Single agent orteronel in castration resistant nmCRPC

Phase II Study of Single Agent Orteronel (TAK-700) in Patients with Nonmetastatic Castration-Resistant Prostate Cancer and Rising Prostate-Specific Antigen

Authors:

Maha Hussain¹, Paul G. Corn², M. Dror Michaelson³, Hans J. Hammers⁴, Joshi J. Alumkal⁵, Charles J. Ryan⁶, Justine Y. Bruce⁷, Susan Moran⁸, Shih-Yuan Lee⁸, H. Mark Lin⁹, Daniel J. George¹⁰, and Dr. Hussain for the Members of the Prostate Cancer Clinical Trials Consortium, a program of the Department of Defense Prostate Cancer Research Program and the Prostate Cancer Foundation.

Author affiliations:

¹University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA

²M.D. Anderson Cancer Center, Houston, TX, USA

³Massachusetts General Hospital Cancer Center, Boston, MA, USA

⁴Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA

⁵Oregon Health & Science University, Knight Cancer Institute, Portland, OR, USA

⁶UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA

⁷University of Wisconsin Carbone Cancer Center, Madison, WI, USA

⁸Takeda Pharmaceuticals International Co., Cambridge, MA, USA

⁹Millennium: The Takeda Oncology Company, Cambridge, MA, USA

¹⁰Duke University Medical Center, Durham, NC, USA
Single agent orteronel in castration resistant nmCRPC

Corresponding Author:

Maha H. Hussain, MD, FACP, FASCO

7314 University of Michigan Comprehensive Cancer Center

1500 East Medical Center Drive, Ann Arbor, MI 48109-5946, USA

Phone: (734) 936-8906

Fax: (734) 615-2719

Email: mahahuss@umich.edu

Running title: Single agent orteronel in castration-resistant nmCRPC

Keywords from journal list (2–10): Genitourinary cancers: prostate; Phase I–III Trials_Genitourinary cancers: prostate

User defined keywords (3 max): TAK-700, orteronel, nonmetastatic castration-resistant prostate cancer

Funding: This research was funded by Takeda Pharmaceuticals International Co.

Statement of originality: The authors confirm that this manuscript contains original material.
Single agent orteronel in castration resistant nmCRPC

Conflicts of interest

Consultant or advisory role: JJA (Millennium: The Takeda Oncology Company).

Research funding: MH, MDM, DJG (Takeda Pharmaceuticals International Co.).

No conflicts of interest to disclose: PGC, HJH, CJR, and JYB.

Journal: Clinical Cancer Research

Article type: Cancer Therapy: Clinical

Statement of translational relevance: 149 (limit 120–150 words)

Title character count: 155 (limit 160 incl. spaces)

Summary word count: 244 (limit 250 words)

Word count: 3,382 (limit 5000 words for main body text only)

References: 32 (limit 50)

Tables/Figures: 3/3 (limit 6 in total)

Supplemental materials: 2 Tables, 1 Figure
Single agent orteronel in castration resistant nmCRPC

Prior presentation of this study:

Role of funding source

Employees of Takeda Pharmaceuticals International Co. participated in trial design, data collection, data analysis, data interpretation, and writing of the report. The sponsor of the study was involved in the design of the trial and provided grants to trial sites and had no other involvement in conduct of trial. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.
Single agent orteronel in castration resistant nmCRPC

Statement of Translational Relevance:

Despite several phase III trials, there is no standard therapy for patients with nonmetastatic castration-resistant prostate cancer (nmCRPC), a heterogeneous population in whom a rapid prostate-specific antigen doubling time (PSADT) and/or high baseline PSA are prognostic for poorer outcomes. Orteronel (TAK-700) is an investigational, non-steroidal, selective inhibitor of 17,20-lyase, a component of the CYP17A1 enzyme involved in the production of steroidal hormones. Orteronel selectively inhibits 17,20-lyase relative to 17α-hydroxylase, which may reduce the potential for adrenocorticotropic hormone-driven mineralocorticoid excess and the resultant need for concomitant corticosteroids. This phase II study evaluated orteronel, in a steroid-free regimen, in patients with nmCRPC and a median baseline PSADT of <3 months. Orteronel produced marked and durable declines in serum PSA, testosterone, and dehydroepiandrosterone sulfate, with moderate but manageable toxicity. Encouraging metastases-free survival was observed in this high-risk population. Orteronel is currently being evaluated without steroids in several ongoing phase III studies.
Abstract

Purpose: Orteronel (TAK-700) is an investigational, non-steroidal, oral, inhibitor of androgen synthesis with greater specificity for 17,20-lyase than for 17α-hydroxylase. We investigated orteronel without steroids in patients with nonmetastatic castration-resistant prostate cancer (nmCRPC; M0).

