Paracrine Network: Another Step in the Complexity of Resistance to EGFR Blockade?

Ramon Salazar1, Gabriel Capellà2, and Josep Tabernero3

1Department of Medical Oncology and Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain.

2Hereditary Cancer Program and Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain.

3Medical Oncology Department, Vall d’Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.

Corresponding Author: Josep Tabernero, Head, Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), P. Vall d’Hebron 119-129, 08035 Barcelona, Spain. Phone: +34 93 489 4301; Fax: +34 93 274 6059; E-mail: jtabernero@vhio.net

Running Title: Paracrine Network Responsible for EGFR Blockade Resistance

Disclosure Statement

R. Salazar reports receiving speakers bureau honoraria from and is consultant/advisory board member for Amgen and Merck-Serono. J. Tabernero is a consultant/advisory board member for Amgen and Merck-Serono. No potential conflicts of interest were disclosed by the other author.
Summary:

Increased secretion of EGFR ligands amphiregulin and TGF-α by limited KRAS-mutant clones is suggested as paracrine resistance mechanism to anti-EGFR antibodies in colorectal cancer models. These findings are biologically sound but need to be replicated, including the clinical setting, to foresee whether they are clinically relevant and therapeutically exploitable.

In this issue of *Clinical Cancer Research*, Hobor and colleagues (1) address the concept of resistance to EGFR inhibition in a novel manner. EGFR addiction, present in a subset of colorectal cancer (CRC) cells, has been targeted with anti-EGFR monoclonal antibodies (mAbs) for more than 10 years. Their therapeutic positioning in metastatic CRC has evolved from third line monotherapy or doublets (panitumumab alone, cetuximab alone, or in combination with irinotecan) into the first-line treatment in combination with the two most active chemotherapeutic regimens, *FOLFIRI* or *FOLFOX*. This therapeutic setting transition has been established as consequence of a series of clinical trials designed for that purpose. More importantly, molecular markers have been introduced into this CRC setting confirming that exon 2 KRAS hotspot mutations (mainly in codons 12 and 13) are predictive biomarkers for the lack of efficacy of anti-EGFR mAbs, and can, in fact, be harmful when combined with oxaliplatin-based chemotherapy. More recently, further subanalyses of the most relevant clinical trials have provided evidence of additional predictive effect to other less frequent mutations in KRAS exons 3 and 4 and NRAS exons 2, 3 and 4 (2-4). With this extended RAS analysis, the benefit of the addition of anti-EGFR mAbs to standard first-line chemotherapy for the all-RAS
wild type population has translated into hazard ratios (HRs) for progression-free survival (PFS) and overall survival (OS) of 0.72 and 0.78 in the phase III PRIME and 0.56 and 0.69 in the phase III CRYSTAL studies, respectively. In terms of absolute median OS gain, the addition of anti-EGFR therapies increases survival by 5.8-8.2 months over the control population receiving only chemotherapy (2, 4).

Since the initial seminal publications by Misale and colleagues (5) and Diaz and colleagues (6), several studies have unequivocally shown that one of the most important mechanisms of secondary (acquired) resistance in patients with metastatic CRC to anti-EGFR mAbs is driven by the selection of cell clones that bear \textit{RAS} or \textit{RAF} mutations. It is notable that these mutant alleles, found in both tumor specimens and plasma samples when patients progress to previously active anti-EGFR treatments, are only observed in low numbers, suggesting that only a small fraction of tumor cells (0.4-17%) bear \textit{RAS}/\textit{RAF} mutations (5). Based on this observation, Hobor and colleagues (1) tested the hypothesis that protective paracrine interactions exist between \textit{RAS} mutated (resistant) clones and the wild type (sensitive) in preclinical CRC cell models. In an elegant set of experiments using three paired cetuximab-sensitive and -resistant cell lines, the authors demonstrated that resistant clones are able to render wild type clones more resistant to EGFR blockade. First, resistant cells \textit{in vitro} produce more paracrine factors than their sensitive counterparts. Second, in spheroids derived from both resistant- and sensitive-OXCO CRC cell lines, resistant cells support the growth of the sensitive counterpart even in the presence of suppressive concentrations of the anti-EGFR mAb cetuximab. Third, these observations occur in the presence of complex regulation of the EGFR ligands. On the one hand, cetuximab-resistant cells secrete higher concentrations of transforming growth factor-alpha (TGF-\textalpha) and
amphiregulin (AREG), although only AREG levels are further stimulated by cetuximab exposure in this model. On the other hand, TGF-α, but not AREG, reduces the inhibitory effect of cetuximab in a dose-dependent manner. The observation that ligands for receptor tyrosine kinases can sustain resistance to targeted therapies has previously been proved for EGFR mutated lung cancer cells (7). Concordantly, and based on their in vitro results, Hobor and colleagues (1) propose that microenvironmental concentrations of EGFR ligands –preferentially secreted by the subset of mutated cells- may well rise to finally counteract the inhibitory concentration of cetuximab in both mutated and wild type tumors. The originality of the approach and the novelty of the observations of Hobor and colleagues (1) must be acknowledged. Nonetheless, in order to grasp the potential impact of these exciting observations, recent clinical observations and a number of methodological issues must be taken into account.

