Molecular Pathways: Epigenetic Modulation of Wnt/Glycogen Synthase Kinase-3 Signaling to Target Human Cancer Stem Cells

Yannick D. Benoit¹, Borhane Guezguez¹, Allison L. Boyd¹,² and Mickie Bhatia¹,²,*

¹ Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada.² Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada.

Note: Y.D. Benoit and B. Guezguez contributed equally to this article.

* To whom correspondence should be addressed:
Dr. Mickie Bhatia, Stem Cell and Cancer Research Institute McMaster University, Faculty of Health Sciences 1280 Main Street West, MDCL 5029
Hamilton, Ontario, L8S 4K1, Canada, Phone: 905-525-9140 Extension: 28687, Fax: 905-522-7772
Email: mbhatia@mcmaster.ca

Running title: Epigenetic Modulation of Wnt/GSK-3 Signaling

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.
Abstract

Aberrant regulation of the canonical Wnt signaling pathway (Wnt/β-catenin/GSK-3 axis) has been a prevalent theme in cancer biology since earlier observations until recent genetic discoveries gleaned from tumor genome sequencing. During the last few decades, a large body of work demonstrated the involvement of Wnt/β-catenin/GSK-3 signaling axis in the formation and maintenance of cancer stem cells (CSC) responsible for tumor growth in several types of human malignancies. Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, and allow a first assessment on how embryonic and normal tissue stem cells are dysregulated in cancer to give rise to CSC, and how canonical Wnt signaling might be involved. Here we review emerging concepts highlighting the critical role of epigenetics in CSC development through abnormal canonical Wnt signaling. Lastly, we refer to the characterization of novel and powerful inhibitors of chromatin organization machinery that, in turn, restore Wnt/β-catenin/GSK-3 signaling axis in malignant cells, and describe attempts/relevance to bring these compounds into preclinical and clinical studies.
Background

The Wnt family of secreted glycoproteins act as ligands to activate multiple signal transduction pathways (1). Upon activation, Wnt signaling promotes mainly β-catenin nuclear translocation to regulate expression of target genes via T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors (2). The Wnt/β-catenin pathway acts in a context-dependent manner to regulate cell proliferation and differentiation in both embryonic development and adults (2). Perturbations in the levels of Wnt/β-catenin signaling are linked to many disease processes including solid tumors and leukemia (3, 4). The activity of the Wnt/β-catenin signaling pathway depends primarily on the activity of Glycogen Synthase Kinase-3 (GSK-3), which plays a key role in controlling β-catenin stability/degradation. GSK-3 dependent phosphorylation of β-catenin restricts its nuclear translocation by inducing proteasome-dependent proteolysis (5). Active β-catenin complexes recruit transcriptional co-activator CREB-binding protein (CBP) or its closely related homolog p300 (6) to potentiate the expression of downstream Wnt target genes (Figure 1A). Consequently, GSK-3 acts as a tumor suppressor by curbing canonical Wnt/β-catenin signaling.

Recent advances in cancer genomics identified the Wnt/GSK-3/β-catenin pathway as one of the most prevalent signaling mechanisms studied in cancer biology since multiple genetic alterations of its components were recurrently associated with human tumorigenesis including medulloblastoma, hepatocellular cancer, colorectal cancers, and leukemia (7-10). To date, several reports also highlighted the importance of Wnt/GSK-3/β-catenin signaling on self-renewal in both normal and cancer stem cells (CSC). Specifically, CSCs were identified as rare populations of cancer cells within a hierarchical model of tumorigenesis displaying the ability to sustain long-term neoplastic dissemination in both leukemia and solid cancers (11, 12). Considering their malignant and metastatic properties that might cause relapse, the CSC
represents, to date, the major clinical obstacle for effective cancer eradication by conventional therapeutic measures (13). Examples of the participation of Wnt/GSK-3 signaling in CSC development include cases of BCR-ABL chronic myeloid leukemia (CML) (14, 15) presenting an aberrant non-functional form of GSK-3 showing neoplastic progression towards an aggressive stage of the disease, marked by the progressive accumulation of nuclear active β-catenin within BCR-ABL CSCs (10). Moreover, elevated β-catenin levels observed in acute myeloid leukemia (AML) were related to Wnt/GSK-3 pathway deregulation, enhanced self-renewal, and CSC development associated with high relapse rates and poor survival outcomes (16).