Experimental Design: Patients with nmCRPC and rising prostate-specific antigen (PSA) received orteronel 300 mg twice daily until PSA progression, metastases, or unacceptable toxicity. The primary endpoint was percentage of patients achieving PSA ≤0.2 ng/mL (undetectable levels) at 3 months. Secondary endpoints included safety, PSA response, time to metastases, and correlated endpoints.

Results: Thirty-nine patients with a median baseline PSA doubling time of 2.4 months (range 0.9–9.2) received a median of fourteen 28-day treatment cycles. PSA decreased >30% in 35 patients and 6 (16%) achieved PSA ≤0.2 ng/mL at 3 months. Median times to PSA progression and metastasis were 13.8 and 25.4 months, respectively. Kaplan-Meier estimates of freedom from PSA progression were 57% and 42% at 12 and 24 months, and of freedom from metastasis were 94% and 62% at 12 and 24 months, respectively. At 3 months, median testosterone declined by 89% from baseline. Adverse events led to therapy discontinuation in 12 patients, and grade ≥3/4 adverse events occurred in 22 patients. Most frequent all-cause adverse events included fatigue (64%), hypertension (44%), diarrhea (38%), and nausea (33%), which were primarily grade 1/2.

Conclusions: Single-agent orteronel produced marked and durable declines in PSA in patients with nmCRPC. Orteronel has moderate but manageable toxicities and its chronic administration without steroids appears feasible.

Category: Clinical Trials

ClinicalTrials.gov identifier: NCT01046916
Single agent orteronel in castration resistant nmCRPC

Introduction

A significant percentage of patients with nonmetastatic, biochemical (or prostate-specific antigen [PSA])-recurrent prostate cancer will progress on androgen deprivation therapy (ADT) to castration resistance (1-4). Patients with nonmetastatic, castration-resistant prostate cancer (nmCRPC; M\textsubscript{0}) have a median metastasis-free survival of approximately 25–30 months (5, 6); risk of bone metastasis or death has been shown to increase when PSA doubling time (PSADT) decreases below 8 months (7). Baseline PSA and PSA velocity are independent predictors of first bone metastases, overall survival (OS), and bone metastases-free survival (BMFS) (5-7). Considering the morbidity of bony metastases, several trials evaluated bone-targeted therapy in this disease population, resulting in no or modest effects and no impact on the totality of the disease (i.e. overall disease progression in bone and non-bone sites) or overall survival (8-11). Thus delaying all site metastasis in patients with nmCRPC remains an unmet medical need (1, 3-5, 12).

One mechanism contributing to castration resistance is the conversion of adrenal and intratumoral androgen precursors to androgens, which results in tumor progression (1, 3, 4). Inhibition of 17,20-lyase, a key component of the CYP17A1 enzyme that produces steroidal hormones, causes suppression of androgen production in the testes, and also inhibits synthesis of adrenal sex steroid hormone precursors (13-16). Data from phase III trials with abiraterone acetate validates the role of this pathway (17, 18).

Orteronel (TAK-700) is an investigational, non-steroidal, selective inhibitor of 17,20-lyase. In preclinical studies, orteronel more potently inhibited 17,20-lyase relative to 17\textalpha-hydroxylase, up to 5.4-fold, with minimal effect on other CYP drug-metabolizing enzymes (16). More selective inhibition of 17,20-lyase by orteronel may result in a lesser effect on 17\textalpha-hydroxylase, necessary for cortisol synthesis, reducing the potential for adrenocorticotropic hormone (ACTH)-driven mineralocorticoid excess and the resultant need for concomitant corticosteroids. Thus,
Single agent orteronel in castration resistant nmCRPC

Orteronel could be an attractive drug for longer duration therapy, or where prolonged corticosteroid is not ideal. This phase II study evaluated a steroid-free regimen of orteronel in patients with nmCRPC and rising PSA.

Materials and Methods

Study design and treatment

This open-label, multicenter study evaluated single agent orteronel 300 mg twice daily (BID) in continuous 28-day treatment cycles in patients with nmCRPC. Orteronel was taken without regard to food. The primary endpoint was percent of patients achieving PSA of ≤0.2 ng/mL (undetectable levels) after 3 months of treatment. Secondary endpoints included safety, PSA response rates at 3 and 6 months (decline in PSA of ≥90%, ≥50%, and ≥30%, [PSA90, PSA50, and PSA30]), percentage of patients achieving PSA ≤0.2 ng/mL after 6 months of treatment, time to PSA progression, time to development of metastases, duration of PSA progression-free survival (PFS), and changes in concentrations of endocrine markers including serum testosterone, dehydroepiandrosterone sulfate (DHEA-S), ACTH, corticosterone, and cortisol. Exploratory objectives included analysis of circulating tumor cells (CTCs), changes in biochemical markers of bone turnover and bone mineral density (BMD), and assessment of possible changes in androgen-deprivation symptoms. Orteronel was continued until PSA progression, metastases, or unacceptable toxicity.

