FDA Approval: Ado-trastuzumab Emtansine for the Treatment of Patients with HER2-Positive Metastatic Breast Cancer

Authors Affiliations: Center for Drug Evaluation and Research, U.S. Food and Drug Administration, White Oak, Maryland, USA

Running title: FDA Approval Summary for T-DM1 for HER2+ MBC

Corresponding Author: Laleh Amiri-Kordestani, FDA, 10903 New Hampshire Avenue, Silver Spring, MD 20993-0002. E-mail: Laleh.AmiriKordestani@fda.hhs.gov

Disclosure of Potential Conflicts of Interest

Q.C. Xu was an employee of the FDA when this article was first submitted for consideration; she is now an employee of Celgene. No potential conflicts of interest were disclosed by the other authors.
Abstract

On February 22, 2013, the U.S. Food and Drug Administration (FDA) licensed ado-trastuzumab emtansine (Kadcyla, Genentech Inc.) for use as a single agent for the treatment of patients with HER2-positive, metastatic breast cancer (MBC) who previously received trastuzumab and a taxane, separately or in combination. The clinical basis for licensure was a phase 3 trial in 991 patients with HER2-positive MBC which randomly allocated patients to receive ado-trastuzumab emtansine (N=495) or lapatinib in combination with capecitabine (N=496). The co-primary endpoints were progression-free survival (PFS) based on tumor assessments by an independent review committee and overall survival (OS). Statistically significant improvements in PFS and OS were observed in patients receiving ado-trastuzumab emtansine compared to patients receiving lapatinib plus capecitabine [difference in PFS medians of 3.2 months, HR 0.65 (95% CI, 0.55-0.77), p < 0.0001 and difference in OS medians of 5.8 months, HR 0.68 (95% CI, 0.55-0.85), p = 0.0006]. The most common adverse reactions in patients receiving ado-trastuzumab emtansine were fatigue, nausea, musculoskeletal pain, thrombocytopenia, headache, increased transaminases, and constipation. Other significant adverse reactions included hepatobiliary disorders and left ventricular dysfunction. Given the PFS and OS results, the benefit-risk profile was considered favorable.
Introduction

Amplification and overexpression of the Human Epidermal Growth Factor Receptor 2 (HER2) occurs in approximately 20% of MBC and results in activation of the proliferative and pro-survival stimuli associated with HER2 signal transduction through the MAPK and PI3K/Akt pathways. These increased stimuli result in increased tumor growth and a poor prognosis (1, 2, 3, 4). Targeting the HER2 receptor with monoclonal antibodies has been shown to be an effective therapeutic approach. The addition of trastuzumab (Herceptin®, Genentech Inc.), and more recently pertuzumab (Perjeta®, Genentech Inc.) in combination with trastuzumab, to a taxane significantly improved the outcomes of patients with MBC (5, 6). Ado-trastuzumab emtansine (T-DM1) is an antibody-drug conjugate (ADC) that incorporates the HER2-targeting and therapeutic properties of trastuzumab with the cytotoxic activity of DM1. The FDA review of this Biologics License Application (BLA) is summarized below.

Chemistry and Manufacturing

Ado-trastuzumab emtansine consists of trastuzumab, the thioether linker 4-[N-maleimidomethyl] cyclohexane-1-carboxylate, and the microtubule inhibitor DM1, a maytansine derivative. DM1 is covalently linked to lysine residues on the antibody and each T-DM1 molecule contains an average of 3.5 DM1 molecules per antibody. Several product quality concerns were identified and resolved during the BLA review and resulted in post-marketing requirements (PMRs) and commitments (PMCs) (7).

Nonclinical Pharmacology and Toxicology

Ado-trastuzumab emtansine binds to sub-domain IV of the HER2 receptor and undergoes receptor-mediated internalization and subsequent lysosomal degradation, resulting in the intracellular release of DM1-containing cytotoxic catabolites. Binding of DM1 to tubulin
disrupts microtubules, resulting in cell cycle arrest at the G2/M interface and apoptosis. In vitro, T-DM1 also inhibits HER2 receptor signaling, mediates antibody-dependent cell-mediated cytotoxicity, and inhibits shedding of the HER2 extracellular domain (8-12).

