Activating and propagating polyclonal gamma delta T cells with broad specificity for malignancies

Drew C. Deniger1,2, Sourindra N. Maiti1, Tiejuan Mi1, Kirsten C. Switzer1, Vijaya Ramachandran3, Lenka V. Hurton1,2, Sonny Ang1, Simon Olivares1, Brian A. Rabinovich1, Helen Huls1, Dean A. Lee1,2, Robert C. Bast, Jr4, Richard E. Champlin5, Laurence J.N. Cooper1,2

1Pediatrics, University of Texas MD Anderson Cancer Center; Houston, TX 2University of Texas Graduate School of Biomedical Sciences at Houston; Houston, TX 3Cancer Biology, University of Texas MD Anderson Cancer Center; Houston TX 4Experimental Therapeutics, University of Texas MD Anderson Cancer Center; Houston TX 5Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center; Houston, TX

Running title: Polyclonal gamma delta therapy for cancer

CORRESPONDING AUTHOR
Laurence J.N. Cooper, M.D., Ph.D.
University of Texas MD Anderson Cancer Center
Pediatrics, Unit 907, 1515 Holcombe Blvd., Houston, TX 77030
Phone: (713) 563-3208; Fax: (713) 792-9832; E-mail: ljncooper@mdanderson.org

COUNTS
Statement of translational relevance: 149 words (limit 150 words)
Abstract = 250 words (limit 250)
Text = 4,998 words (Limit 5,000)
Tables and figures: 6 Figures (1 color; limit 6), Supplemental Data: 1 Supplemental Table, 13 Supplemental Figures (4 color)
References: 50 (Limit 50)

Conflict of interest statement: The authors (D.C.D. and L.J.N.C.) have a patent application associated with methods and data described and arising from this publication. L.J.N.C. founded and owns InCellerate Inc. He has patents with Sangamo BioSciences with artificial nucleases. He consults with American Stem cells, Inc., GE Healthcare, Bristol-Myers Squibb, and Ferring Pharmaceuticals. He receives honoraria from Miltenyi Biotec. The authors declare no other competing financial interests.
TRANSLATIONAL RELEVANCE

γδ T cells have anti-cancer activity, but only one subset, Vγ9Vδ2, has been harnessed for immunotherapy. Our study establishes that artificial antigen presenting cells (aAPC), IL-2, and IL-21 can activate and propagate γδ T cells with polyclonal TCR repertoire to clinical scale. The heterogeneous population of γδ T cells produced from ex vivo culture secreted pro-inflammatory cytokines, lysed a broad range of malignancies, and improved survival in an ovarian cancer xenograft model. Given that γδ T cells are not thought to recognize ligands in the context of MHC, there is limited risk of graft-versus host disease in an allogeneic setting. Thus, 3rd party γδ T cells from an unrelated (healthy) donor could be produced in bulk and be administered as an off-the-shelf investigational therapy for hematologic and solid tumors. The aAPC are already available as a clinical reagent, which will facilitate the human application of polyclonal γδ T cells.
ABSTRACT

Purpose: To activate and propagate populations of γδ T cells expressing polyclonal repertoire of γ and δ TCR chains for adoptive immunotherapy for cancer, which has yet to be achieved.

Experimental Design: Clinical-grade artificial antigen presenting cells (aAPC) derived from K562 tumor cells were used as irradiated feeders to activate and expand human γδ T cells to clinical scale. These cells were tested for proliferation, TCR expression, memory phenotype, cytokine secretion, and tumor killing.

Results: γδ T cell proliferation was dependent upon CD137L expression on aAPC and addition of exogenous IL-2 and IL-21. Propagated γδ T cells were polyclonal as they expressed Vδ1, Vδ2, Vδ3, Vδ5, Vδ7, and Vδ8 with Vγ2, Vγ3, Vγ7, Vγ8, Vγ9, Vγ10, and Vγ11 TCR chains. Interferon-γ production by Vδ1, Vδ2, and Vδ1negVδ2neg subsets was inhibited by pan-TCRγδ antibody when added to co-cultures of polyclonal γδ T cells and tumor cell lines. Polyclonal γδ T cells killed acute and chronic leukemia, colon, pancreatic, and ovarian cancer cell lines, but not healthy autologous or allogeneic normal B cells. Blocking antibodies demonstrated that polyclonal γδ T cells mediated tumor cell lysis through combination of DNAM1, NKG2D, and TCRγδ. The adoptive transfer of activated and propagated γδ T cells expressing polyclonal versus defined Vδ TCR chains imparted a hierarchy (polyclonal>Vδ1>Vδ1negVδ2neg>Vδ2) of survival of mice with ovarian cancer xenografts.

Conclusions: Polyclonal γδ T cells can be activated and propagated with clinical-grade aAPC and demonstrate broad anti-tumor activities, which will facilitate the implementation of γδ T cell cancer immunotherapies in humans.
INTRODUCTION

Human γδ T cells exhibit an endogenous ability to specifically kill tumors and hold promise for adoptive immunotherapy. They have innate and adaptive qualities exhibiting a range of effector functions, including cytolysis upon cell contact (1, 2). Recognition and subsequent killing of tumor is achieved upon ligation of antigens to heterodimers of γ and δ T-cell receptor (TCR) chains. The human TCR variable (V) region defines 14 unique Vγ alleles, 3 unique Vδ alleles (Vδ1, Vδ2, and Vδ3), and 5 Vδ alleles that share a common nomenclature with Vα alleles (Vδ4/Vα14, Vδ5/Vα29, Vδ6/Vα23, Vδ7/Vα36, and Vδ8/Vα38-2) (3). T cells expressing TCRα/TCRβ heterodimers compose approximately 95% of peripheral blood (PB) T cells and recognize peptides in the context of major histocompatibility complex (MHC) (4). In contrast, TCRγδ ligands are recognized independent of MHC and these cells are infrequent (1-5% of T cells) in PB (1, 5, 6). Many conserved ligands for TCRγδ are present on cancer cells, thus an approach to propagating these T cells from small starting numbers while maintaining a polyclonal repertoire of γδ TCRs has appeal for human application.