The study was approved by the local institutional review boards and run in accordance with all applicable regulatory requirements and Good Clinical Practice. All patients provided institutional review board-approved written informed consent.
Single agent orteronel in castration resistant nmCRPC

Patients

Eligible patients had a pathologic diagnosis of prostate cancer, no radiographic evidence of metastasis, a rising PSA despite castrate levels of testosterone (<50 ng/dL) following orchiectomy or ongoing gonadotropin-releasing hormone (GnRH) analog therapy. Patients had to have baseline PSA ≥2 ng/mL and higher risk for metastases (PSADT of ≤8 months, or PSA ≥8 ng/mL if doubling time was >8 months) (5). Other entry criteria included Eastern Cooperative Oncology Group performance status ≤2, serum alanine aminotransferase or aspartate aminotransferase ≤1.5 x upper limit of normal (ULN), total bilirubin ≤1.5 x ULN, serum creatinine <2 mg/dL and/or creatinine clearance >40 mL/minute, and ejection fraction ≥50% at screening. Excluded patients had prior prostate cancer treatment with aminoglutethimide or ketoconazole at any time, antiandrogen therapy within 4 weeks (flutamide) or 6 weeks (others), prior chemotherapy, or radiation ≤30 days prior to the first dose of orteronel.

Assessments

PSA progression was defined as a 25% increase over the baseline/nadir concentration and an absolute PSA increase of ≥2 ng/mL. PSA response endpoints included PSA90, PSA50, and PSA30. Duration of PSA response was measured from the time of first PSA response to PSA progression or death. Detection of metastases by radiologic progression included bone scans and computed axial tomography scan or magnetic resonance imaging of the abdomen and pelvis at screening and every 3–4 cycles per protocol. PFS was defined as the time from first dose of orteronel to first PSA progression, metastasis (≥2 new bone lesions or one new soft tissue lesion on imaging) (19, 20), or death. Toxicity was evaluated per National Cancer Institute Common Terminology Criteria for Adverse Events v4.03.
Single agent orteronel in castration resistant nmCRPC

Hypothalamic-pituitary-adrenal axis function, including plasma ACTH, serum cortisol, DHEA-S, corticosterone, and testosterone and bone biochemical markers, including creatinine-corrected urine N-telopeptide, serum parathyroid hormone, 25-hydroxy vitamin D, and serum bone-specific alkaline phosphatase (ALP), were assessed at baseline and at 3 and 6 months. Ultra–low–level quantification of testosterone was measured by liquid chromatography and mass spectrometry. The lower limit of detection for testosterone was 0.2 ng/dL. BMD was evaluated by dual energy x-ray absorptiometry. Blood samples for evaluation of CTCs were collected at baseline and at 3, 6, and 12 months. Cardiac assessments included creatine kinase MB, troponin, left ventricular ejection fraction, and QTc interval.

Health-related quality of life (HRQoL) was assessed using the Aging Males Symptom (AMS) scale, which evaluates changes of symptoms of aging and androgen deprivation over time (21, 22). The AMS includes 18 questions, of which 17 generate a total score classified as: 0–26, no symptoms of androgen deficiency; 27–36, mild symptoms; 37–49, moderate symptoms; and ≥50, severe symptoms. Three subscales covering psychological, somatic, and sexual domains are similarly classified.

Statistics

Based on the primary endpoint, 38 patients provided 90% power to give a one-sided significance level of 0.1, assuming 20% achieved a PSA of ≤0.2 ng/mL after 3 months of orteronel treatment versus the null hypothesis of 5%. To be evaluable for the primary endpoint and the secondary endpoints of PSA response and achievement of PSA ≤0.2 ng/mL following 6 months of treatment, patients had to have both a baseline PSA and at least one post-baseline PSA measurement. For PSA response rate calculations, the number and percentage of responders, and the two-sided 80% exact confidence interval (CI), were provided. The Kaplan-
Single agent orteronel in castration resistant nmCRPC

Meier method was used to assess time to PSA progression, time to metastasis, and PFS. All patients receiving ≥1 dose of orteronel were evaluable for safety.