Monkeys tolerated repeat doses of T-DM1 as high as 30 mg/kg (about 7 times the clinical exposure based on AUC). Even at this high dose, T-DM1 was less toxic to monkeys than the clinical dose was to humans. Thrombocytopenia and anemia occurred in both monkeys and humans but were much less severe in monkeys. Increased transaminases and centrilobular vacuolization in monkeys predicted the hepatic toxicity observed in patients. Localization to the central lobe suggests that the hepatic toxicity is caused by DM1 as the liver clears it from the blood.

Axonal degeneration in the sciatic nerve with Schwann cell hyperplasia and hypertrophy and axonal degeneration of the dorsal funiculus was observed in the spinal cord in monkeys. The involvement of the Schwann cells suggests that this toxicity may be less reversible than neurotoxicities caused by other cancer drugs.

Although no reproductive and developmental toxicology studies were conducted with T-DM1, both trastuzumab and DM1 are either known or suspected to cause fetal harm or death when administered to a pregnant woman. DM1 was aneugenic or clastogenic in an in vivo rat bone marrow micronucleus assay but was not mutagenic in an in vitro bacterial reverse mutation assay. Carcinogenicity studies with ado-trastuzumab emtansine were not required or conducted for this indication.

Clinical Pharmacology

The ADC concentration-time profile can be described by a linear two-compartment model with first-order elimination from the central compartment. The C_{max} of the ADC and DM1 occurred
close to the end of infusion. The mean binding of DM1 to human plasma proteins in vitro was 93%. *In vitro* studies also showed that DM1 is a P-glycoprotein substrate and is metabolized by CYP3A4/5 but does not inhibit or induce major CYP450 enzymes. Based on population pharmacokinetic (PK) analyses in patients with breast cancer, the central volume of distribution of T-DM1 was 3.13 L, the clearance was 0.68 L/day, and the elimination half-life was approximately 4 days. T-DM1 accumulation was not observed following multiple dosing, and its PK was not affected by mild to moderate renal impairment.

Exploratory exposure-response (E-R) analyses were conducted for OS, PFS and objective response rate (ORR) (13). A significant difference in OS was observed for patient groups divided according to quartiles of $C_{\text{min},C1D21}$ (T-DM1 trough concentration on Day 21 of Cycle 1 predicted by population PK model) with higher exposures associated with longer survival (log rank test nominal $p < 0.0001$). Furthermore, Cox-proportional hazard analysis indicated that after adjusting for baseline risk factors, higher T-DM1 exposure was associated with longer survival. Similar conclusions were reached when PFS or ORR was used as the response variable. The percentage of patients who received dose adjustments of T-DM1 was similar across the exposure range and was lower than that of the active control arm. To further understand the E-R relationship with respect to C_{min} and assess the predictability of baseline risk factors, the Applicant agreed to a PMC to further explore E-R relationships using additional data from an ongoing Phase 3 trial to assist in determining whether dose-optimization trials will be needed in these patients.

Clinical Trial Design

The clinical support for this BLA was provided mainly by the results of a randomized, multicenter, international, open-label, Phase 3 trial (EMILIA) (14). Three additional Phase 2 trials were supportive (15-17). In the Phase 3 trial, patients with MBC were required to have
HER2-positive disease determined at a central laboratory and defined as 3+ by immunohistochemistry or ≥ 2.0 amplification by FISH. A total of 991 patients were randomly allocated (1:1) to T-DM1 or to lapatinib plus capecitabine (LC). T-DM1 was administered at a dose of 3.6 mg/kg IV over 30-90 minutes on Day 1 of a 21-day cycle. Lapatinib 1250 mg was administered orally daily and capecitabine 1000 mg/m² was administered orally b.i.d on Days 1-14 of a 21-day cycle. Patients received study treatment until progression of disease (as assessed by the investigator), unacceptable toxicity, or withdrawal of consent.

The two co-primary endpoints were PFS based on independent review of tumor assessments (IRC-PFS) and OS. PFS was defined as the time from randomization to the first documented IRC-assessed disease progression using modified Response Evaluation Criteria in Solid Tumors (RECIST 1.0) or death from any cause, whichever occurred earlier. The co-primary endpoint, OS, was defined as the time from the date of randomization to the date of death from any cause. Key secondary endpoints included PFS based on investigator assessment, ORR, and duration of response.