As for clinical findings, the variability of the effect of all-RAS extended selection is high between trials. This can be explained by heterogeneity in sample sizes and mutation assays implemented in the distinct trials, each one with differing analytical sensitivity; ranging from 0.01 to 5-10% (2-4). Some are more sensitive and pick up low numbers of mutated clones. However, the optimal sensitivity cut-off point for modeling prediction of response is currently unknown with recently presented data suggesting that beyond a certain threshold the model does not improve and may even worsen predictive power (2). This could be explained by a minimum number of resistant clones beyond which their potential treatment-selected outgrowth is not relevant enough to influence the prediction modeling of the overall progression timing pattern, at least in the first-line setting of anti-EGFR mAbs combined with chemotherapy.
However, in this setting a theoretically better patient selection does not improve individual long-term outcomes for the treated populations since patients who initially respond will ultimately become resistant and progress at some point. Paradoxically, the outgrowth of an initially small number of resistant clones, which does not impact the global prediction model, may have a relevant biological impact on the subset of previously responsive individual patients. According to Hobor and colleagues (1) these rare mutated clones could partially exert their acquired resistance effect in a more subtle way through the autocrine and paracrine secretion of EGFR growth factors or ligands, as they suggest in their manuscript.

This intriguing and somewhat speculative scenario is apparently at odds with some previous observations. Briefly, elevated gene expression of EGFR ligands AREG and epieregulin (EREG) have been consistently proposed for prediction of anti-EGFR blockade as a surrogate for EGFR addiction in patients with metastatic CRC treated with anti-EGFR mAbs. In 2007, Khambata-Ford and colleagues reported that increased levels of EREG and AREG mRNA, but not of TGF-\(\alpha\), were associated with better response to EGFR blockade irrespective of KRAS mutation status (8). These observations were further substantiated by Baker and colleagues (9) and Tabernero and colleagues (10), the latter also suggesting that high TGF-\(\alpha\) expression was associated with a negative predictive effect. From a different perspective, Tian and colleagues (11) constructed a combined oncogenic pathway signature allowing the identification of patients with an active EGFR signaling pathway that predicted resistance to EGFR blockade irrespective of the mutation status. It is noteworthy that elevated levels of AREG and EREG clustered with the tumors harboring the wild type signature that were sensitive to anti-EGFR blockade. In this report, no data on TGF-\(\alpha\) expression was available. In short, data
on expression profiles obtained from tumor biopsies display elevated levels of
EREG and AREG mRNA in sensitive tumors, likely reflecting the status of a
significant proportion of the tumor cells analyzed. It is not straightforward to
anticipate, in the presence of an evident overexpression of EGFR ligands prior to
anti-EGFR blockade, the impact of a minority of mutant tumor cells further
overexpressing the same or other ligands. Also relevant to mention is that none of
the above-mentioned studies have analyzed protein levels in tumor specimens
using sensitive, quantitative techniques precluding a direct, meaningful
comparison between in vitro data and tumor analysis prior to and after treatment.

Regarding methodological contributions, the in vitro spheroid model that
mimics the complex crosstalk between resistant and sensitive clones is an
interesting approach. Nonetheless, incomplete cell labeling and the fact that it only
worked for one cell line limits its relevance. There is also significant heterogeneity
among the three cells lines indicating a wide range of differences in EGFR signaling
dependency. This heterogeneity is reinforced by the results of Khambata-Ford and
colleagues (8), reporting that the cetuximab-resistant KRAS mutated HCT116 CRC
cell line overexpressed EREG, but not AREG or TGF-α, after exposure to
cetuximab. Thus, it may well be that a truly consistent ligand expression pattern
will never emerge. Finally, the authors restricted their observation to the in vitro
setting.

In addition to RAS and BRAF mutations, other mechanisms of clinically
acquired resistance have been described. Acquired resistance to EGFR blockade
has been linked to the emergence of polyclonal KRAS, NRAS, BRAF and EGFR
mutations in CRC tumor specimens and circulating tumor DNA (ctDNA) from
patients (12), along with other alternative mechanisms such as cMET or wild type
KRAS amplification (5) that have been published in a recent series of breakthrough papers (Fig. 1).

Until *in vivo* observations are reported, we should rely on the clinical observations of adequately powered studies and consider these results very promising at the mechanistic level although of yet unknown clinical relevance. However, in accordance with the distinct genetic alterations previously described in the literature, resistant cells consistently displayed mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) activation (5), an observation that should be taken into account when designing new clinical trials to evade, delay or confront acquired resistance to anti-EGFR therapies.

Acknowledgments

The authors would like to thank Stephen Kelly for English editing.

References

Figure 1. Mechanisms of acquired resistance to anti-EGFR monoclonal antibodies (mAbs) in colorectal cancer cells.

wt: wild-type; mt: mutated; ampl: amplified; TGF-α: transforming growth factor alpha; AREG: amphiregulin; EGFR: epidermal growth factor receptor receptor; mAb: monoclonal antibody.
Figure 1:

Anti-EGFR mAb resistance

RAS wt clone NRAS mt clone cMET ampl clone EGFR mt clone
KRAS mt clone BRAF mt clone KRAS ampl clone TGFα AREG

© 2014 American Association for Cancer Research

CCR Translations
Paracrine Network: Another Step in the Complexity of Resistance to EGFR Blockade?

Ramon Salazar, Gabriel Capella and Josep Tabernero

Clin Cancer Res Published OnlineFirst August 19, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-1615

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.