Results

Patient demographics and disease characteristics are shown in Table 1. Thirty-nine patients were registered and treated. Median serum PSA at study entry was 12.1 ng/mL (range, 2.6–67.8), and median baseline PSADT was 2.4 months (range, 0.9–9.2). The median number of treatment cycles received was 14 (range 1–34); 26 patients (67%) were on treatment for >6 months and 20 (51%) for >12 months. As of July 22, 2013, 6 patients (15%) remain on treatment and 33 (85%) have discontinued – 17 (44%) due to disease progression, 15 (38%) due to PSA progression, 12 (31%) for adverse events (AEs), 2 (5%) by patient choice, and 2 (5%) other reasons.

Efficacy

PSA response

PSA declined from pretreatment baseline levels in 37/38 (97%) evaluable patients, and decreased >30% in 35 patients (Fig. 1A). One patient was not evaluable for PSA response because they had only baseline PSA measurement and no on-study PSA measurement. PSA response rates after 3 and 6 months of treatment are summarized in Table 2 and Figure 1B. At 3 months, of 34 patients with PSA measurements at this time point, 33 patients (97%) experienced a PSA decline. A PSA decline to ≤0.2 ng/mL (primary endpoint) occurred in 6 PSA-evaluable patients (16%) at 3 months (Fig. 1B), and in 12 PSA-evaluable patients (32%) at any time on study (best response; Fig. 1). At 3 months, declines in PSA30, PSA50, and PSA90 responses occurred in 31 (82%), 29 (76%), and 12 (32%) patients, respectively, and at 6 months in 22 (58%), 19 (50%), and 9 (24%) patients, respectively.
Single agent orteronel in castration resistant nmCRPC

PSA progression

In 38 PSA-evaluable patients, the Kaplan-Meier estimate of median time to PSA progression was 13.8 months (95% CI: 11.1, 25.8; Fig. 2A). Estimates of freedom from PSA progression were 88%, 57%, and 42% at 6, 12, and 24 months, respectively. Duration of PSA response to PSA progression or death is shown in Figure 2B. Kaplan-Meier estimates of median time from PSA50 (or better) response to PSA progression or death was 14.8 months, and for patients with PSA90, 24.9 months.

Time to metastasis

As of final data cut-off, 11/39 (28%) patients had developed systemic metastasis. Median time to development of first metastasis was 25.4 months (95% CI: 17.6, not reached). Kaplan-Meier estimates of freedom from metastasis (time from first dose to first occurrence of metastasis) were 94% and 62% of patients at 12 and 24 months, respectively (Fig. 2C).

PFS

In all 39 patients, median duration of time from first dose to PSA progression, metastasis, or death was 14.8 months (95% CI: 11.1, 24.7). Kaplan-Meier estimates of PFS at 6, 12, and 24 months were 88%, 57%, and 37%, respectively.

CTCs

Seven of 35 patients assessed had ≥ 1 CTC per 7.5 mL of whole blood at baseline assessment (Supplementary Table S1). One patient had ≥ 5 CTCs per 7.5 mL at baseline, which converted to <5 cells per 7.5 mL for the ensuing 12 months on treatment; no patient had a CTC count ≥ 5 cells per 7.5 mL blood at any on-treatment visit.
Single agent orteronel in castration resistant nmCRPC

Endocrine – efficacy response

Changes over time for serum testosterone and DHEA-S are shown in Figure 3A. After 3 and 6 months, respectively, median testosterone declined by 89% and 87% from a baseline of 8.5 ng/dL to 0.78 and 0.84 ng/dL. Median DHEA-S decreased by 85% and 89% to 197 and 188 nmol/L.

HRQoL (AMS scale)

Median changes from baseline in androgen deprivation-related symptom scores were generally minimal throughout the study. No clinically significant changes in androgen deprivation-related symptoms were observed (Supplementary Fig. 1). The median total AMS score at baseline, 6 months, and 12 months was 33, 34, and 34, respectively, consistent with mild symptoms. Similar results were observed for psychological, sexual, and somatic scores.

Safety

Adverse events (AEs) were reported in 38/39 patients (97%; Table 3). Commonly reported treatment-emergent AEs included fatigue (64%) and gastrointestinal events, particularly diarrhea (38%) and nausea (33%). Twenty-two patients (56%) reported grade ≥3 AEs, of whom 2 had grade 4 AEs (1 each with pulmonary embolism and bladder cancer, both considered unrelated to orteronel treatment). Serious AEs were reported in 10 patients (26%). There were no on-study deaths. AEs led to study discontinuation in 12 patients (31%), and included hypertension (patients with prior history of hypertension that worsened), dyspnea, and fatigue (each n = 2; 5%).

