SK-N-BE(2)C cells. The data were analyzed with a one-compartment kinetic model (Figure 3C). The results showed that the 3-fold higher uptake of 123I-MIBG (V_d) compared to that of $[^{18}F]$-MFBG was primarily due to its more rapid influx (k_1) (Figure 3D). This observation was consistent
with the difference in IC$_{50}$ values for the two tracers (Figure 2). Blocking experiments with an excessive amount of “cold” MIBG or a NET inhibitor (Desipramine, DMI) demonstrated that both ligands have a similarly high specificity toward NET (Figures 1B and 3A).

In vivo imaging and biodistribution

[18F]-MFBG PET/CT and 123I-MIBG SPECT/CT images were obtained in the same animals bearing NET-expressing neuroblastoma xenografts at 1 and 4 h post-injection (p.i.), and at 24 h p.i. for 123I-MIBG only (Figure 4). [18F]-MFBG clearly delineated SK-N-BE(2)C xenografts (high NET expression) from the adjacent background radioactivity in the images at both 1 and 4 h time points (Figure 4A). [18F]-MFBG radioactivity was also visible in normal organs, including brown fat, liver and intestine, at 1 h post-injection; however, at 4 h post injection most organ radioactivity was low, resulting in high tumor-to-background ratios (Table S1). Co-registered PET/CT imaging showed high specific accumulation of [18F]-MFBG in the SK-N-BE(2)C xenografts (high NET expression) and in salivary glands and the bladder (Figure 4A and 4C). LAN1 xenografts (low NET expression) were also visualized with [18F]-MFBG imaging (Figure 4B and 4D), although the images showed less contrast due to the lower tumor uptake. 3D volume-of-interest (VOI) values (%ID/mL) of [18F]-MFBG obtained from the PET images confirmed significantly higher uptake of [18F]-MFBG in SK-N-BE(2)C xenografts compared to that in LAN1 xenografts at the 1 and 4 h p.i. time-points (p <0.0001) (Figure 5A). Paired PET measurements were slightly higher at 4 h than at 1 h p.i. for SK-N-BE(2)C (p=0.017), and slightly lower for LAN1 xenografts (p=0.009). Tumor sampling and radioactivity (well counter) measurements (%ID/g; Table S1) yielded similar results to those obtained with VOI PET (%ID/mL; Figure 5A); there were no significant differences between paired
biodistribution and VOI PET measurements at the 4 h p.i. time-point. (p>0.7 for both xenographs). Analysis of variance (Anova) showed that the biodistribution measurements for both $^{[18]F}$-MFBG and 123I-MIBG in SK-N-BE(2)C xenografts increased at a similar (p=0.666) rate from 5 min to 4 h on a log-log scale (1.33-fold increase for 123I-MIBG and 1.24-fold increase for $^{[18]F}$-MFBG, per 4-fold increase in hours elapsed, p=0.0027 overall), and that $^{[18]F}$-MFBG yielded 27.3% proportionally higher values than 123I-MIBG across the 4 h time period (p=0.025).

123I-MIBG NanoSPECT/CT imaging of SK-N-BE(2)C xenografts at 1 and 4 h post injection showed lower tumor-to-background contrast, with greater retention in the liver, gall bladder and intestine compared to $^{[18]F}$-MFBG at 1 and 4 h (Figure 4A). This was consistent with the higher hydrophobicity and slower body clearance of 123I-MIBG compared to $^{[18]F}$-MFBG. However, a significant improvement in 123I-MIBG SPECT/CT image quality of SK-N-BE(2)C xenografts was observed at 24 h p.i. (Figure 4C). In contrast, LAN1 xenografts could not be imaged consistently at either 4 h or 24 h p.i. (Figure 4B and 4D), due to a low tumor uptake (Table S2) that was indistinguishable from surrounding background.

The results of the biodistribution (tissue sampling and well-counting) studies (Tables S1 and S2) confirmed the PET and SPECT imaging results (Figures 4 and 5A), and the difference in NET expression in SK-N-BE(2)C and LAN1 xenografts was also confirmed by immunohistochemical staining (Figure 5B).