Clinical trials highlight the therapeutic potential of γδ T cells, but numeric expansion is needed for adoptive immunotherapy because they circulate at low frequencies in PB. Methods to propagate αβ T cells, e.g., using interleukin-2 (IL-2) and/or antibody cross-linking CD3, cannot sustain proliferation of γδ T cells (7, 8). Aminobisphosphonates, e.g., Zoledronic acid (Zol), have been used to initiate a proliferative signal in γδ T cells (5, 9), but only one lineage of γδ T cells, expressing Vγ9Vδ2 TCR, can be reliably expanded by Zol. The adoptive transfer of Vγ9Vδ2 T cells has yielded clinical responses for investigational treatment of solid and hematological cancers (10-14). Furthermore, long-term remission of leukemia among recipients of
haploidentical αβ T cell-depleted hematopoietic stem-cell transplantation (HSCT) correlated with increased engraftment frequency of donor-derived Vδ1 cells (8, 15-17). However, direct administration of Vδ1 cells or other non-Vγ9Vδ2 cell lineages has yet to be performed. In addition, no reports to date have described the therapeutic impact of Vδ1negVδ2neg cells in cancer immunotherapy and this subset has not been directly compared to T cells expressing Vδ1 and Vδ2 TCRs. Thus, there are significant gaps in the knowledge and human application of non-Vγ9Vδ2 lineages.

Given that γδ T cells have endogenous anti-cancer activity, such as against K562 cells (8, 18), we hypothesized that malignant cells would serve as a cellular substrate to propagate polyclonal γδ T cells. K562 cells have been genetically modified to function as artificial antigen presenting cells (aAPC) to ex vivo activate and numerically expand αβ T cells and NK cells (19-23). We determined that interleukin-2 (IL-2), IL-21, and γ-irradiated K562-derived aAPC (designated clone #4, genetically modified to co-express CD19, CD64, CD86, CD137L, and a membrane-bound mutein of IL-15 (mIL15); used in selected clinical trials at MD Anderson Cancer Center) can sustain the proliferation of γδ T cells with polyclonal TCR repertoire. Polyclonal γδ T cells exhibited broad tumor reactivity and displayed a multivalent response to tumors as evidenced by the ability of separated Vδ sub-populations to kill and secrete cytokine against the same tumor target. Further, killing by polyclonal populations was multifactorial being mediated through DNAM1, NKG2D, and TCRγδ. Tumor xenografts were eliminated by both polyclonal and distinct γδ T-cell subsets, and mice treated with polyclonal γδ T cells had superior survival. Given the availability of aAPC as a clinical reagent, trials can for the first time, evaluate polyclonal populations of γδ T cells as a cancer immunotherapy.
MATERIALS AND METHODS

Cell lines

HCT-116, Kasumi-3, and K562 were acquired from American Type Culture Collection (ATCC; Manassas, VA). Jurkat was purchased from Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ; Germany). cALL-2 and RCH-ACV were gifts from Dr. Jeff Tyner (Oregon Health & Science University). BxPC-3, MiaPaCa-2, and Su8686 (pancreatic cancer) were donated by Dr. Vijaya Ramachandran (MD Anderson Cancer Center). A2780, CAOV3, EFO21, EFO27, Hey, IGROV1, OAW42, OC314, OVCAR3, and UPN251 (ovarian cancer) were provided by Dr. Robert C. Bast, Jr. (MD Anderson Cancer Center). Identities of all cell lines were confirmed by STR DNA Fingerprinting at MD Anderson Cancer Center’s “Characterized Cell Line Core” and cells were used within 6 months of authentication.

Propagation of $\gamma\delta$ T cells

Peripheral blood mononuclear cells (PBMC) and umbilical cord blood (UCB) were isolated from healthy volunteers by Ficoll-Hypaque (GE Healthcare) after informed consent (24). Thawed PBMC (10^8) were initially treated with CD56 microbeads (cat# 130-050-401, Miltenyi Biotec, Auburn, CA) and separated on LS columns (cat# 130-042-401, Miltenyi Biotec) to deplete NK cells from cultures because they proliferate on aAPC (23) and would contaminate the purity of the $\gamma\delta$ T-cell product. Unlabeled cells from CD56 depletion sorting were then labeled with TCR$\gamma\delta^+$ T-cell isolation kit (cat# 130-092-892, Miltenyi Biotec) and placed on LS columns to separate $\gamma\delta$ T cells in the unlabeled fraction from other cells attached to magnet. $\gamma\delta$ T cells were
co-cultured at a ratio of one T cell to two γ-irradiated (100 Gy) aAPC (clone #4) in presence of exogenous IL-2 (Aldesleukin; Novartis, Switzerland; 50 IU/mL), and IL-21 (cat# AF20021; Peprotech, Rocky Hill, NJ; 30 ng/mL) in complete media (CM; RPMI, 10% FBS, 1% Glutamax). Cells were serially re-stimulated with addition of γ-irradiated aAPC every 7 days for 2 to 5 weeks in presence of soluble cytokines, which were added three times per week beginning the day of aAPC addition. K562 were genetically modified to function as aAPC (clone #4) as previously described (25, 26). Validation of co-expression of CD19, CD64, CD86, CD137L, and eGFP (IL-15 peptide fused in frame to IgG4 Fc stalk and co-expressed with eGFP) on aAPC clone #4 was performed before addition to T-cell cultures (25). Fluorescence activated cell sorting (FACS) was used to isolate Vδ1 (TCRδ1+TCRδ2neg), Vδ2 (TCRδ1negTCRδ2+), and Vδ1negVδ2neg (TCRδ1negTCRδ2neg) populations, which were stimulated twice as above with aAPC clone #4, phenotyped, and used for functional assays. γδ T cells from UCB were isolated by FACS from thawed mononuclear cells using anti-TCRγδ and anti-CD3 monoclonal antibodies (mAbs) and were stimulated for five weeks on aAPC/cytokines as per PBMC.

Abundance and identity of mRNA molecules by DTEA

At designated times after co-culture on aAPC, T cells were lysed at a ratio of 160 μL RLT Buffer (Qiagen) per 10⁶ cells and frozen at -80°C. RNA lysates were thawed and immediately analyzed using nCounter Analysis System (NanoString Technologies, Seattle, WA) with “designer TCR expression array” (DTEA), as previously described (27, 28). DTEA data was normalized to both spike positive control RNA and housekeeping genes (ACTB, G6PD, OAZ1, POLR1B, POLR2A, RPL27, Rps13, and TBP). Spiked positive control normalization factor was calculated from the
average of sums for all samples divided by the sum of counts for an individual sample. Spiked positive control normalization factor was calculated from the average of geometric means for all samples divided by the geometric mean for an individual sample. Normalized counts were reported.