Consistent with the observed elevations in ACTH and corticosterone (see below and Fig. 3B), hypertension was reported in 17 patients (44%), including at grade 3 in 7 (18%). One patient required a dose reduction and, eventually, discontinuation of orteronel, a second patient...
Single agent orteronel in castration resistant nmCRPC

also discontinued orteronel due to hypertension; both patients received concomitant hypertension medication. Eight patients had a history of hypertension and experienced worsening of the event, the remaining 9 patients had newly occurring hypertension. Fourteen of the 17 patients with hypertension received antihypertensive medication. Outcome of hypertension was reported as resolved for 7 patients and ongoing for 10. A mixed-effect model analysis did not reveal a correlation between hypertension and cortisol levels. However, the sample size is small for definitive conclusions.

Seven patients (18%) experienced hypokalemia, including grade 3 in 2 patients (5%); 5 patients received concomitant medication, no action was taken in 2, and no patients discontinued due to hypokalemia. Three patients (8%) experienced grade 1 or grade 2 adrenal insufficiency, 2 were treated with medication (steroid) due to the event. Adrenal insufficiency was reported as a serious adverse event in the third patient, who discontinued study drug.

Three patients (8%) experienced pneumonitis (1 grade 2, 2 grade 3); all 3 cases were drug-related serious AEs, and all patients ultimately discontinued study drug due to the event. Each patient received medication or a concomitant procedure, and pneumonitis resolved in each case. None of the patients had a prior history of pneumonitis, although 1 patient had an ongoing medical history of cough, exertional dyspnea, and bilateral atelectasis.

One patient experienced a grade 1 aspartate aminotransferase increase, no patients had grade >1 elevations in hepatic transaminases. There were no other clinically significant changes in laboratory evaluations, including liver function tests and serum lipids, cardiac markers, ECGs, or measures of ejection fraction.

Laboratory and biomarker indices of safety

Endocrine – safety markers
Single agent orteronel in castration resistant nmCRPC

Associated with the steroid-free dosing regimen, modest changes in the ACTH-adrenal axis occurred (Fig. 3B). Median ACTH increased approximately 2–3-fold and median corticosterone increased more than 30-fold. These increases are consistent with modest increases in the ACTH-driven mineralocorticoid and alternative glucocorticoid pathways, which do not require 17α-hydroxylase. Median post-baseline cortisol levels decreased by 21% (260 nmol/L) at 3 months and 36% (255 nmol/L) at 6 months, which is within normal limits and may reflect diurnal variation.

Biochemical markers of bone turnover and BMD

No systematic treatment-related changes in serum bone-specific ALP, urine N-telopeptide, 25-hydroxy vitamin D, or serum parathyroid hormone were observed. No clinically significant changes were observed in BMD imaging results (Supplementary Table S2).

Discussion

Many prostate cancer patients who undergo ADT for biochemical PSA relapse following local therapy (23) will develop castration resistance, manifested by a rising PSA, without radiographic evidence of metastasis and no physical disease-related symptoms (nmCRPC). Four phase III trials were conducted in this population (8-11). Considering the predominance of bone metastasis in this disease and the ensuing morbidity, three of these trials tested bone-targeting agents with a primary objective of delaying time to bone metastasis (8, 10, 11), while the primary endpoint in the study by Nelson et al was PFS or time to disease progression (not including increase in PSA) (9). Unfortunately, none of these trials improved overall disease PFS or OS. Data from these trials indicate that patients with nmCRPC have a variable clinical course, with median survival of approximately 30–48 months but great within-group heterogeneity (6, 24). Disease features such as PSA level or PSADT are prognostic for survival.
Single agent orteronel in castration resistant nmCRPC

Baseline PSA ≥8.0 ng/mL and PSADT ≤8 months are predictive for higher risk of progression and consistently associated with time to first bone metastasis and death (6, 25). Currently, there is no standard therapy for this potentially deadly stage of disease.

Orteronel is a non-steroidal inhibitor of androgen production, and a recent phase II trial showed ≥90% suppression of testosterone and DHEA-S with orteronel 300 mg BID (25). Since orteronel has the potential advantage of steroid-free dosing, we investigated orteronel 300 mg BID without steroids. As previously reported in a phase II study in mCRPC (25), orteronel 300 mg BID monotherapy rapidly and profoundly suppressed the adrenal-derived androgens, testosterone, and DHEA-S.

