Human anaplastic thyroid carcinoma cells are sensitive to NK cell-mediated lysis via ULBP2/5/6 and chemoattract NK cells.

Erik Wennerberg¹, Aline Pfefferle¹, Lars Ekblad², Yuya Yoshimoto¹, Veronika Kremer¹, Vitaliy O Kaminsky³, C Christofer Juhlin¹, Anders Höög¹, Inger Bodin¹, Vitalijs Svjatoha¹, Catharina Larsson¹, Jan Zedenius⁴, Johan Wennerberg⁵, Andreas Lundqvist¹

¹Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden, ² Department of Oncology, Lund University, Lund, Sweden ³Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden,⁴Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ⁵Department of ORL/H&N Surgery, Lund University, Lund, Sweden.

Running title: NK cell activity against anaplastic thyroid cancer

Keywords: Anaplastic thyroid cancer, Natural killer cells, Adoptive cell therapy, ULBP2, CXCL10

Financial support:

AL: The American Thyroid Association, The Swedish Research Council (#522-208-2377), the Swedish Cancer Society (#CAN 2012/474), FP7 Marie Curie re-integration grant (#246759), Karolinska Institutet, Jeanssons Stiftelse, Åke Wibergs Stiftelse, Magnus Bergvalls Stiftelse, Fredrik och Ingrid Thunings Stiftelse, Stiftelsen Clas Groschinskys Minnesfond, the Cancer Society in Stockholm (#121132), the Swedish Society of Medicine (#325751), and The Stockholm City Council.

Conflict of interest: None of the authors have any conflict of interest to declare
Address for correspondence: Andreas Lundqvist
Cancer Center Karolinska, R8:01
171 76 Stockholm, Sweden
Phone: +46 8 517 768 59
Fax: +46 8 30 91 95
Email: andreas.lundqvist@ki.se

Word count: 4388

Total number of figures: 6

Statement of translational relevance:

There are currently no curative treatments available for anaplastic thyroid carcinoma (ATC) which is considered to be one of the most aggressive cancer types in humans. There are few tumor types that are responsive to NK cell therapy, particularly in solid tumors. This is attributable to resistance of tumor cells to NK cell lysis, poor homing and intratumoral infiltration of NK cells as well as immune suppression of NK cells in the tumor site. We find that ATC cell lines are sensitive to lysis by NK cells correlating with their surface expression of ULBP2/5/6, indicating that ULBP2/5/6 could be used as a predictive marker for NK cell therapy. The clinical relevance is further strengthened by our finding that ATC tumors are able to attract CXCR3-positive NK cells. Based on our findings, NK cell therapy could prove to be a promising novel treatment strategy for patients with ATC.
Abstract

Purpose: Anaplastic thyroid carcinoma (ATC) is one of the most aggressive forms of cancer with no curative therapies available. To date, strategies to target ATC by immunotherapy have not been evaluated. We investigated whether ATC would be a suitable target for NK-cell-based immunotherapy.

Experimental design: We first established 7 new cell lines from ATC tumors, 3 from PTC tumors and analyzed them together with 8 additional ATC cell lines. Cells were analyzed for sensitivity to lysis by NK cells and their ability to chemoattract and regulate the activity of NK cells. In addition, fresh tumor samples and peripheral blood from 6 ATC patients were analyzed for NK cell infiltration and phenotype.

Results: We observed that ATC cell lines are sensitive to lysis by ex vivo expanded NK cells and that the lysis was abrogated upon blockade of NKG2D. Sensitivity of thyroid cancer cell lines to NK-cell-mediated lysis correlated with surface expression of UL16-binding protein 2 on tumor cells. Moreover, ATC cell lines produced high levels of CXCL10 and stimulated migration of expanded NK cells and ATC tumors were enriched for NK cells expressing the cognate chemokine receptor CXCR3. However, compared with NK cells in peripheral blood, ATC-tumor-derived NK cells displayed a suppressed phenotype with a down-regulated expression of NKG2D. In vitro, suppression of NK-cell-mediated lysis and NKG2D expression by ATC cells was restored upon neutralization of prostaglandin-E2.

Conclusions: ATC cell lines are sensitive to NK-cell-mediated lysis via ULBP2/5/6 and chemoattract CXCR3-positive NK-cells. Patients with ATC may benefit from NK-cell-based immunotherapy.
Introduction