Flow cytometry

Cells were phenotyped with antibodies detailed in Supplemental Table 1. Gating strategy is displayed in Supplemental Figure 1. Samples were acquired on FACS Calibur (BD Biosciences, San Jose, CA) and analyzed with FlowJo software (version 7.6.3).

Cytokine production and cytolysis assays

Expression of cytokines was assessed by intracellular staining and secretion of cytokines into tissue culture supernatants was evaluated by Luminex multiplex analysis. *In vitro* specific lysis was assessed using a standard 4-hour CRA, as previously described (25). Additional information can be found in the supplemental materials and methods.

Mouse experiments

In vivo anti-tumor efficacy was assessed in NSG mice (NOD.Cg-Prkdc^{scid}Il2rg^{tm1Wjl}/SzJ; Jackson Laboratories). CAOV3 ovarian cancer cell line was transduced with recombinant lentivirus (Supplemental Figure 2) encoding mKate red fluorescence protein (29) to identify transduced
cells and enhanced firefly luciferase (effLuc) for non-invasive bioluminescence imaging (30). CAOV3-effLuc-mKate (clone 1C2; 3x10^6 cells/mouse) tumors were established by intraperitoneal (i.p.) injection and mice were randomly distributed into treatment groups. Eight days later (designated Day 0), a dose escalation regimen was initiated with γδ T cells administered i.p. and PBS administered i.p. as a negative control. T-cell doses were 3x10^6, 6x10^6, 10^7, and 1.5x10^7 on days 0, 7, 14, and 21, respectively. Non-invasive BLI was performed during the course of the experiments to serially measure tumor burden of CAOV3-effLuc-mKate following subcutaneous administration of d-Luciferin (cat#122796, Caliper, Hopkinton, MA) as detected with IVIS-100 Imager (Caliper). BLI was analyzed using Living Image software (version 2.50, Xenogen, Caliper).
RESULTS

Ex vivo numeric expansion of $\gamma\delta$ T cells on aAPC depends on co-stimulation and cytokines

The adoptive transfer of $\gamma\delta$ T cells requires *ex vivo* propagation as starting numbers from PBMC are limiting (gating on lymphocyte pool: $3.2\% \pm 1.2\%$; mean \pm standard deviation (SD); n=4; **Figure 1A**). $\gamma\delta$ T cells from PBMC were isolated by “negative” paramagnetic bead selection and co-cultured for 22 days with weekly addition of γ-irradiated K562-derived aAPC (clone #4) in the presence of soluble recombinant IL-2 and IL-21 in alignment with protocols at MD Anderson for propagation of clinical-grade $\alpha\beta$ T cells. This resulted in the outgrowth of a population of T cells homogeneously co-expressing CD3 and TCR$\gamma\delta$ ($97.9\% \pm 0.6\%$). NK cells (CD3$^\text{neg}$CD56$^+$) and $\alpha\beta$ T cells (TCR$\alpha\beta^+$) were absent from these cultures supporting the purity of the $\gamma\delta$ T-cell product. Populations of TCRδ^1^+TCRδ^2^neg, TCRδ^1^negTCRδ^2^+, and TCRδ^1^negTCRδ^2^neg were detected indicating that aAPC, IL-2, and IL-21 supported polyclonal $\gamma\delta$ T cell proliferation (**Figure 1A far right**). Cells were activated as marked by expression of CD38 ($93.5\% \pm 3.5\%$) and CD95 ($99.7\% \pm 0.1\%$) (**Supplemental Figure 3**). This approach to propagation yielded >109 $\gamma\delta$ T cells from <106 total initiating cells (**Figure 1B**), which represented a 4.9x10$^3 \pm 1.7x10^3$ (mean \pm SD; n=4) fold increase. Thus, aAPC with recombinant human cytokines supported the robust numeric expansion of polyclonal $\gamma\delta$ T cells from small starting numbers of $\gamma\delta$ T cells derived from PBMC.

The addition of exogenous cytokines and presence of mIL15, CD86, and CD137L on clinical-grade aAPC were assessed for their ability to support the outgrowth of $\gamma\delta$ T cells. Parental K562 cells were stably transfected with *Sleeping Beauty* (SB) transposons to introduce individual stimulatory molecules, cloned to achieve homogeneous expression (**Supplemental
Figure 4), and then used to assess their impact on γδ T-cell proliferation. Co-cultures with exogenous IL-2 and IL-21 were initiated with paramagnetic bead-purified γδ T cells and five sets of γ-irradiated K562: (i) parental, (ii) mIL15⁺, (iii) mIL15⁺CD86⁺, (iv) mIL15⁺CD137L⁺, and (v) mIL15⁺CD86⁺CD137L⁺ (clone #4). γδ T cells cultured in parallel without APC demonstrated that soluble IL-2 and IL-21 sustained only limited numeric expansion of γδ T cells (Figure 1C). Propagation improved upon addition of parental K562 cells, indicating that endogenous molecules on these cells can activate γδ T cells for proliferation. The expression of mIL15 with or without CD86 did not further improve the ability of γδ T cells to propagate compared with parental K562. In contrast, improved rates of propagation of γδ T cells were observed upon co-culture with mIL15⁺CD137L⁺ and mIL15⁺CD86⁺CD137L⁺ aAPC. Thus, it appears that CD137L on aAPC clone#4 provides a dominant co-stimulatory proliferative signal for γδ T cells. In the absence of IL-2 and IL-21 the proliferation of γδ T cells ceased on aAPC clone#4, and together these cytokines exhibited an additive benefit to the rate of γδ T-cell propagation (Figure 1D).

This validated our approach to combining aAPC clone #4 with cytokines to sustain the proliferation of polyclonal γδ T cells ex vivo, and demonstrated that CD137L on aAPC, IL-2, and IL-21 were driving factors for proliferation of polyclonal γδ T cells to clinical scale.