The sample size was based on detecting an OS HR of 0.8 and approximately 632 deaths were required to achieve 80% power at a two-sided 5% alpha level. The planned accrual was 980 patients and the primary efficacy analysis of PFS was to take place when 508 IRC-assessed PFS events had occurred. This provided 90% power to detect a PFS HR of 0.75 with a two-sided alpha of 5%. The two-sided log-rank test, stratified by world region (United States, Western Europe, Other), number of prior chemotherapeutic regimens for unresectable, locally advanced or metastatic disease (0–1 vs. > 1), and visceral versus non-visceral disease was used to compare PFS between the two treatment arms.

Demographics, Disease Characteristics, and Prior Treatment
A total of 991 patients were randomized, 495 to the T-DM1 arm and 496 to the LC arm. Baseline demographics and disease characteristics were balanced between treatment arms. The median age was approximately 53 years (range 24-84 years), 74% were White, 18% were Asian and 5% were Black. Twenty-seven percent of patients were enrolled in United States, 32% in Europe and 16% in Asia. Tumor prognostic characteristics included hormone receptor status (positive: 55%, negative: 43%), presence of visceral disease (68%), non-visceral disease only (33%), and the number of disease sites (< 3: 61%, ≥ 3: 37%). Eighty-eight percent of patients had received prior treatment for metastatic disease. All but one patient had previously received trastuzumab and 85% received it in the metastatic setting. Over 99% of patients had received a taxane and 61% had received an anthracycline prior to study entry.

Efficacy Results

At the time of the final PFS analysis, 569 IRC-assessed events had occurred. A statistically significant improvement in IRC-PFS was observed in patients receiving T-DM1 compared to patients receiving LC [HR 0.65 (95% CI, 0.55-0.77), stratified log-rank p < 0.0001]. The median PFS was 9.6 and 6.4 months in the T-DM1 and LC, arms, respectively (Table 1).

A planned interim OS analysis at the time of the final PFS analysis was conducted at 35% of the planned events for the final OS analysis and demonstrated an improvement in OS for patients treated with T-DM1 [HR 0.62 (95% CI, 0.48-0.81), p= 0.0005]. However, the HR and p value for the interim OS analysis did not cross the predefined O’Brien Fleming stopping boundary. At the time of the second interim OS analysis, a statistically significant improvement in OS was observed in patients receiving T-DM1 compared to those receiving LC [HR 0.68 (95% CI, 0.55- 0.85), p=0.0006]. This result crossed the pre-specified efficacy stopping boundary (HR=0.73 or p=0.0037). The median OS was 30.9 and 25.1 months in the T-DM1 and
LC arms, respectively (Table 1). These effects on PFS and OS were consistent across relevant subgroups.

Key supportive secondary endpoints included improvements in IRC-assessed ORR [44% (95% CI, 39%-49%) with T-DM1 versus 31% (95% CI, 26%-36%) with LC], duration of response (median duration 12.6 months with T-DM1 and 6.5 months with LC), investigator ORR, and investigator PFS.

Safety Results

The safety database consisted of 884 patients with HER2-positive MBC who received T-DM1 at a dose of 3.6 mg/kg every 3 weeks. The most common (≥ 25%) adverse drug reactions (ADR) in this population were fatigue, nausea, musculoskeletal pain, thrombocytopenia, headache, increased transaminases, and constipation.