With a rapid proliferation, resistance to apoptosis and highly invasive and metastatic properties, anaplastic thyroid carcinoma (ATC) is one of the most aggressive types of human cancer (1). ATC cells can arise either de novo or from a dedifferentiation of papillary (PTC) or follicular (FTC) thyroid carcinoma cells rendering them highly mitotic and metastatic. The 5-year survival rate of ATC is less than 7% and current therapies, comprising of radical thyroidectomy, radiosensitizing chemotherapy and external beam radiotherapy, are rarely curative (2). Few efforts have been made at targeting thyroid cancer by immunotherapy. Dendritic cell (DC) vaccination trials against medullary thyroid cancer (MTC) have been performed using full-length calcitonin-primed DCs which have shown anti-tumor activity (3). In contrast to PTC and FTC, where several tumor-associated antigens (TAAs) have been identified, there are no immunogenic proteins described for ATC (4). Natural killer (NK) cells are innate lymphocytes that can kill tumor cells without prior sensitization to an antigen. They can be divided into two main subsets based on their surface expression of CD56. The CD56dim NK cells have potent cytotoxic capacity while the CD56bright NK cells have an immunoregulatory role through secretion of cytokines. The use of NK cells in adoptive cell therapy has been successful in a limited number of patients with acute myeloid leukemia (AML) and other hematological malignancies (5). However, few clinical responses have been observed in patients with solid tumors (6). In an ongoing clinical study we observed that 7 out of 14 patients with advanced solid tumors had stable disease after infusions with expanded NK cells. Two of the patients developed acute thyroiditis (7). The activity of NK cells is regulated through a balance of activating and inhibitory signals emanating from a repertoire of receptors expressed on the cell surface. One of the most studied receptors is the natural-killer group 2, member D (NKG2D) receptor, which is constitutively expressed on NK cells. Expression of NKG2D is not necessary for NK cell development, but is critical for immunosurveillance of cancer (8). Upon binding of the NKG2D-receptor with its ligands, major histocompatibility complex class I chain-related chain A/B (MICA/B) or the UL16 binding proteins (ULBP 1-6), NK cells release perforin and granzyme to induce apoptosis of the target cells (9). It has
previously been shown that tumors over expressing ULBP2 through activation of wild type p53 are more sensitive to lysis by NK cells (10).

Intratumoral infiltration of NK cells has been reported to correlate with good prognosis (11, 12). Tumor cells can be stimulated to secrete the chemokines CXCL9, CXCL10 and CXCL11, which attract NK cells expressing the chemokine receptor CXCR3 (13). In mice, the expression of CXCR3 on NK cells is essential for homing towards CXCL10-producing solid tumors and in humans, CXCL10-secretion from tumors is found to be a strong prognostic marker for infiltration of cytotoxic T-cells which in turn correlates with a favorable prognosis (14, 15). Although NK cells do infiltrate tumor cells, it is well known that tumor cells are immunosuppressive and limit the activity of NK cells. Among the more studied NK cell immunosuppressive factors are tumor growth factor-beta (TGFβ), arginase-1, indoleamine 2,3-dioxygenase (IDO), inducible nitric oxide (iNOS), and prostaglandin-E2 (PGE2) which have been shown to downregulate activating receptors, including NKG2D, as well as suppress NK cell cytotoxicity (16). Thus, tumors that exert little immunosuppression, secrete high amounts of CXCL10 and express high levels of NKG2D-ligands are suitable for cell therapy using ex vivo expanded NK cells which we previously have described to be more cytotoxic than resting NK cells (17). In the present study, we sought to investigate if ATC is a suitable target for NK cell therapy. We found that low-passage ATC cell lines express high levels of the NKG2D-ligands ULBP2/5/6 and produce high amounts of CXCL10 in response to low-dose IFNγ. As a consequence, ATC cell lines were highly susceptible to NK cell lysis and effectively chemoattracted NK cells respectively. We further found that in ATC patients, intratumoral NK cells are positive for CXCR3, but display a suppressed phenotype compared to peripheral blood NK cells. The direct suppressive effect of ATC cells was pronounced in cyclooxygenase-2 (COX-2) positive cell lines and blockade of PGE2 reduced the suppressive effect of ATC on NK cells. Based on our findings we propose that ATC represent a good candidate target for NK cell-based adoptive therapy.
Methods

Patient samples. ATC cells were obtained using conventional fine-needle aspiration technique under approved ethical permits according to the Declaration of Helsinki #522/2008, #KS 91:86/9104). The thyroid nodules were punctured using a 0.6 or 0.7 x 30 mm needle. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood using density centrifugation. Cells (FNA and PBMC) were stained with fluorescence-conjugated monoclonal antibodies against human CD3, CD56, NKG2D, CD69, CXCR3, CD11c, MICA/MICB, IgG1-PE, IgG1-APC, 7AAD (Biolegend), ULBP1, ULBP2/5/6, ULBP3 (R&D systems), and LIVE/DEAD marker (Invitrogen) and analyzed by flow cytometry. All flow cytometry data was acquired on an LSRII flow cytometer (BD Biosciences) and analyzed using the FlowJo software (Tree Star).