Considering the essential role of the Wnt/GSK-3/β-catenin axis in differentiation of normal progenitors, drug targeting of neoplastic-specific upstream and/or downstream events affecting this pathway may represent a particularly powerful approach, in the future, to restore normal signaling in CSCs that warrant further molecular exploration. Interestingly, Wnt/GSK-3/β-catenin signaling has been associated with the deregulation of epigenetic modulators. Cancer-specific changes in histone acetylation have been associated with enhanced activity of CBP/p300 complexes (17, 18), while alterations in DNA and/or histone tail methylation processes involve activating or loss-of-function mutations, hyper-stimulation or overexpression of chromatin writers like DNMT3A/B, EZH2 or G9a (19-21), which collectively converge on pivotal self-renewal pathways such as Wnt/GSK-3/β-catenin pathway (Figure 1A).

Advances in cancer epigenetics have provided fundamental insights into the participation of the aforementioned chromatin remodelers during cancer initiation and CSC development (22, 23). Multiple lines of evidence support the hypothesis that CSCs are functionally dependent upon the maintenance of their epigenetic state, and that this could represent a valuable therapeutic opportunity. Lineage-mapping studies have identified epigenetic dysregulation as a critical early event in human tumorigenesis (24), supporting the
concept of an epigenetic progenitor origin of cancer (22). Furthermore, cells with CSC features appear molecularly dissociable from non-CSCs (25-29), and animal models have demonstrated that epigenetic interventions can reduce CSC frequencies and attenuate tumorigenesis (30, 31). For instance, microRNAs suppressing the expression of members of the Polycomb Repressive Complex-2 (PRC2), including Let-7 and the miR-200 family, are down regulated in CSC-containing fractions of breast and prostate cancer while increased levels were observed in non-stem cancer cells (25, 28, 29). Accordingly, the expression of PRC2 members SUZ12 and EZH2 were shown to be upregulated in CSC-enriched fractions of breast and prostate tumors (25, 29). Taken together, these observations suggest the existence of epigenetic patterns acting as early key pro-oncogenic events in CSC development, and distinct from normal undifferentiated cells of the same tissues (19, 32, 33), which, subsequently, could impact the onset of tumorigenic signaling cascades. Ultimately, the identification of epigenetic marks that influence CSC self-renewal pathways, such as Wnt/GSK-3, are of particular interest since the correction of aberrant epigenetic pathways could represent a powerful strategy to restore normal stem cell phenotypes from CSCs in a process of “cancer reprogramming”. Thus, using selective small molecules to suppress aberrant chromatin modifiers activity affecting Wnt/GSK-3 signaling is sought to effectively restore normal chromatin organization by targeting the problem at its very source, and restore normal pathway activity (34) (Figure 1B).