Radiation exposure: absorbed dose estimates

The normal-organ radiation exposure (cGy/MBq) and the effective dose (cSv/MBq) of $^{[18]F}$-MFBG, 123I-MIBG and 124I-MIBG for a 33-kg child were calculated and are presented in Table 1. Based on the mouse biodistribution data (Supplemental Tables 1
and 2), the normal-organ absorbed doses are quite low (<0.003 cGy/MBq), except for the urinary bladder wall (0.047 cGy/MBq). In comparison to adult human data (based on unpublished 123I-MIBG SPECT/CT imaging studies of 19 patients), both 18F-MFBG and 123I-MIBG showed a similar absorbed dose (cGy/MBq) in most organs, and these were 5- to-10-fold lower than those for 124I-MIBG. The estimated absorbed doses based on the 123I-MIBG patient data were slightly higher than those based on the mouse biodistribution data, except for the urinary bladder. The effective radiation dose for 18F-MFBG (0.00397 cSv/MBq) was ~3 fold higher than that for 123I-MIBG, and ~4-fold lower than 124I-MIBG (0.0168±0.00297 cSv/MBq).
DISCUSSION

The presence of metastatic disease is one of the most reliable prognosticators of neuroblastoma outcome (15), and sensitive and specific methods to detect metastases are thus critical for accurate staging (10). Furthermore, the ability to detect early relapse may be critical if patients are to be successfully salvaged after progression (2). MIBG scintigraphy has played an important role in the diagnosis and therapy of neuroblastoma (16). It is now a standard of care world-wide for defining the extent of disease at diagnosis, to monitor disease response during therapy, and to detect residual and recurrent disease during follow-up (8, 17, 18). MIBG is sensitive and specific for neuroblastoma, concentrating in >90% of tumors. Although 131I-MIBG was initially used, 123I-MIBG has yielded better quality images at a lower patient radiation dose and was approved for clinical use in children by the Food and Drug Administration in 2008. However, both 123I- and 131I-MIBG scintigraphic/SPECT imaging have limitations (19).

In order to address some of the limitations associated with $^{123/131}$I-MIBG imaging of NET overexpression in neural crest and neuroendocrine tumors and to evaluate a probe for PET imaging, several $^{[18F]}$-labeled benzylguanidine analogs have been developed; these include $^{[18F]}$-FIBG (20), $^{[18F]}$-FPBG (21) and LMI1195 (22). Most of these ligands were designed to have a LogP value that was similar to that of MIBG, with the objective of achieving an in vitro uptake and in vivo distribution similar to that of MIBG. The results in normal rodents showed that these MIBG-analogs were partially excreted through the liver and digestive track, similar to MIBG. However, none of these $^{[18F]}$-labeled MIBG analogs were validated by imaging NET expression in xenografts, especially with respect to characterizing their pharmacokinetics in vivo or determining the optimal time for imaging to achieve maximum target-to-background ratios. Since in vitro uptake was used previously as the sole criteria for choosing the “ideal” imaging ligand, the more
hydrophilic benzylguanidine analogs were initially abandoned because they exhibited inferior *in vitro* uptake in neuroblastoma and other test cell lines. We hypothesized that the more hydrophilic [18F]-labeled benzylguanidine analogs should have a lower binding to plasma proteins and would be cleared more rapidly from non-target tissues and from the body compared to the more hydrophobic MIBG. Thus, a high tumor-to-background ratio presumably could be achieved at an “early time”.

The *in vitro* and *in vivo* results reported here support the foregoing hypotheses. Even though the more hydrophilic [18F]-MFBG showed a 2-3-fold lower tumor cell uptake *in vitro* compared to that of 123I-MIBG, the uptake of both [18F]-MFBG and 123I-MIBG in neuroblastoma cells was specific and corresponded to the expression level of NET. The observed lower uptake of [18F]-MFBG compared to that of 123I-MIBG in the four neuroblastoma cell lines reflects a lower affinity of [18F]-MFBG for NET compared to 123I-MIBG. Nevertheless, the correlation between tracer uptake and amount of NET protein demonstrates that [18F]-MFBG is able to quantitatively measure NET expression levels.