Ex vivo numeric expansion of neonatal γδ T cells on aAPC in presence of IL-2 and IL-21

Allogeneic UCB is an important source of γδ T cells for adoptive transfer, because it contains younger cells and a more diverse TCRγδ repertoire relative to PBMC, which could increase the number of ligands targeted by the engrafted cells and result in long-term engraftment in the
recipient (31). However, the limited number of mononuclear cells within a banked UCB unit curtails the number of neonatal γδ T cells directly available for adoptive transfer. Thus, we evaluated whether aAPC could sustain proliferation from small starting numbers of neonatal γδ T cells. Fluorescence activated cell sorting (FACS) was used to isolate 10^4 UCB-derived γδ T cells (~0.01% of a typical UCB unit) which were co-cultured on aAPC clone #4 with IL-2 and IL-21. After 35 days, there was a 10^7-fold increase in cell number, as an average of 10^{11} UCB-derived γδ T cells (Range: $6 \times 10^9 – 3 \times 10^{11}$; n=5) were propagated from the 10^4 initiating γδ T cells (Supplemental Figure 5A). Two additional stimulations were performed for γδ T cells derived from UCB compared to PBMC highlighting their potential for proliferating to clinically-appealing numbers. The propagated γδ T-cell populations exhibited uniform co-expression of CD3 and TCRγδ and lacked TCRαβ T cells or presence of CD3negCD56+ NK cells (Supplemental Figure 5B-D). Collectively, these data demonstrate that aAPC clone #4 with IL-2 and IL-21 could sustain the ex vivo proliferation of γδ T cells from a small starting population of neonatal UCB.

Ex vivo activated and propagated γδ T cells express polyclonal and defined TCRγδ repertoire

Upon establishing that γδ T cells could numerically expand on aAPC and selected cytokines, we sought to determine the TCR repertoire of the propagated cells. Prior to numeric expansion, resting γδ T cell repertoire followed TCRδ2>TCRδ1negTCRδ2neg>TCRδ1 by flow cytometry (Supplemental Figure 6). However, the γδ T-cell repertoire followed TCRδ1>TCRδ1negTCRδ2neg>TCRδ2 following expansion, suggesting that there was a
proliferative advantage for Vδ1 cells within polyclonal γδ T-cell cultures. To look more in-depth at TCRγδ diversity in aAPC-expanded γδ T cells, we adapted a non-enzymatic digital multiplex assay used to quantify the TCR diversity in γδ T cells expressing a CD19-specific chimeric antigen receptor (CAR) (27) termed “direct TCR expression array” (DTEA). Following expansion (Day 22), four of eight Vδ alleles (Vδ1, Vδ2, Vδ3, and Vδ8) were detected in PBMC-derived γδ T cells (Figure 2A) and were co-expressed with Vγ2, Vγ7, Vγ8 (two alleles), Vγ9, Vγ10, and Vγ11 (Figure 2B). Similarly, a polyclonal assembly of Vδ and Vγ chains was observed in γδ T cells from UCB following expansion (Day 34-35), albeit with reduced abundance of Vδ2 cells, more Vγ2, and presence of Vγ3, Vδ5, and Vδ7 cells not seen from PBMC (Figure 2C-D). Similar patterns of Vδ and Vγ mRNA usage were detected in PBMC and UCB before and after expansion (Supplemental Figure 7) although overall mRNA counts were fewer in the resting cells (Day 0) relative to the activated γδ T cells. Thus, aAPC-expanded γδ T cells maintain a polyclonal TCR repertoire from both PBMC and UCB.

We sought to validate these mRNA data by sorting polyclonal populations with TCRδ-specific antibodies and repeating DTEA on isolated cultures. There are only two TCRδ-specific mAbs commercially available and they identified 3 discrete Vδ populations (Vδ1: TCRδ1+TCRδ2neg, Vδ2: TCRδ1negTCRδ2+, and Vδ1negVδ2neg: TCRδ1negTCRδ2neg) within aAPC-expanded γδ T cells from PBMC (Figure 1A) and UCB (Supplemental Figure 8) with abundance following Vδ1>Vδ1negVδ2neg>Vδ2. FACS isolated subsets from PBMC-derived γδ T-cell pools were propagated with clone #4 as discrete populations and maintained their identity as assessed by expression of TCRδ isotypes (Figure 3A). Each of the separated subsets could be identified by a pan-specific TCRγδ antibody confirming that these cells were indeed γδ T cells
(Figure 3B). Furthermore, each population could be differentiated based on pan-TCRγδ antibody mean fluorescence intensity (MFI) where Vδ2, Vδ1negVδ2neg, and Vδ1 T cells corresponded to the TCRγδ^low (43 ± 9; mean ± SD; n=4), TCRγδ^intermediate (168 ± 40), and TCRγδ^hi (236 ± 56) groupings, respectively. No differences in proliferation kinetics on aAPC were observed between isolated Vδ-sorted subsets (Figure 3C) indicating that the observed inversion of Vδ1 and Vδ2 frequencies in polyclonal cultures before versus after expansion was not due to a proliferative defect in one of the subsets. DTEA demonstrated that isolated and propagated Vδ1, Vδ2, and Vδ1negVδ2neg sub-populations were homogeneous populations as they predominantly expressed Vδ1*01, Vδ2*02, and Vδ3*01 mRNA species at 261 ± 35, 3910 ± 611, and 5559 ± 1119 absolute counts, respectively (Figure 3D). Therefore, there were fewer Vδ1*01 mRNA species expressed by Vδ1 cells relative to the Vδ2*02 expressed by Vδ2 cells and Vδ3*01 expressed by Vδ1negVδ2neg cells. Moreover, these data indicated that the relatively low counts observed for Vδ1*01 in polyclonal populations with a preponderance of TCRδ1^+ cells was not a defect in DTEA detection but rather a product of fewer total mRNA transcripts relative to other Vδ species. Given the wide range of mRNA transcript quantities for each allele, DTEA was not useful for calculation of relative frequencies of Vδ subsets in polyclonal populations but rather was indicative of presence or absence of a particular γδ T cell subset. Expression of other Vδ2 alleles (Vδ1*01_07 and Vδ1*01_75) was absent from polyclonal γδ T cells (Figure 2A) and each of the sorted subsets (data not shown). Small amounts of Vδ4, Vδ5, Vδ6, and Vδ7 mRNA species were detected in the three subsets of T cells sorted for Vδ expression (Supplemental Figure 9). Vδ8 mRNA was exclusively present in sorted Vδ1negVδ2neg cells and these T cells are likely the main contributors of Vδ8 in bulk γδ T cells. The same Vγ mRNA present in polyclonal
cultures was detected in Vδ-sorted cultures (Supplemental Figure 10). Furthermore, Vδ1 and Vδ1^{neg}Vδ2^{neg} were not different (p=0.419; Two-way ANOVA) but Vδ2 was different to both Vδ1 (p<0.0001) and Vδ1^{neg}Vδ2^{neg} (p<0.0001) in Vγ usage. Collectively, these results confirmed DTEA from unsorted cultures and strongly supported the polyclonal TCRγδ expression on γδ T cells activated to proliferate by aAPC and cytokines.