In the phase 3 trial, the median duration of treatment was 7.6 months for patients treated with T-DM1 and 5.5 months and 5.3 months for patients treated with lapatinib and capecitabine, respectively. Grade 1-4 ADRs occurring more frequently (>10%) in the T-DM1 arm than in the LC arm included thrombocytopenia (31.2% vs. 3.3%), constipation (26.5% vs. 11.1%), transaminase elevation (28.8% vs. 14.3%), headache (28.2% vs. 14.5%), epistaxis (22.5% vs. 8.4%), arthralgia (19.2% vs. 8.4%), pyrexia (18.6% vs. 8.4%), dry mouth (16.7% vs. 4.9%), and myalgia (14.1% vs. 3.7%). Grade 3-4 ADRs occurring more frequently (≥2%) in the T-DM1 arm included thrombocytopenia (14.5% vs. 0.4%), transaminase elevation (8.0% vs. 2.5%), and peripheral neuropathy (2.2% vs. 0.2%), with all but one T-DM1-treated patient having resolution of grade 3-4 peripheral neuropathy. The incidence of grade 3-4 thrombocytopenia was particularly high in Asian patients treated with T-DM1 (45% vs. 1%). In addition, 1.2% of patients treated with T-DM1 developed pneumonitis, all of which were grade 2 in severity.
Hepatotoxicity was identified by FDA as a safety concern early in the T-DM1 investigational drug development program. Early clinical trials of maytansine in the late 1970s reported frequent elevation of aminotransferases (15-20). In addition, non-clinical studies showed that T-DM1 appeared to induce rises in transaminases in rats and monkeys, as well as histopathologic changes including hepatocellular and biliary necrosis. In the Phase 3 trial, there was a higher incidence of liver enzyme elevations in patients on T-DM1, and a higher incidence of bilirubin elevations in patients on LC. Figure 1 plots peak bilirubin vs. peak AST in this trial. The plot shows that more patients treated with T-DM1 (n=12) had elevations in both AST and bilirubin as compared to patients treated with LC (n=5). In the entire T-DM1 development program, there were at least two cases of hepatic failure leading to death possibly related to T-DM1. Based on the available data, the potential for T-DM1 to cause rare but serious drug-induced liver injury is high. Therefore, a boxed warning for this risk was included in the product labeling.

Left ventricular (LV) ejection fraction declines and LV dysfunction were observed during the T-DM1 development program. However, the incidence of cardiac toxicity appeared to be no greater than that observed in the LC arm of the Phase 3 trial. Since there was no evidence that T-DM1 is less cardiotoxic than trastuzumab, and trastuzumab carries a boxed warning for cardiomyopathy, reduction in LVEF was also included in the boxed warning.

FDA review found 5 cases of overdose with T-DM1, 1 serious and 4 non-serious. In the fatal case, a patient incorrectly received T-DM1 at a dose of 6 mg/kg and died approximately 3 weeks later. Given concerns with potential medication errors due to confusion between trastuzumab and ado-trastuzumab-emtansine, particularly with drop-down menus in electronic pharmaceutical
ordering systems, FDA determined that the use of a distinguishing prefix in the nonproprietary name would be necessary and the prefix ‘ado’ was selected.

Discussion

T-DM1 is the first ADC licensed for patients with HER2-positive MBC. In the Phase 3 trial, patients randomly allocated to T-DM1 had statistically significant and clinically meaningful improvements in the co-primary endpoints of PFS and OS. Furthermore, the safety profile of T-DM1 was considered acceptable for the indicated patient population. However, increased hepatic toxicity was observed and lead to the addition of hepatotoxicity, liver failure and death to the boxed warnings section of the prescribing information (21).

The era of targeted therapy in metastatic breast cancer began with the approval of tamoxifen in 1977. In recent years, targeting HER2 has been a successful drug development pathway. Four anti-HER2 therapies have been licensed or approved by the U.S. FDA for the treatment of patients with MBC: the monoclonal antibody trastuzumab in 1998, the small molecule tyrosine kinase inhibitor lapatinib in 2007, the monoclonal antibody pertuzumab in 2012, and more recently ado-trastuzumab emtansine in 2013. Unfortunately not all HER2-positive breast cancers are sensitive to these agents and many eventually develop resistance and progress. Recent studies indicate that HER-2 positive breast cancer is biologically heterogeneous (22). Promising novel anti-HER2 agents are currently being developed and may ultimately prove to be safe and effective for patients with de novo or acquired resistant tumors (23-25). In addition, the safety and efficacy of T-DM1 in patients with early breast cancer are being evaluated in ongoing studies (Table 2).
In conclusion, T-DM1 demonstrated a favorable risk-benefit profile and fulfills an exigent public health need. It is yet another addition to the growing list of personalized therapies and another example of the success of the anti-HER2 drug development strategy.