In vivo studies showed that [18F]-MFBG was able to clearly visualize neuroblastoma xenografts at 1 h p.i., with the uptake in the tumor correlated with the expression level of NET. Tumor values tended to plateau after 1 h, and a further increase in tumor/background contrast was achieved largely by whole-body radioactivity clearance. In contrast to the *in vitro* data, [18F]-MFBG accumulation in SK-N-BE(2)C xenografts was ~2-fold greater than that of 123I-MIBG, and background radioactivity levels in non-NET expressing organs were considerably less (~50%) at 4 h post injection. The lower background values reflected the more rapid body clearance of [18F]-MFBG compared to that of 123I-MIBG. The combined effect of greater uptake and more rapid body clearance resulted into a ~4-fold higher target-to-background ratio in SK-N-BE(2)C xenografts for [18F]-MFBG than for 123I-MIBG. The comparatively slow clearance of 123I-MIBG relative to [18F]-MFBG we observed in the mouse is likely to be greater in patients, since the serum
free- (non-protein bound) fraction of MIBG in human serum (12±1%) is 2.4-fold less than that in murine serum (29±2%), and significantly less than that of MFBG in both species (67±1 and 70±3%, for human and murine serum, respectively) (23).

123I-MIBG tumor-to-background specificity was substantially improved by imaging SK-N-BE(2)C xenografts at 1 day post injection, with intervening non-target background/organ clearance of radioactivity. Since 123I-MIBG SPECT imaging of neuroblastoma patients is usually performed 1 day p.i., a comparison of 4 h [18F]-MFBG to 24 h 123I-MIBG is a more clinically relevant. Our results showed a comparable image contrast for high NET-expressing SK-N-BE(2)C xenografts (Figure 4C), but greater detection sensitivity of [18F]-MFBG for low-NET expressing LAN1 xenografts (Figure 4D). For SK-N-BE(2)C xenografts, the 4 h uptake of [18F]-MFBG (5.97±1.86; Table S1) is ~3-fold greater than the 24 h uptake of 123I-MIBG (2.10±0.48; Table S2) (p<0.001). For LAN1 xenografts, the 4 h uptake of [18F]-MFBG (1.72±0.37; Table S1) is also significantly greater than the 24 h uptake of 123I-MIBG (0.55±0.11; Table S2) (p<0.001).

Clinical imaging of neuroendocrine tumors has a long history and many comparisons between SPECT- and PET-based tracers have been performed, including 123I-MIBG and 18F-FDG (24), fluorodopamine (18F-DA) (25) and fluorodopa (18F-DOPA) (26). In general, 123I-MIBG SPECT has been shown to be less sensitive than the PET-based radiopharmaceuticals. For example, 18F-6-fluorodopamine (18F-DA) has already been shown to have a higher sensitivity than 123I-MIBG for the localization of metastatic pheochromocytoma (25). However, neuroendocrine tumors express different monoamine transporters (27) and the 18F-labeled ligands (18F-DA, 18F-DOPA, [18F]-MFBG and other 18F-benzylguanidine analogs) as well as 18F-FDG, have different patterns of tumor uptake (28). In addition, 18F-DA is not an optimal imaging agent for monitoring the targeted radiotherapy of 131I-MIBG because 18F-DA has an accumulation pattern distinct from that of MIBG (25, 28). Detailed comparative clinical imaging studies need to be
done before a conclusive statement can be made as to whether an 18F-labeled meta-benzylguanidine analog, such as [18F]-MFBG, is a superior radiotracer for identifying NET-expressing lesions for targeted radiotherapy.

Although the effective radiation dose estimated for [18F]-MFBG was ~3-fold higher than that for 123I-MIBG, and ~4-fold lower than 124I-MIBG, SPECT imaging with 123I-MIBG required a ~4- to 5-fold higher 123I-MIBG administered dose of radioactivity than that for [18F]-MFBG PET imaging in our current studies. Thus, it was reasonable to project lower total radiation doses for [18F]-MFBG based on translation of our mouse imaging protocol to patient imaging. For a 123I-MIBG-SPECT scan, a dose of 5.2 MBq/kg body weight is recommended according to The North American Consensus Guidelines (29). Although the optimal clinical PET imaging dose of [18F]-MFBG has not been determined, it is expected to be < 3.7 MBq/kg. It is of note that the [18F]-MFBG calculations reflect a high bladder wall deposit, which was calculated on the basis of the imaging data (whole bladder plus urine). Since [18F]-MFBG is cleared faster and preferentially by the urinary system compared to 123I-MIBG, its overall radiation exposure could be substantially reduced with hydration and continual or frequent emptying of the bladder. Thus, the total radiation exposure for [18F]-MFBG compares favorably to that of 123I-MIBG and 124I-MIBG (30), especially when coupled with frequent bladder voiding.