Interferon-γ produced in response to tumors is dependent on TCRγδ

A multiplex analysis of cytokines and chemokines was performed to determine whether aAPC-propagated γδ T cells might foster a pro-inflammatory response in a tumor micro-environment (Figure 4A). The TH1-associated cytokines interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα) were secreted in abundance by γδ T cells upon exposure to leukocyte activated cocktail (LAC; PMA and Ionomycin for non-specific mitogenic stimulation), in addition to small amounts of IL-2 and IL-12 p70. In contrast, no significant production of the TH2-associated cytokines IL-4, IL-5, and IL-13 was observed from LAC-treated γδ T cells, but there was a small increase in IL-10 production over baseline. Similarly, Th17-associated cytokines IL-1RA, IL-6, and IL-17 were secreted at low levels by LAC-treated γδ T cells. The chemokines CCL3, CCL4, and CCL5 were detected in abundance. Minor contributions of non-γδ T cells in the culture that could have been activated by LAC to secrete cytokines could not be ruled out, but given that the cells tested were 97.9% ± 0.6% CD3⁺TCRγδ⁺ these data indicate that it was activation of γδ T cells that led to a largely pro-inflammatory response. IFNγ was the most responsive of all the assessed cytokines and was chosen to measure responses of Vδ subsets to tumor cells (Figure
Co-culture of polyclonal aAPC-propagated/activated γδ T cells with cancer cells resulted in a hierarchy of IFNγ production following Vδ2>Vδ1>Vδ1negVδ2neg as shown by MFI of 855 ± 475, 242 ± 178, and 194 ± 182 (mean ± SD; n=4), respectively. IFNγ production by Vδ1, Vδ2, and Vδ1negVδ2neg subsets was inhibited by pan-TCRγδ antibody when added to of γδ T cell/tumor co-cultures indicating that response to the tumor in each subset was dependent upon activation through TCRγδ (Figure 4C). This observation supported the premise that a single cancer cell could be targeted by discrete γδ TCRs. Thus, a multivalent pro-inflammatory response to the tumor cell was achieved by polyclonal γδ T cells.

Polyclonal γδ T cells lyse a broad range of tumor cells through combination of DNAM1, NKG2D, and TCRγδ

After establishing that propagated γδ T cells could be activated to produce pro-inflammatory cytokines, we examined their ability to specifically lyse a panel of tumor cell lines. Polyclonal γδ T cells demonstrated a range of cytolysis against solid and hematological cancer-cell lines without a clear preference towards a particular tumor histology or grade (Figure 5 and Supplemental Figure 11). We previously established that B-cell acute lymphoblastic leukemia (ALL) cell line NALM-6 was largely resistant to lysis by γδ T cells, which required a CD19-specific CAR to acquire significant killing capability (27). In this study it was also observed that autologous and allogeneic normal B cells were spared from cytolysis (Figure 5A), and that B-ALL cell line cALL-2 and murine T cell lymphoma cell line EL4 were lysed poorly by polyclonal γδ T cells, which indicated that some cells were resistant and/or not recognized by polyclonal γδ T cells. In contrast, T-ALL cell line Jurkat and B-ALL cell lines RCH-ACV were
both killed efficiently by polyclonal γδ T cells (Figure 5B), indicating that γδ T cells could be used to target some B-cell and T-cell malignancies. Kasumi-3 is a CD33+CD34+ undifferentiated leukemia cell line that was lysed at intermediate levels by γδ T cells. Chronic myelogenous leukemia (CML) cell line K562 and K562-derived clone#4 aAPC were killed by polyclonal γδ T cells, which corroborated the notion that these cells could serve as a proliferative substrate. Pancreatic cancer cell lines BxPc-3, MiaPaCa-2, and Su8686, were lysed by γδ T cells, as was the colon carcinoma cell line HCT-116 (Figure 5C). Ovarian cell lines were killed by polyclonal γδ T cells in the following order of decreasing sensitivity: CAOV3 > EFO21 > UPN251 > IGROV1 > OC314 > Hey > A2780 > OVCAR3 > OAW42 > EFO27. Each of the separated Vδ subsets lysed hematological (Jurkat and K562) and solid (OC314 and CAOV3) tumor cell lines, which showed that polyclonal γδ T cells could direct a multivalent response against common targets (Supplemental Figure 12). The strength of cytolysis followed the hierarchy of TCR usage (Vδ2>Vδ1negVδ2neg>Vδ1) that was consistent with the premise that a propensity to be triggered for effector function would increase with T-cell differentiation (Supplemental Figure 13). Lysis by polyclonal populations was apparently not due to one specific Vδ subtype but rather from contributions of multiple γδ T-cell subsets, because it was observed that (1) a number of tumor cell lines were equivalently killed by polyclonal γδ T cells containing different frequencies of Vδ1, Vδ2, and Vδ1negVδ2neg cells and (2) a polyclonal population was not identified with dominant cytolysis. We also sought to determine which surface molecules were responsible for cytolysis by blocking immunoreceptors with antibodies (Figure 5D). Our experimental approach also took into account that γδ T cells co-express DNAM1 (97.7% ± 0.9%; mean ± SD; n=4) and NKG2D (40.1% ± 16.5%) which can activate both T cells and NK cells for killing (32, 33). Addition of individual antibodies did not reduce lysis, except for TCRγδ in 2 of
3 cell lines tested. In contrast, a pool of antibodies binding NKG2D, DNAM1, TCRγδ resulted in significant inhibition, in a dose-dependent manner, of γδ T-cell mediated cytolysis against all 3 targets. Collectively, these data established that *ex vivo*-propagated γδ T cells have broad anti-tumor capabilities likely mediated by activation though DNAM1, NKG2D, and TCRγδ.