References

7. Drugs@FDA [Internet]. Silver Spring (MD): U.S. Food and Drug Administration; 2011-. Approval letter [cited 2014 May 7] [13 p.]. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/125427Orig1s000Approv.pdf

13. Drugs@FDA [Internet]. Silver Spring (MD): U.S. Food and Drug Administration; 2011-. Clinical pharmacology and biopharmaceutics review(s) [cited 2014 May 7] [13 p.]. Available from:

Table 1: Co-Primary Endpoints Results

<table>
<thead>
<tr>
<th>IRC- PFS (clinical cut-off date January 14, 2012)</th>
<th>Lapatinib + Capecitabine N = 496</th>
<th>T-DM1 N = 495</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients with events (%)</td>
<td>304 (61)</td>
<td>265 (54)</td>
</tr>
<tr>
<td>Disease Progression</td>
<td>273</td>
<td>237</td>
</tr>
<tr>
<td>Death</td>
<td>31</td>
<td>28</td>
</tr>
<tr>
<td>Number of Censored Patients</td>
<td>192</td>
<td>230</td>
</tr>
<tr>
<td>Median duration of IRC- PFS (months) (95% CI)</td>
<td>6.4 (95% CI: 5.7, 7.1)</td>
<td>9.6</td>
</tr>
<tr>
<td>Hazard ratio (95% CI)</td>
<td>0.65 (0.549, 0.771)</td>
<td></td>
</tr>
<tr>
<td>p-value (stratified Log-Rank test)</td>
<td><0.0001</td>
<td></td>
</tr>
</tbody>
</table>

1st interim analysis OS (clinical cut-off date January 14, 2012)

Number of patients who died, N (%)	129 (26)	94(19)
Number of Censored Patients	367	401
Median (months)	23.3	NE
Hazard ratio (95% CI)	0.62 (95% CI: 0.48, 0.81)	
p-value (stratified Log-Rank)	0.0005	

2nd interim analysis OS (clinical cut-off date July, 31 2012)

Number of patients who died, N(%)	182 (37)	149 (30)
Median (months) (95% CI)	25.1 (95% CI: 22.7, 28.0)	30.9
Hazard ratio (95% CI) (Stratified Cox Regression)	0.682 (0.548, 0.849)	
p-value (stratified Log-Rank)	0.0006	
p-Value (Unstratified Log-Rank Test)	0.0012	
O'Brien-Fleming Boundary	0.0037	

CI: confidence interval; IRC- PFS: independent review committee progression free survival; N: number; OS: overall survival; T-DM1: ado-trastuzumab emtansine
Table 2: Ongoing Studies with T-DM1 in Early Breast Cancer

<table>
<thead>
<tr>
<th>Clinicaltrials.gov Identifier</th>
<th>Name</th>
<th>Design</th>
<th>Arms</th>
<th>Setting</th>
<th>Primary End Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT01772472</td>
<td>KATHERINE</td>
<td>2-arm, randomized, open-label, phase 3</td>
<td>T-DM1 versus trastuzumab</td>
<td>Adjuvant</td>
<td>IDFS</td>
</tr>
<tr>
<td>NCT01196052</td>
<td>N/A</td>
<td>single-arm, open-label, phase 2</td>
<td>T-DM1</td>
<td>Neoadjuvant & Adjuvant</td>
<td>Safety</td>
</tr>
<tr>
<td>NCT01745965</td>
<td>ADAPT</td>
<td>2-arm, randomized, open-label, phase 2</td>
<td>T-DM1 versus trastuzumab</td>
<td>Neoadjuvant</td>
<td>pCR</td>
</tr>
<tr>
<td>NCT01042379</td>
<td>I-SPY 2</td>
<td>N-arm, randomized open-label, phase 2</td>
<td>T-DM1 and Pertuzumab Versus Standard Therapy</td>
<td>Neoadjuvant</td>
<td>pCR</td>
</tr>
<tr>
<td>NCT01904903</td>
<td>SAFE-HEaRt</td>
<td>open-label, phase 2</td>
<td>T-DM1</td>
<td>Any</td>
<td>Cardiac safety</td>
</tr>
</tbody>
</table>

IDFS: invasive disease free survival; N/A: none applicable; pCR: pathologic complete response rate; T-DM1: ado-trastuzumab emtansine
Figure 1: Scatter Plot of Peak Bilirubin versus Peak AST by Treatment Arm in the EMILIA Trial
Figure 1:
Clinical Cancer Research

FDA Approval: Ado-trastuzumab Emtansine for the Treatment of Patients with HER2-Positive Metastatic Breast Cancer

Laleh Amiri-Kordestani, Gideon M. Blumenthal, Qiang Casey Xu, et al.

Clin Cancer Res Published OnlineFirst May 30, 2014.

Updated version
Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-14-0012

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.