Conclusion. Our studies show that [18F]-MFBG has high specific accumulation in neuroblastoma xenografts and the magnitude of uptake reflects the expression level of NET. Although 123I-MIBG has better *in vitro* uptake parameters, *in vivo* MIBG imaging is compromised by significant plasma protein binding and a comparatively slow total body clearance. The rapid accumulation of [18F]-MFBG in tumor and fast excretion from surrounding organs and the whole body, allows for “early” imaging; namely, several hours following tracer administration. High-contrast images with shorter imaging acquisition times can be obtained on same day with [18F]-MFBG PET, whereas 123I-
MIBG SPECT requires a 24 h delay for clearance of background radioactivity. $[^{18}\text{F}]-$
MFBG PET will facilitate imaging of children with neuroblastoma and will result in better
patient compliance, due to the shorter image acquisition times.
Acknowledgements

This work was supported by NIH grant P50-CA84638 and the US Department of Energy Award (DE-SC0002456, JSL). We appreciate the assistance of staff from the MSKCC Small Animal Imaging Core Facility for the PET imaging and the MSKCC Radiochemistry & Molecular Imaging Probe Core for 18F production. These MSKCC Cores were supported by the NIH Center grant P30 CA08748. We also thank Mr. Kuntalkumar Sevak for cell culture assistance.
Reference:

Table 1 Estimated surface integral exposure (absorbed radiation dose) following the administration of $[^{18}F]$-MFBG, 123I-MIBG and $^{[124]}$I-MIBG to a 33 kg of standard person (child) using the MIRD formalism §.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>$[^{18}F]$-MFBG</th>
<th>123I-MIBG</th>
<th>$^{[124]}$I-MIBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenals</td>
<td>1.19</td>
<td>0.86</td>
<td>1.14±0.27</td>
</tr>
<tr>
<td>Brain</td>
<td>0.22</td>
<td>0.08</td>
<td>0.60±0.14</td>
</tr>
<tr>
<td>Breasts</td>
<td>0.78</td>
<td>0.22</td>
<td>0.62±0.14</td>
</tr>
<tr>
<td>Gallbladder wall</td>
<td>1.41</td>
<td>0.70</td>
<td>1.46±0.35</td>
</tr>
<tr>
<td>Lower large intestine wall</td>
<td>2.76</td>
<td>0.97</td>
<td>0.73±0.16</td>
</tr>
<tr>
<td>Small intestine</td>
<td>2.30</td>
<td>1.89</td>
<td>0.87±0.19</td>
</tr>
<tr>
<td>Stomach wall</td>
<td>2.30</td>
<td>0.73</td>
<td>0.95±0.22</td>
</tr>
<tr>
<td>Upper large intestine wall</td>
<td>1.86</td>
<td>0.86</td>
<td>0.92±0.22</td>
</tr>
<tr>
<td>Heart wall</td>
<td>3.00</td>
<td>1.27</td>
<td>3.14±0.89</td>
</tr>
<tr>
<td>Kidneys</td>
<td>1.24</td>
<td>0.68</td>
<td>0.92±0.22</td>
</tr>
<tr>
<td>Liver</td>
<td>2.70</td>
<td>1.32</td>
<td>4.16±0.13</td>
</tr>
<tr>
<td>Lungs</td>
<td>1.00</td>
<td>0.40</td>
<td>2.41±0.51</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.86</td>
<td>0.32</td>
<td>0.68±0.14</td>
</tr>
<tr>
<td>Ovaries</td>
<td>2.27</td>
<td>0.95</td>
<td>7.84±0.16</td>
</tr>
<tr>
<td>Pancreas</td>
<td>1.41</td>
<td>0.78</td>
<td>1.16±0.27</td>
</tr>
<tr>
<td>Red marrow</td>
<td>1.35</td>
<td>0.51</td>
<td>0.62±0.14</td>
</tr>
<tr>
<td>Bone</td>
<td>1.78</td>
<td>1.16</td>
<td>2.03±0.43</td>
</tr>
<tr>
<td>Skin</td>
<td>0.78</td>
<td>0.22</td>
<td>0.43±0.11</td>
</tr>
<tr>
<td>Spleen</td>
<td>1.16</td>
<td>0.62</td>
<td>0.81±0.16</td>
</tr>
<tr>
<td>Testes</td>
<td>2.11</td>
<td>0.65</td>
<td>0.54±0.11</td>
</tr>
<tr>
<td>Thymus</td>
<td>1.00</td>
<td>0.30</td>
<td>0.81±0.16</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.91</td>
<td>0.27</td>
<td>0.70±0.14</td>
</tr>
<tr>
<td>Urinary bladder wall</td>
<td>46.5</td>
<td>11.9</td>
<td>0.70±0.16</td>
</tr>
<tr>
<td>Uterus</td>
<td>4.05</td>
<td>1.62</td>
<td>7.84±0.16</td>
</tr>
<tr>
<td>Total body</td>
<td>1.27</td>
<td>0.43</td>
<td>0.84±0.19</td>
</tr>
</tbody>
</table>