Clinical-Translational Advances

Multiple studies recently proposed that disruption of epigenetic regulatory mechanisms represent a promising pharmacotherapeutical strategy in the context of several human malignancies (reviewed by Helin and Dhanak) (34)(Figure 1B). Thus, an attractive therapeutic strategy to eradicate CSCs while sparing normal stem cells could consist of targeting CSC-specific epigenetic features that contribute to hyper-activation of oncogenic signaling pathways. As
stated through several reports (see following subsections for references), the activity of Wnt/GSK-3 pathway has the potential to be modulated epigenetically on several fronts (Figure 1A). Development of drugs altering a mechanism on which CSCs rely (epigenetic in this case), while no such dependency exists in normal stem cells or progenitors represents a major challenge in actual cancer pharmacology. Examples of CSC-targeting small molecules affecting chromatin organization were recently reported in preclinical studies including PTC-209, which inhibits BMI-1 activity, a member of the Polycomb Repressive Complex-1 (PRC1) and dose-dependently compromises colorectal tumor formation in xenograft models (35). Moreover, the G9a inhibitor UNC-0638 was shown to suppress self-renewal in AML CSCs by triggering differentiation programs as evidenced by the acquisition of mature cell morphology, while only minor effects were observed on long-term hematopoiesis (31, 35). However, the efficacy of these compounds remains to be tested in clinical trials. The following sections describe chromatin-linked regulatory modes for Wnt/GSK-3 pathway modulation, including histone acetyltransferases, PRC2 and G9a, along with the associated therapeutic utility of small-molecules related to these nodes of epigenetic activity (Figure 1B).

Histone acetyltransferase complex CBP/p300 is critical to Wnt/GSK-3 target genes transcriptional regulation

CBP and p300 are histone acetyltransferases acting as transcriptional co-activators of Wnt/GSK-3 target genes in normal and cancer tissues (36, 37). Chromatin-bound TCF/β-catenin complexes recruit co-activator CBP to potentiate the transactivation of Wnt/GSK-3 target genes, stimulating self-renewal programs in CSCs. Inversely, β-catenin/p300 interactions have also been suggested to influence physiological pro-differentiation transcriptional programs (38). Conversely, others have also described chromosomal aberrations resulting in p300 fusion products in human AML, stimulating acetyltransferase activity characterized by important
epigenetic dysfunctions (17, 39). Thus, using small molecules to inhibit the recruitment of CBP/p300 co-activators to TCF/β-catenin target genes represents an interesting therapeutic axis to restrict Wnt/GSK-3 signaling in CSCs. Compounds like C646 and ICG-001, which preferentially target p300 and CBP respectively, were developed and tested on human cell lines or in vivo pre-clinical models. ICG-001 effectively suppressed the tumor growth by over 80% in colon carcinoma xenograft models (40), and extended the survival of mice xenografted with human lymphoblastic leukemia when applied in combination with chemotherapy (41). Mechanistically, C646 was shown to inhibit p300 acetyltransferase activity, which plays a key role in β-catenin (K345ac)-dependent transactivation (42). On the other hand, ICG-001 selectively binds to the CBP nuclear-receptor-interaction domain to restrict physical interactions with β-catenin (40, 41) (Figure 1B). Collectively, the studies involving these small molecules clearly highlight the potential therapeutic utility for such epigenetic inhibitors to mediate Wnt/GSK-3/β-catenin axis activity at the expense of CSC self-renewal and survival (40, 43).

Although the existing CBP/p300 inhibiting molecules may show a certain degree of selectivity for transformed cells over normal cells in some studies (40, 43), it is still expected that disrupting the TCF/β-catenin/co-activator axis will affect normal stem cell development. One of the current major challenges is to identify cell context-specific compounds that could selectively affect CBP/p300 only in CSCs, which may include yet uncharacterized players that regulate this complex to therapeutically alter gene expression and in turn human CSC behavior.

Polycomb repressive complex-2 alters GSK-3 activity in human cancers.