Established ovarian cancer xenografts are eliminated by adoptive transfer of γδ T cells

To test whether polyclonal γδ T cells were effective in targeting and killing tumors *in vivo*, we created a xenograft model for ovarian cancer in immunocompromised mice. NSG mice were injected intraperitoneally with CAOV3-effLuc-mKate ovarian cancer cells and then randomized into five treatment groups. Following eight days of tumor engraftment, either PBS (vehicle/mock), Vδ1, Vδ2, Vδ1^{neg}Vδ2^{neg}, or polyclonal γδ T cells were administered in escalating doses (*Figure 6*). Tumor burden and biodistribution were serially measured by non-invasive bioluminescence imaging. Established tumors continued to grow in vehicle-treated mice, but tumor bioburden was significantly reduced (*p*≤0.001) in mice receiving γδ T-cell treatments at day 72, relative to their initial tumor burden (*Figure 6A-B*). Adoptive transfer of polyclonal γδ T cells, Vδ1, and Vδ1^{neg}Vδ2^{neg} T cells significantly (*p*≤0.01), and Vδ2 almost significantly (*p*=0.055), increased long-term survival compared to mock-treated mice. This corresponded to overall survival following polyclonal>Vδ1>Vδ1^{neg}Vδ2^{neg}->Vδ2 (*Figure 6C*).

This is the first time that three Vδ subsets have been compared for their ability to target tumor *in vivo* and is the first display of *in vivo* anti-tumor activity by Vδ1^{neg}Vδ2^{neg} cells. In sum, activated and propagated γδ T cells were effective in treating cancer *in vivo* and thus represent an attractive approach to adoptive immunotherapy.
DISCUSSION

This study establishes our aAPC clone #4 as a cellular platform for the sustained proliferation of multiple γδ T cell populations that demonstrate extensive reactivity against hematologic and solid malignancies. T cells expressing defined Vδ TCRs have been associated with clinical responses against cancer. For example, the Vδ1 subset correlated with complete responses observed in patients with ALL and acute myelogenous leukemia (AML) after αβ T cell-depleted haploidentical HSCT (15-17). Vδ1 cells were also shown to kill glioblastoma independent of cytomegalovirus (CMV) status (34). However, Vδ1 cells have not been directly administered. Our data establish that such cells could mediate anti-tumor immunity and supports the adoptive transfer Vδ1 T cells for cancer therapy. In contrast to Vδ1 and Vδ1negVδ2neg cells, T cells expressing Vδ2 TCR have been directly infused and elicited responses against solid and hematological tumors (9, 35). Little is known about Vδ1negVδ2neg T cells, but these lymphocytes have displayed recognition of the non-classical MHC molecule CD1d with corresponding NKT-like functions and have also been correlated with immunity to human immunodeficiency virus (HIV) and CMV (36-39). Our results are the first to directly show that Vδ1negVδ2neg cells exhibit anti-tumor activities, and given their propensity to engage both viruses and cancer the add-back of this subset could especially benefit immunocompromised cancer patients. Because aAPC with IL-2 and IL-21 can propagate polyclonal γδ T cells, mAbs can now be raised against Vδ3, Vδ5, Vδ7, and Vδ8 isotypes to help elucidate their potential roles in clearance of pathogens and cancer. In aggregate, our data support the adoptive transfer of γδ T cells that maintain expression of multiple Vδ TCR types as investigational treatment for cancer.
The molecules on aAPC that activate γδ T cells for numeric expansion are not well known. K562-derived aAPC express endogenous MHC Class-I chain-related protein A and B (MICA/B) which are ligands for both Vδ1 and NKG2D (6, 40). Indeed, NKG2D was observed on polyclonal γδ T cells that also predominantly expressed Vδ1 TCR (Figure 1A). Polyclonal γδ T cells also demonstrate expression for activating receptors typically found on NK cells (NKp30, NKp44, and NKp46; collectively expressed at 26% ± 7%), and future studies will examine their contribution to γδ T-cell effector function. Some malignant cells were recognized poorly by γδ T cells, e.g., EL4, EFO27, OAW42, cALL-2, and NALM-6, which provides an opportunity to further interrogate the mechanism by which γδ T cells recognize and kill tumor cells. Given that inhibition of cytolysis was maximized by neutralizing DNAM1, NKG2D, and TCRγδ receptors simultaneously, it may be that sensitivity of a tumor cell resides on the expression of ligand combinations that can bind these receptors. Two ligands recognized by Vδ2 TCR are surface mitochondrial F1-ATPase and phospho-antigens, both of which are found in K562 cells (41, 42). Enhanced responses of T cells expressing Vγ9Vδ2 were observed when K562 cells were treated with aminobisphosphonates (41) and a similar strategy could be employed upon co-culture with aAPC clone #4 to increase the abundance of T cells bearing Vδ2 TCR (18). Future studies will evaluate additional TCRγδ ligands that naturally occur in these aAPC.

We enforced expression of co-stimulatory molecules to ascertain and improve the capability of K562-derived aAPC to propagate γδ T cells expressing a diversity of TCR. Indeed, CD137L was the dominant co-stimulatory proliferative signal on aAPC for expansion of γδ T cells with broad tumor-reactivity (Figure 1C), and its receptor, CD137, has been used to enrich tumor-reactive αβ T cells following antigen exposure and presumably TCR stimulation (43-45).
CD137 was not expressed on resting γδ T cells prior to expansion, suggesting that the importance of CD137L co-stimulation by aAPC followed TCR stimulation by the aAPC and expression of CD137 on the γδ T cell surface. CD27+ and CD27neg γδ T cells have been shown to produce IFNγ and IL-17 (46), respectively; therefore, CD27 could be used as a marker for isolating γδ T cells with a preferred cytokine output. ICOS-ligand in absence of CD86 was shown to polarize CD4+ αβ T cells to produce IL-17 instead of IFNγ (47), and current studies are investigating whether combinations of co-stimulatory molecules can selectively propagate cytokine-producing sub-populations of γδ T cells. Thus, the aAPC co-culture system in the context of desired cytokines provides a clinically-relevant methodology to tailor the type of therapeutic γδ T cell produced for adoptive immunotherapy.