In this study the median duration of PFS (time to PSA progression, metastases, or death) was 14.8 months, while the median time to PSA progression was 13.8 months (Fig. 2A). The duration of PSA response (time from start of PSA response to PSA progression or death, Fig. 2B) was longer in patients achieving greater PSA decline (PSA90) than in patients achieving lesser decline (PSA50 or better), supporting the utility of PSA decrease as an intermediate response biomarker in this setting. Furthermore, median time to development of metastasis was more than 24 months in this high-risk population with median baseline PSADT of <3 months (Fig. 2C). Kaplan-Meier estimates of freedom from metastasis were 94% and 62% at 12 and 24 months, respectively. The study of atrasentan in men with nonmetastatic castration-resistant prostate cancer reported by Nelson et al demonstrated median time to disease progression (defined as the onset of metastases) in the control arm of 22 months with Kaplan-Meier estimates of freedom from disease progression of approximately 65% and 45% at 12 and 24 months, respectively (9). However, there are differences in the study population (e.g. PSA inclusion criteria) and the primary endpoint metrics between this study and the present study. Although patient numbers in the present study were relatively small, the observed metastases-free survival in this population appears encouraging.
Single agent orteronel in castration resistant nmCRPC

AEs led to study discontinuation in 12 patients (31%). Whether concomitant steroids would have prevented some of the AEs that led to discontinuation of therapy is unclear. Data from other orteronel trial in different patient populations and disease settings showed rates of discontinuation due to AEs of 42% in a phase 2 study of orteronel plus docetaxel and prednisone in 24 chemotherapy-naïve mCRPC patients (26), 21% overall in a phase 1/2 study of orteronel with or without prednisone in 123 patients with mCRPC, in which the discontinuation rates due to AEs were similar between the two treatment groups (27), and 26% in a phase 3 study of orteronel plus prednisone in 734 patients with mCRPC that progressed post-docetaxel treatment (28).

The most common treatment-related AEs were low-grade fatigue, diarrhea, and hypertension. Of 17 patients who experienced hypertension, 9 had prior medical history of hypertension. Only 2/9 patients discontinued treatment as a result of hypertension while three patients (8%) had reports of serious pneumonitis leading to study-drug discontinuation. The pneumonitis resolved in each patient, diagnostic evaluations were inconclusive, and etiology remains unclear. To date, pneumonitis has not emerged as a safety concern in the randomized phase III orteronel trials (28)(NCT01193244). We were encouraged by the apparent lack of hepatotoxicity with orteronel, which has a non-steroidal structure and, since it is not hepatically metabolized, has no significant interactions with hepatic enzymes (29).

Although orteronel blocks 17α-hydroxylase to a lesser extent than 17,20-lyase, there was concern that decreased plasma cortisol levels with compensatory elevated ACTH concentrations might result in mineralocorticoid excess. Median ACTH and corticosterone levels were increased but median cortisol remained within the normal range. As discussed above, 17 patients experienced hypertension. Other mineralocorticoid toxicities, such as hypokalemia and peripheral edema, were predominantly low-grade. In addition, examination of androgen or sex hormone-related HRQoL, assessed using the AMS scale, showed no further impact of orteronel
Single agent orteronel in castration resistant nmCRPC

on patient-reported outcomes associated with conventional ADT (21, 22). However, as the AMS scale is not validated in this population, these results should be interpreted with caution. There were no clinically significant changes in BMD.

Achievement of PSA ≤0.2 ng/mL was chosen as a novel endpoint to assess the antitumor effect, as PSA is the only assessable manifestation of the disease and a marker of response in mCRPC patients (30, 31). Achieving a PSA level of ≤0.2 ng/dL has been associated with a significantly reduced risk of death versus PSA ≥4 ng/dL ($P < 0.0001$) in hormone-sensitive prostate cancer (32). This did, however, set a higher bar in a proof of concept study such as this. The percentage of patients achieving a decline in PSA to ≤0.2 ng/mL at 3 months did not achieve the pre-specified statistical parameters of the study (16% [80% exact CI: 9, 26] vs alternative hypothesis rate of 20%). The totality of the data, including secondary endpoints and the overall rate of PSA decline to ≤0.2 ng/mL (32%) at any time post-baseline, suggest that orteronel 300 mg BID directly inhibits the androgen synthesis pathway and is effective at this dose and feasible in the absence of prednisone for most patients with nmCRPC.