Polycomb group proteins (PcGs) are epigenetic transcriptional repressors acting as multiprotein complexes (PRC1/2) catalyzing covalent addition of post-translational modifications on histone tails. Polycomb groups are divided into two main transcriptional repressive complexes, PRC1 and PRC2 (44). Specifically, PRC2 is responsible for trimethylation of lysine 27 of histone H3
(H3K27me3) via its Enhancer of Zest subunit (EZH) for which enhanced histone methyltransferase activity was extensively described in cancer (mostly EZH2) (45). EZH2 activity was also shown as essential for the maintenance of xenograft tumor growth in glioblastoma (46). Aberrant EZH2 activity plays a significant role in the epigenetic repression of differentiation and pro-apoptotic genes in a plethora of human cancers including solid tumors as well as in leukemia (45-48), and such a role is potentially related to its ability to promote Wnt/GSK-3 activity (Figure 1A). Accordingly, a number of EZH2 targets have been associated with increased nuclear accumulation of beta catenin, ultimately contributing to CSC self-renewal. For instance, CXXC4 was identified as a target of EZH2, and is known to stabilize the beta-catenin degradation complex by inhibiting Dishevelled (Dvl) (49) (Figure 1A). Low levels of CXXC4 were observed in gastric and renal carcinomas and were associated with beta-catenin nuclear translocation, metastasis formation, and poor prognosis (50). Furthermore, elevated EZH2 expression in breast CSCs (CD44+/CD24low) causes epigenetic silencing of the DNA repair factor RAD51, which in turn stimulates RAF1/ERK activity. In such a context, enhanced p-ERK levels promote functional beta-catenin stabilization (21).

The utility of pharmacological EZH2 targeting to restore proper Wnt/GSK-3 activity was further reinforced by the use of an indirect EZH2 inhibitor, 3-deazaneplanocin A (DZNep), against colorectal cancer cells (51) (Figure 1B). When applied in combination with an HDAC inhibitor, DZNep caused massive apoptosis induction upon the restoration of DACT3 expression, ultimately allowing Dishevelled activation. DZNep has been initially characterized as a S-adenosylhomocysteine hydrolase inhibitor, indirectly causing histone methyltransferase inhibition (52-54). Although DZNep has limited clinical potential due to its untargeted, global methyltransferase inhibitory effects (54), its uses in fundamental studies on cancer epigenetics paved the road for development of other potent EZH2 inhibitors (46-48, 53). Pharmaceutical
companies have recently developed new direct and specific EZH2-targeting small molecules, giving exciting perspectives for the future of epigenetic therapies. Specifically, Epizyme and GlaxoSmithKline have developed EPZ-6438 and GSK126 respectively, which both target hyperactive EZH2 mutants (Y641 and A677) with high specificity (55, 56) (Figure 1B). At the moment, only EPZ-6438 is being tested in Phase 1/2 clinical trial on patients with advanced solid tumors or with B cell Lymphomas (NCT01897571). Interestingly, these point mutations within the catalytic SET domain of EZH2 were demonstrated to favor the formation of trimethylated H3K27, leading to important changes of the epigenetic landscape (55, 56). These mutations have recently been reported as frequent events in diffuse large B-cell lymphoma, causing transcriptional silencing of cell cycle checkpoints and differentiation factors (57). Considering the existence of oncogenic EZH2 variants, the emergence of such highly selective small molecules could represent a powerful approach to specifically and epigenetically target CSCs over healthy stem cells inside a chemotherapeutic regimen, in order to restore normal Wnt/GSK-3 activity (Figure 1B).

G9a/GLP histone lysine methyltransferase complexes affect Wnt/GSK-3 activity

In addition to EZH2, other histone methyltransferases have also been suggested to play critical roles in the oncogenic regulation of Wnt/GSK-3 pathway. As dopamine receptors and the associated signaling cascade were recently linked to CSCs (58), new insights into the histone methyltransferase G9a suggest a role for such a chromatin writer as a downstream effector of this pathway. Psychoactive drugs are known to have a major impact on neuron epigenetic landscapes and are likely to have similar effects on CSCs (59). Notably, antidepressants, repeated cocaine administration, and dopamine receptor signaling were all linked to G9a deregulation and aberrant H3K9 methylation patterning (60-62). G9a is also closely related to malignancy and Wnt/GSK-3 hyperactivation by 1) decreasing reactive oxygen species (ROS) via
FBP1 epigenetic silencing (H3K9me2/DNA methylation) which in turn enhances TCF/β-catenin interactions, and 2) by directly repressing Dickkopf-1, 2 and 3 promoters (20, 63, 64) (Figure 1A). Moreover, it is now clear that G9a/H3K9me patterning is associated with 5-methyl cytosine deposition catalyzed by de novo DNA methyltransferases (DNMT3A/B) that were found to play a pivotal role in development of pre-leukemic progenitors (24, 65). While a persistent G9a expression/activity was described in induced pluripotent stem cells and further associated with sustained epigenetic memory (65, 66), a fascinating parallel can be drawn to the differentiation blockade seen in CSCs (67). Interestingly, leukemic stem cell-driving mutations of IDH1 and 2 were shown to impair H3K9 demethylation, leading to abnormal accumulations of repressive H3K9me2/3 marks, catalyzed by G9a on key loci, which subsequently impairs differentiation (68). Recently, in vivo deletion experiments in mouse AML models demonstrated that CSCs depend on G9a histone methyltransferase activity to maintain self-renewal and blockage of differentiation, while G9a is not essential for the function of long-term repopulating hematopoietic stem cells (31).