Our data have implications for the design and interpretation of clinical trials. Expression of IL-15 was important for the maintenance of transferred γδ T cells in vivo (48), supporting the use of IL-15 on aAPC, and future studies could inform on other molecules that could be introduced to maximize the cell therapy product. Correlative studies are enhanced by our observation that TCRγδ mAb can be used to readily distinguish the three (Vδ1, Vδ2, and Vδ1neg Vδ2neg) T-cell subsets based on MFI of TCRγδ expression (Figure 3B). Given that γδ T cells are not thought to recognize ligands in the context of MHC (17), there is potential to infuse allogeneic, including 3rd party, γδ T cells in lymphodepleted hosts to achieve an anti-tumor effect while mitigating the risk of graft-versus-host disease. Restoration of lymphopoiesis may result in graft rejection, but a therapeutic window could be established whereby tumors are directly killed by infused γδ T cells, which may result in desired bystander effects as conserved or neo-antigens are presented to other lymphocytes. Indeed, γδ T cells have been shown to lyse cancer cells,
cross-present tumor-specific antigens to \(\alpha\beta \) T cells, and license them to kill tumors (49, 50). The aAPC clone #4 has been produced as a master cell bank in compliance with current good manufacturing practice and provides a clear path to generating clinical-grade \(\gamma\delta \) T cells for human application. Human trials can now, for the first time, test the efficacy of adoptive transfer of T cells with polyclonal TCR\(\gamma\delta \) repertoire for treatment of solid and hematological tumors.
ACKNOWLEDGEMENTS

We thank Dr. Carl June and colleagues (University of Pennsylvania) for help generating K562-derived aAPC clone #4 and Dr. Perry Hackett (University of Minnesota) for his assistance with the SB system. Our thanks to Drs. George McNamara (MD Anderson Cancer Center) and Eric Tran (National Cancer Institute) who edited the text. The Immune Monitoring Core Lab (IMCL; MD Anderson Cancer Center) performed Luminex assays and the flow cytometry core lab (MD Anderson Cancer Center) assisted with FACS facility. Cancer Center Support Grant (CCGS) supported STR DNA fingerprinting at MD Anderson Cancer center. D.C.D. is an American Legion Auxiliary Fellow in Cancer Research (UT-GSBS-Houston), Andrew Sowell-Wade Huggins Scholar in Cancer Research (Cancer Answers Foundation), and a Teal Pre-doctoral Scholar (Department of Defense Ovarian Cancer Research Program). This work was supported by funding from: Cancer Center Core Grant (CA16672); RO1 (CA124782, CA120956, CA141303); R33 (CA116127); P01 (CA148600); S10RR026916; Albert J. Ward Foundation; Burroughs Wellcome Fund; Cancer Prevention and Research Institute of Texas; CLL Global Research Foundation; Department of Defense; Estate of Noelan L. Bibler; Gillson Longenbaugh Foundation; Harry T. Mangurian, Jr., Fund for Leukemia Immunotherapy.; Fund for Leukemia Immunotherapy; Institute of Personalized Cancer Therapy; Leukemia and Lymphoma Society; Lymphoma Research Foundation; Miller Foundation; Mr. Herb Simons; Mr. and Mrs. Joe H. Scales; Mr. Thomas Scott; MD Anderson Cancer Center Moon Shot; National Foundation for Cancer Research; Pediatric Cancer Research Foundation; Production Assistance for Cellular Therapies (PACT); TeamConnor; Thomas Scott; William Lawrence and Blanche Hughes Children's Foundation.
REFERENCES

16. Lamb LS, Jr., Henslee-Downey PJ, Parrish RS, Godder K, Thompson J, Lee C, et al. Increased frequency of TCR gamma delta + T cells in disease-free survivors following T cell-

FIGURES LEGENDS

Figure 1. Sustained proliferation of polyclonal PBMC-derived \(\gamma\delta \) T cells on \(\gamma \)-irradiated aAPC in presence of soluble IL-2 and IL-21. (A) Frequency of \(\gamma\delta \) T cells before (Day 0) and after (Day 22) co-culture on \(\gamma \)-irradiated aAPC, IL-2, and IL-21 where expression of CD3, CD56, TCR\(\alpha\beta \), TCR\(\gamma\delta \), TCR\(\delta \)1, and TCR\(\delta \)2 is shown at Day 22 of co-culture. One of 7 representative donors is shown. Quadrant frequencies (percentage) within flow plots are displayed in upper right corners. (B) Inferred cell counts of polyclonal \(\gamma\delta \) T cells are displayed calculated based on weekly yields and relative fold changes, where three arrows represent addition of aAPC. Black line is mean ± SD (n=4) pooled from 2 independent experiments and each gray line is an individual donor. (C) Fold increase over 9 days of \(\gamma\delta \) T cells co-cultured with IL-2 and IL-21 along with aAPC expressing membrane-bound IL-15 (mIL15), CD86, and/or CD137L. Data are mean ± SD (n=3) pooled from 2 independent experiments and each shape represents an individual donor. Two-way ANOVA with Bonferroni’s post-tests was used for statistical analysis. *p<0.05 and **p<0.01 (D) Fold increase over 9 days of \(\gamma\delta \) T cells co-cultured with aAPC (clone #4) in the presence of either soluble recombinant IL-2 and/or IL-21. Data are mean ± SD (n=3) pooled from 2 independent experiments where each shape represents an individual donor. Two-way ANOVA with Bonferroni’s post-tests was used for statistical analysis. *p<0.05

Figure 2. Abundance of V\(\delta \) and V\(\gamma \) mRNA species in \(\gamma\delta \) T cells propagated and activated ex vivo. Quantification of mRNA species coding for (A) V\(\delta \) and (B) V\(\gamma \) alleles in PBMC-derived \(\gamma\delta \) T cells by DTEA at day 22 of co-culture on aAPC/IL-2/IL-21. Quantification of mRNA species
coding for (C) Vδ and (D) Vγ alleles in UCB-derived γδ T cells by DTEA at day 34-35 of coculture on aAPC/IL-2/IL-21. Box-and-whiskers plots display 25% and 75% percentiles where lines represent maximum, mean, and minimum from top to bottom (n=4). Solid lines at bottom of graphs represent limit-of-detection (LOD) calculated from mean ± 2xSD of DTEA negative controls. Student’s paired one-tailed t-tests were performed for each allele relative to the sample LOD. *p<0.05 and **p<0.01