Orteronel 400 mg plus prednisone has been evaluated in two phase III studies in metastatic CRPC, one in chemotherapy-naive patients (ELM-PC 4; NCT01193244) and the other in the post-docetaxel setting (ELM-PC 5; NCT01193257). The accompanying prednisone may alleviate increased risk of side effects due to 17α-hydroxylase or non-selective inhibition which is more likely to occur at higher doses of orteronel. In the recently reported ELM-PC 5 study (28), the orteronel plus prednisone group did not meet the primary endpoint of overall survival ($P = 0.1898$) despite notable improvement in radiographic progression-free survival ($P = 0.0004$) and ≥50% decline in PSA ($P < 0.0001$) as well as an apparent OS benefit in patients outside of North America and Europe ($P = 0.019$). Orteronel 300 mg BID is also being evaluated without steroids in several ongoing phase III studies, including in combination with radiation therapy and a GnRH agonist (NCT01546987).
Acknowledgments

All study sites and institutions received funding from Takeda Pharmaceuticals International Co., Cambridge, MA, USA, to cover the expenses of the investigators, subinvestigators, and study staff for clinical trial execution. The authors would like to thank the patients who participated in this study and their families, as well as staff at all investigational sites. The authors also acknowledge the editing assistance of Shaun Villa of FireKite, Ltd, during the development of this paper, which was funded by Millennium: The Takeda Oncology Company.
Single agent orteronel in castration resistant nmCRPC

References

Single agent orteronel in castration resistant nmCRPC

Single agent orteronel in castration resistant nmCRPC

Single agent orteronel in castration resistant nmCRPC

Single agent orteronel in castration resistant nmCRPC

prostate cancer (mCRPC): Updated phase II results. ASCO Meeting abstracts 2013;31 (Suppl 6):59 (abstr).

Single agent orteronel in castration resistant nmCRPC

Table 1. Baseline patient demographics and disease characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N = 39*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years (range)</td>
<td>71 (53–81)</td>
</tr>
<tr>
<td>Race (n, %)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>35 (90)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>4 (10)</td>
</tr>
<tr>
<td>ECOG performance status (n, %)</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>33 (85)</td>
</tr>
<tr>
<td>1</td>
<td>6 (15)</td>
</tr>
<tr>
<td>Gleason score >7 (n, %)</td>
<td>20 (51)</td>
</tr>
<tr>
<td>Median (range)</td>
<td></td>
</tr>
<tr>
<td>PSA</td>
<td>12.1 ng/mL (2.6–67.8)</td>
</tr>
<tr>
<td>Testosterone (n = 38)</td>
<td>8.5 ng/dL (1.4–17.3)</td>
</tr>
<tr>
<td>ACTH (n = 32)</td>
<td>19.5 ng/L (0–47)</td>
</tr>
<tr>
<td>PSA doubling time</td>
<td>2.4 months (0.9 9.2)</td>
</tr>
<tr>
<td>Prior surgery (n, %)</td>
<td></td>
</tr>
<tr>
<td>Radical prostatectomy</td>
<td>25 (67)</td>
</tr>
<tr>
<td>Bilateral orchiectomy</td>
<td>2 (5)</td>
</tr>
</tbody>
</table>

Abbreviations: ACTH, adrenocorticotropic hormone; ECOG, Eastern Cooperative Oncology Group; PSA, prostate-specific antigen.

*N = 39 represents all 39 treated patients.

Two patients received prior ketoconazole (protocol deviations).
Single agent orteronel in castration resistant nmCRPC

Table 2. PSA response rates at 3 and 6 months

<table>
<thead>
<tr>
<th></th>
<th>3 months</th>
<th>6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>(80% exact CI)</td>
</tr>
<tr>
<td>PSA ≤0.2ng/mL</td>
<td>6 (16)</td>
<td>(9, 26)</td>
</tr>
<tr>
<td>PSA30</td>
<td>31 (82)</td>
<td>(71, 89)</td>
</tr>
<tr>
<td>PSA50</td>
<td>29 (76)</td>
<td>(65, 85)</td>
</tr>
<tr>
<td>PSA90</td>
<td>12 (32)</td>
<td>(22, 43)</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; PSA, prostate-specific antigen.

*N = 38 represents the PSA-evaluable population.