Effective Dose ($×10^{-3}$ cSv/MBq) 3.97 1.24 1.08±0.24 16.8±3.0

§ A typical dose of 123I-MIBG is 5.2 MBq/kg. The predicted dose for $[^{18}F]$-MFBG is < 3.7 MBq/kg, and for $^{[124]}$I-MIBG the dose is 3.7 MBq/kg.

* Estimated from radioactivity-time biodistribution studies of $[^{18}F]$-MFBG and 123I-MIBG in mice (Supplemental Tables 1 and 2).

† Estimated from 123I-MIBG SPECT/CT imaging studies of 19 patients at 0.8, 24.8 and 44.8 h post injection.
Legends

Figure 1. The expression of NET protein in neuroblastoma cell lines.

(A) Expression of NET protein was detected by Western blot analysis using the α-SLC6A2/NET antibody. β-actin was used as a loading control. A representative of four separate blots is shown. (B) 123I-MIBG in vitro uptake studies (open bar) and DMI (50 µM) blocking experiments (closed bar). The results (mean ± SD) were from 2-6 independent studies with triplicates in each experiment. (n = 6 for SK-N-BE(2)C; n = 2 for SK-N-BE(2)N; n = 5 for SK-N-BE(1)N; n= 6 for LAN1; n = 3 for SK-N-SH; and n = 2 for blocking studies). (C) Correlation between 123I-MIBG uptake and normalized NET protein (optical density ratio of the SLC6A2 and ACTB bands).

Figure 2. Structures of $^{[18F]}$-MFBG and 123I-MIBG and their competitive inhibition of 123I-MIBG binding to the NE transporter. The IC$_{50}$ values (mean ± SD) were determined in SK-N-BE(2)C cells; four (MFBG) and two (MIBG) independent studies were performed, with triplicates in each experiment.

Figure 3. In vitro uptake of $^{[18F]}$-MFBG and 123I-MIBG. (A) $^{[18F]}$-MFBG uptake in neuroblastoma cell lines (open bars) could be blocked by either MIBG (200 µM) or DMI (50 µM) (closed bars). Values (mean ± SD) from 2-5 independent studies with triplicates in each experiment: n = 5 for SK-N-BE(2)C; n = 2 for SK-N-BE(2)N; n = 2 for SK-N-BE(1)N; n = 3 for LAN1; and n = 2 for blocking experiments. (B) Correlation between $^{[18F]}$-MFBG and 123I-MIBG uptake (data from Figures 3A and 1B, respectively) (Slope: 0.36±0.05; Y-intercept: 0.32±0.30). (C) and (D) Kinetic analysis of $^{[18F]}$-MFBG and 123I-MIBG uptake in SK-N-BE(2)C cells (two independent studies, with triplicates in each experiment). A one compartment kinetic analysis of the radioactivity-time data was performed.
Figure 4. Neuroblastoma xenografts imaged in the same animal with 18F-MFBG (PET/CT) and 123I-MIBG (SPECT/CT). (A) SK-N-BE(2)C tumor-bearing mice ($n = 7$) were imaged at 1 h and 4 h p.i. with 18F-MFBG on day 1 and with 123I-MIBG on day 2. (B) LAN1 tumor-bearing mice ($n = 5$) were imaged at 1 h and 4 h p.i. with 18F-MFBG on day 1 and with 123I-MIBG day 2. (C) and (D) Two additional sets of SK-N-BE(2)C ($n = 5$) and LAN1 ($n = 5$) tumor-bearing mice, respectively, were imaged at 4 h p.i. with 18F-MFBG on day 1, and then with 123I-MIBG at 24 h p.i. on day 3. A color threshold was optimized to visualize the tumor clearly on the fusion image. An accurate color-intensity scale bar (%ID/cc) is precluded in these MIP (maximum intensity projection) images (VOI measurements are provided in Fig 5A). 18F-MFBG PET visualized SK-N-BE(2)C xenografts (solid arrow) with high tumor-to-background contrast, especially at 4 h p.i. 123I-MIBG SPECT imaging shows poor tumor-to-background contrast at both 1 and 4 h, but a significantly improved image was observed at 24 h (the two adrenal glands were clearly visualized). LAN1 xenografts (dash arrow) could be detected by 18F-MFBG PET at 4 h p.i., but not by 123I-MIBG SPECT at 24 h p.i.