Figure 3. Sustained proliferation of PBMC-derived Vδ T-cell subsets expanded on γ-irradiated aAPC/IL-2/IL-21. After two 7-day stimulations with aAPC (clone #4) and IL-2/IL-21 the bulk population of γδ T cells were separated into Vδ1, Vδ2, and Vδ1 neg Vδ2 neg subsets by FACS based on staining of T cells defined as TCRδ1+TCRδ2 neg, TCRδ1 neg TCRδ2+, and TCRδ1 neg TCRδ2 neg, respectively. (A) Expression of TCRδ1 and TCRδ2 chains on Vδ1, Vδ2, and Vδ1 neg Vδ2 neg subsets of γδ T cells (from left to right) after 15 days of numeric expansion on aAPC and cytokines as isolated groups. One of 4 representative donors is shown pooled from 2 independent experiments. Quadrant frequencies (percentage) within flow plots are displayed in upper right corners. Frequency of TCRδ1+TCRδ2 neg (open bars), TCRδ1 neg TCRδ2+ (black bars), and TCRδ1 neg TCRδ2 neg (gray bars) cell surface protein expression in subsets of γδ T cells after 15 days numeric expansion on aAPC and cytokines as isolated groups. Data are mean ± SD (n=4) pooled from 2 independent experiments. (B) Flow cytometry plots of CD3 and TCRγδ expression in Vδ1, Vδ2, and Vδ1 neg Vδ2 neg subsets (from left to right). Mean fluorescence intensity (MFI) of TCRγδ staining in Vδ1, Vδ2, and Vδ1 neg Vδ2 neg T-cell subsets where each shape represents a different donor and data are mean ± SD (n=4) pooled from 2 independent
experiments. (C) Proliferation of each isolated Vδ subset stimulated twice with aAPC clone #4 (arrows) in presence of cytokines and total cell counts are displayed. Data are mean ± SD (n=4) pooled from 2 independent experiments. (D) DTEA was used to identify and measure abundance of mRNA species coding for Vδ1*01, Vδ2*02, and Vδ3*01 (from left to right) in γδ T-cell sub-populations after 15 days of proliferation on aAPC and cytokines as separated subsets. Box-and-whiskers plots display 25% and 75% percentiles where lines represent maximum, mean, and minimum from top to bottom (n=4). Student’s paired, two-tailed t-tests were undertaken for statistical analyses between groups. **p<0.01 and ***p<0.001

Figure 4. Dependence on TCRγδ for IFNγ secretion in response to tumor cells. At Day 22 of co-culture on γ-irradiated aAPC (clone #4) with IL-2 and IL-21, T cells were incubated with CM (mock) or leukocyte activation cocktail (LAC; PMA/Ionomycin) for 6 hours at 37°C. Tissue culture supernatants were interrogated using 27-Plex Luminex array to detect presence of (A) TH1, TH2, and TH17 cytokines and selected chemokines (from left to right). Data are mean ± SD pooled from 4 donors in 2 independent experiments where each donor had triplicate experimental wells pooled prior to multiplex analysis. Student’s one-tailed t-test performed for statistical analysis between mock and LAC groups. *p<0.05, **p<0.01, and ***p<0.001 (B) Polyclonal γδ T cells were incubated for 1 hour prior to and during 6 hour tumor cell co-culture with normal mouse serum or neutralizing TCRγδ antibody (clone IM). Cells were stained for TCRδ1, TCRδ2, CD3, and IFNγ to gate T-cell subsets and assess IFNγ production. Comparisons of histograms detailing Vδ1, Vδ2, and Vδ1negVδ2neg gates (from left to right) co-cultured with CAOV3 ovarian cancer cells and treated with serum (open) or TCRγδ (shaded). Numbers next to...
histograms are MFI. Flow plots are representative of 1 of 3 PB donors co-cultured with CAOV3 cells in 2 independent experiments. (C) Percent inhibition of IFNγ secretion in response to CAOV3 cells was calculated for each Vδ T-cell subset based on the following equation:

\[
\text{Inhibition (\%)} = 100 - 100 \times \left(\frac{\text{MFI}_{\text{TUMOR} + \text{T CELL}} - \text{MFI}_{\text{CELL ONLY}}}{\text{MFI}_{\text{TUMOR} + \text{T CELL}} - \text{MFI}_{\text{CELL ONLY}}} \right)_{\text{Serum}}
\]

Data are mean ± SD (n=3) pooled from 2 independent experiments.

Figure 5. Specific lysis of tumor-cell panel by polyclonal γδ T cells. (A-C) Standard 4-hour CRA was performed with increasing effector (polyclonal γδ T cells; each shape represents a different donor) to target (E:T) ratios against (A) healthy B cells from an allogeneic donor (one of four representative donors), (B) hematological tumor cell lines derived from B-ALL: RCH-ACV, T-ALL: Jurkat, and CML: K562, (C) solid tumor cell lines derived from pancreatic cancer: BxPc-3, colon cancer: HCT-116, and ovarian cancer: OC314 and CAOV3. Data are mean ± SD (n=3 wells per assay) from 2 independent experiments. (D) Neutralizing antibodies to NKG2D (squares), DNAM1 (triangles), TCRγδ (inverted triangles), or a pool (diamonds) of all three antibodies were used to block killing of Jurkat (left), IGROV1 (middle), or OC314 (right) tumor targets antibodies at 0.3, 1, and 3 μg/mL and an E:T ratio of 12:1 in standard 4-hour CRA. Normal mouse serum (circles) served as control for addition of antibody and wells without antibody were used for normalization purposes. Specific lysis was normalized to wells without antibody to yield relative cytolysis as defined by: Relative cytolysis (\%) = \left(\frac{\text{Specific Lysis}_{\text{With Antibody}}}{\text{Specific Lysis}_{\text{Without Antibody}}} \right) \times 100. Data are mean ± SD (n=4 donors) from triplicates pooled and normalized from 2 independent experiments. Repeated-measures Two-way
ANOVA was used for statistical analysis between antibody treatments. **p<0.01 and ***p<0.001

Figure 6. In vivo clearance of ovarian cancer upon adoptive transfer of polyclonal γδ T cells and γδ T-cell subsets propagated/activated on aAPC with IL-2 and IL-21. CAOV3-effLuc-mKate tumor cells were injected into NSG mice at Day -8 and engrafted until Day 0 when treatment was started with either PBS (vehicle/mock) or γδ T cells. Four T-cell doses were administered in weekly escalating doses. (A) BLI images at Day 0 (top panels) or Day 72 (bottom panels) in PBS, Vδ1, Vδ2, Vδ1negVδ2neg, and polyclonal γδ T-cell treatment groups. Images are representative of 6-14 mice from 2 independent experiments. (B) BLI measurements of mice at Day 0 (white) and Day 72 (gray) pooled from 2 independent experiments. Box-and-whiskers plots display 25% and 75% percentiles where lines represent maximum, mean, and minimum from top to bottom (n = 6-14). Student’s paired, two-tailed t-tests were used for statistical analysis between time points. (C) Overall survival of mice treated with PBS (dashed), polyclonal (black), Vδ1 (red), Vδ2 (blue), or Vδ1negVδ2neg (green) γδ T cells. Log-rank (Mantel-Cox) test was used to calculate p values. *p<0.05, **p<0.01, and ***p<0.001
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6