PSA response rate: percentage of patients achieving a decline in PSA of ≥90% (PSA90), ≥50% (PSA50), ≥30% (PSA30).
Single agent orteronel in castration resistant nmCRPC

Table 3. Most common adverse events irrespective of causality or drug-relatedness reported in ≥20% of patients overall or in ≥5% at grade 3, and corresponding rates of drug-related adverse events

<table>
<thead>
<tr>
<th>Adverse events, n (%)</th>
<th>Orteronel 300 mg BID (N = 39*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatment-emergent</td>
</tr>
<tr>
<td></td>
<td>All</td>
</tr>
<tr>
<td>Fatigue</td>
<td>25 (64)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>17 (44)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>15 (38)</td>
</tr>
<tr>
<td>Nausea</td>
<td>13 (33)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>13 (33)</td>
</tr>
<tr>
<td>Constipation</td>
<td>12 (31)</td>
</tr>
<tr>
<td>Cough</td>
<td>10 (26)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>10 (26)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>9 (23)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>8 (21)</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>8 (21)</td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>8 (21)</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>7 (18)</td>
</tr>
<tr>
<td>Pneumonitis</td>
<td>3 (8)</td>
</tr>
<tr>
<td>Syncope</td>
<td>2 (5)</td>
</tr>
</tbody>
</table>

Abbreviations: BID, twice daily.

*N = 39 represents all 39 treated patients

Serious adverse events were reported in 10 men (26%). Of these, serious adverse events in 6 men were considered drug-related: 2 men had pneumonitis; 1 had pneumonitis, dyspnea, and
Single agent orteronel in castration resistant nmCRPC

hypoxia; 1 had syncope and atrioventricular block; 1 had atrial fibrillation and atrial flutter; 1 had adrenal insufficiency.

Grade 4 serious adverse events were reported in 2 men and were considered unrelated to drug treatment: 1 with bladder cancer and humerus fracture and one with pulmonary embolism.

There were no grade 5 events.
Single agent orteronel in castration resistant nmCRPC

Figure legends

Figure 1. Waterfall plots of PSA response: (A) maximum PSA response at any time on treatment for $N = 38$ PSA-evaluable patients; (B) responses at 3 and 6 months for $N = 34$ and $N = 26$ PSA-evaluable patients, respectively, with a PSA measurement at the 3 and 6 month timepoints.

Figure 2. Kaplan-Meier estimates of: (A) time to PSA progression for $N = 39$ (non-PSA-evaluable patient censored at time 0); (B) duration of PSA response in patients achieving a PSA decline of $\geq 50\%$ or $\geq 90\%$ (PSA50 and PSA90, respectively); (C) time to metastasis for $N = 39$.

Figure 3. Median pharmacodynamic changes from baseline to assessment at 3 and 6 months: (A) testosterone and DHEA-S; (B) ACTH, cortisol and corticosteroid*.

*Percent change from baseline is based on the number of patients with both baseline and post-baseline values at that cycle. Normal ranges are also shown for reference.
Figure 1

A

N = 38

B

3 months (N = 34)

PSA ≤0.2 ng/mL

Yes No

PSA decrease n

≥90% 12
50–89% 17
30–49% 2
<29% 3

PSA ≤0.2 ng/mL 6

6 months (N = 26)

PSA decrease n

≥90% 9
50–89% 10
30–49% 3
<29% 4
PSA ≤0.2 ng/mL 3

PSA, prostate-specific antigen
Figure 3

A

Normal range 129–767

<table>
<thead>
<tr>
<th>Testosterone</th>
<th>1.4–17</th>
<th>0–8.1</th>
<th>0–11.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>38</td>
<td>0.78</td>
<td>0.84</td>
</tr>
<tr>
<td>3 months</td>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>23</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DHEA-S</th>
<th>49–8435</th>
<th>5–4871</th>
<th>5–234</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>38</td>
<td>1622</td>
<td></td>
</tr>
<tr>
<td>3 months</td>
<td>34</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>26</td>
<td>188</td>
<td></td>
</tr>
</tbody>
</table>

Median values (range)
- Black: Baseline
- Gray: 3 months
- Light gray: 6 months

B

<table>
<thead>
<tr>
<th>ACTH</th>
<th>0–47</th>
<th>12–351</th>
<th>21–187</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>20</td>
<td>43</td>
<td>60</td>
</tr>
<tr>
<td>3 months</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>329</td>
<td>260</td>
<td>255</td>
</tr>
<tr>
<td>3 months</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corticosterone</th>
<th>1–33</th>
<th>2–442</th>
<th>15–458</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>4</td>
<td>38</td>
<td>137</td>
</tr>
<tr>
<td>3 months</td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>26</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Median values (range)
- Black: Baseline
- Gray: 3 months
- Light gray: 6 months

DHEA-S, dehydroepiandrosterone-sulfate. ACTH, adrenocorticotropic hormone.
Clinical Cancer Research

Phase II Study of Single Agent Orteronel (TAK-700) in Patients with Nonmetastatic Castration-Resistant Prostate Cancer and Rising Prostate-Specific Antigen

Maha Hussain, Paul G Corn, M. Dror Michaelson, et al.

Clin Cancer Res Published OnlineFirst June 25, 2014.