Two potent G9a inhibitors were reported in preclinical literature. Both BIX01294 and UNC-0638 were shown to robustly reduce the abundance of the H3K9me2 mark, with variable toxicity in vitro (64, 69, 70) (Figure 1B). Currently, little is known about the effects of these small molecules on Wnt/GSK-3 activity and cancer metabolism (FBP1 expression, Serine-Glycine synthesis, ROS levels) (20, 71). However, treatment of human primary AML cells using UNC-0638 have shown clonal growth inhibition and increased differentiation to the mast cell lineage (31). Developing novel, CSC-targeting G9a inhibitory small molecules should be sought to better focus therapies at CSCs versus normal stem cells that remain in the patient. An important milestone has been recently reached with the development of an in vivo suitable G9a inhibitor, UNC-0642, which displays enhanced pharmacokinetic properties compared to BIX01294 and UNC-0638.
(Figure 1B) (72). The uses of UNC-0642 in xenograft tumor models will allow further investigation on the impact of G9a inhibition in CSCs versus non-stem cancer cells will give insights into the CSC-specific aspect of such a mechanism.

Given the heterogeneous nature and genetic/epigenetic variegation of clonal architecture within tumors and leukemia (73), targeting multiple pathways with unique molecules/drugs is likely required to eradicate CSCs and the resultant disease. Recently, combination therapies using molecules thought to modulate epigenetic regulators are showing promise in clinical trials, and demonstrated alterations of histone and/or DNA methylation status in patient CSCs is now getting clearer (24). However, the variability in CSC cell surface phenotypes (74) remains a challenge towards prospective isolation of pure CSC populations for detailed downstream epigenetic characterization. Deliberate functional studies will become necessary to determine to what extent epigenetic-modifying agents target CSCs in dissociable ways relative to non-CSCs in a tumor, and to carefully resolve differential effects relative to normal stem cells that may still share overlapping genetic and epigenetic properties. This further highlights the importance of future efforts in dissecting the molecular pathways that are deregulated in CSCs specific to disease pathogenesis and evolution for designing effective cancer therapies in patients.

References

Figure 1: Epigenetic modulation of Wnt/GSK-3 pathway in human CSCs

(A) Wnt/GSK-3 signaling is cell context-dependent (hyperstimulated in CSCs) and the activity of such a pathway relies on multiple epigenetic factors. (B) Pharmacological targeting of histone acetyltransferase and methyltransferase-potentiating Wnt/GSK-3 activity represents a new therapeutic strategy to eradicate CSCs.
Figure 1:

A. Epigenetic regulation of the Wnt/GSK3 pathway

B. CBP/p300 enhance β-Catenin-dependent transcription

- Polycomb repressive complex-2 mediates gene repression
- G9a/DNMTs induce promoter hypermethylation
Clinical Cancer Research

Molecular Pathways: Epigenetic Modulation of Wnt/Glycogen Synthase Kinase-3 Signaling to Target Human Cancer Stem Cells

Clin Cancer Res Published OnlineFirst July 8, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-13-2491

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.