Figure 5. Quantitative measurements of neuroblastoma xenograft radioactivity. (A) Voxel-based 3D volume of interest (VOI) values (%ID/mL) of 18F-MFBG were obtained from the PET images of SK-N-BE(2)C and LAN1 xenografts. 123I-MIBG radioactivity measurements (%ID/g) were obtained from tissue dissection and gamma well-counting. (B) ex vivo immunohistochemistry (IHC) staining of SK-N-BE(2)C and LAN1 xenografts. The VOI measurements of xenograft 18F-MFBG radioactivity are very similar to the values obtained by tissue dissection with gamma well-counting in the biodistribution studies that were performed in different sets of animals (see supplemental Table S1). The difference between 4 h 18F-MFBG and 24 h 123I-MIBG uptake in SK-N-BE(2)C xenografts was highly significant ($p < 0.001$); similarly for LAN1 xenografts ($p <$
0.001). The difference in the expression of NET in SK-N-BE(2)C and LAN1 xenografts was confirmed by IHC staining.
Figure 1

A. Western blot analysis showing the expression levels of SLC6A2 and ACTB in various cell lines.

B. Bar graph illustrating the % of added activity per 10^6 cells for different cell lines with and without DMI treatment. The graph compares non-inhibited (white bars) and inhibited (black bars) conditions.

C. Line graph showing the relationship between 123-I-MIBG uptake and normalized NET protein levels. The equation of the line is \(R^2 = 0.9406 \).
Figure 2

IC₅₀: 3.29 ± 0.46 μM

IC₅₀: 1.23 ± 0.12 μM
Figure 3

A) Graph showing the percentage of added 18F-MFBG per 10^6 cells.

B) Graph showing the 18F-MFBG uptake with 123I-MIBG uptake.

C) Graph showing the percentage of added activity per 10^6 cells over time.

D) Table showing the kinetic parameters for 123I-MIBG and $[^{18}$F]-MFBG.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>k_1</th>
<th>k_2</th>
<th>V_d</th>
<th>$t_{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>123I-MIBG</td>
<td>0.183±0.024</td>
<td>0.016±0.002</td>
<td>11.8±1.4</td>
<td>43</td>
</tr>
<tr>
<td>$[^{18}$F]-MFBG</td>
<td>0.063±0.005</td>
<td>0.015±0.002</td>
<td>4.0±0.3</td>
<td>46</td>
</tr>
</tbody>
</table>
Figure 5

A

SK-N-BE(2)C

LAN1

%ID/mL or %ID/g

%ID/mL or %ID/g

0 1 h 4 h 1 h 4 h 24 h

0 1 h 4 h 24 h

12 12 5 6 6

10 10 5

of animals

[18F]-MFBG

123I-MIBG

B

SK-N-BE(2)C

LAN1

α-SLC6A2

Downloaded from clincancerres.aacrjournals.org on 2017-04-13.
Imaging the Norepinephrine Transporter in Neuroblastoma: A Comparison of [{18}F]-MFBG and {123}I-MIBG

Hanwen Zhang, Ruimin Huang, Nai-Kong V Cheung, et al.

Clin Cancer Res Published OnlineFirst February 26, 2014.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-13-1153

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2014/02/25/1078-0432.CCR-13-1153.DC1
http://clincancerres.aacrjournals.org/content/suppl/2015/11/25/1078-0432.CCR-13-1153.DC2

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.