Cell lines. All thyroid cancer cell lines are listed in supplemental table 1 except the LUTC-5 (PTC) and LUTC-17 (ATC) cell lines. The LUTC cell lines were established from fine-needle aspirates (FNA) taken from thyroid tumours before initiating cancer treatment. Single tandem repeat analysis was performed on early passages (4-10 passages) of the cell lines LUTC-1, LUTC-2, LUTC-8, LUTC-10, LUTC-12 and LUTC-14, as well as the K562 cell line (Supplemental Table 2). The U-Hth cell lines and C643 and SW1736 were kindly provided by Dr. Nils-Erik Heldin (Uppsala University, Sweden). The K562, MOLT-4 and EST112 cell lines were purchased from ATCC or ESTDAB (http://www.ebi.ac.uk/ipd/estdab/). The remaining cell lines were not verified within 6 months of manuscript submission. All cell lines were maintained in RPMI1640 medium supplemented with 10% FBS. Cell lines were stained with fluorescence-conjugated monoclonal antibodies against HLA-ABC, MICA/B (Biolegend), ULBP1, ULBP2/5/6 and ULBP3 (R&D systems). Intracellular flow cytometry staining for COX-2 (Biolegend) was performed using a detergent-based permeabilization protocol (BD Biosciences). Tumor cells were seeded at 2 x 10^5 cells/well in a 24-well plate and incubated at 37°C over night. The following day, recombinant human IFN-γ (Peprotech) was added to the cells and incubated over night. Supernatants were collected and analyzed for CXCL10 by ELISA according to the manufacturer’s instructions (R&D systems).
Isolation and expansion of NK cells. NK cells were isolated from PBMC by negative selection (NK cell isolation kit, Miltenyi Biotech). NK cells that were assayed directly after purification without any cytokine stimulation were termed resting NK cells. Purified NK cells were co-cultured with irradiated (100 Gy) Epstein-Barr virus-transformed lymphoblastic cells (EBV-LCLs) at a 10:1 (feeder:NK) cell ratio in X-vivo 20 medium (Lonza) supplemented with 10 % AB serum (Karolinska Hospital) and 1000 U/ml IL-2 (Novartis Pharma) at 37°C. Medium was replenished with 500 U/ml IL-2 on days 5, 8 and 11. NK cells assayed on days 11-14 of expansion were termed expanded NK cells. The phenotype of NK cells was analyzed by flow cytometry by staining with fluorescence-conjugated monoclonal antibodies directed against human CD3, CD56, NKG2D, NKp30, CD16, CD69, DNAM-1, TRAIL, CXCR3, FasL or CD14 (Biolegend). Where indicated, NK cells were treated with ATC cell supernatant for 24 h before assayed for cytotoxicity and phenotype.

Cytotoxicity assay. Target cells were labeled with 51Cr (30µCi) (PerkinElmer) for 45 min at 37 ºC. Expanded NK cells were seeded in a 96-well U-bottom plate (Corning Lifesciences) together with target cells (10,000 cells/well) and incubated for 4-24 hours at 37°C. Supernatants were thereafter transferred to 96 well LUMA-plates (Perkin Elmer) and analyzed for chromium release in a TRILUX 1450 Microbeta scintillation counter (Perkin Elmer). Where indicated, NK cells or ATC cells were pre-treated with blocking antibodies against TRAIL (RIK-2, 10 µg/ml), Fas-ligand (NOK-1, 2.5 µg/ml), NKG2D (1D11, 10 µg/ml), DNAM-1 (TX25, 5 µg/ml) (Biolegend), ULPB2/5/6 (polyclonal goat IgG, AF1298, R&D systems), or concanamycin A (CMA, 100nM, Sigma-Aldrich).

Migration assay. Tumor cells were cultured in a 24-well plate to 80% confluency and then treated with IFN-γ (5 ng/ml) for 24 hours. Thereafter, tumor supernatant (600 µl) was transferred to a 24-well plate. Expanded NK cells (2.5×10^5) were added in 100 µl medium to transwell inserts (5 µm pore size, Cell Biolabs) and incubated for 2 hours at 37 ºC. Inserts were thereafter blinded, washed in phosphate buffered saline (PBS), fixed in 4 % paraformaldehyde (Sigma-Aldrich) for 20 minutes and stained with haematoxylin, (Histolab Products AB). Images of transwell membranes were acquired with an Olympus CKX41-microscope using the CellsenseEntry software (Olympus). The number of stained cells per membrane was enumerated using the Image J software (National Institutes of Health,
Bethesda, MD, USA). Where indicated, human CXCL10 capture antibody (840420, R&D systems) was present in the lower wells during the migration assay.

Immunohistochemistry. Paraffin-embedded tissues were sectioned and stained with polyclonal goat anti-human ULBP2/5/6 (polyclonal goat IgG, AF1298, R&D systems) or polyclonal rabbit anti-human CXCL10, PAB19527, Abnova). Slides were deparaffinized, rehydrated and subsequently boiled in citrate buffer (pH 6). Slides were blocked with 0.5% hydrogen peroxide (30 min) followed by 5% horse serum (30 min). Primary antibodies diluted in 1% BSA were added and incubated over night at 4°C. Horse anti-goat secondary antibody diluted in 1% BSA was added to the slides and incubated at room temperature (RT) for 30 min. ABC peroxidase solution (Vector laboratories) was added to the slides and incubated for 30 min at RT followed by staining with DAB (3,3 diamino-benzidine, Vector laboratories) according to the manufacturer’s instructions. Slides were stained with haematoxylin for 1 min and dehydrated using EtOH and Xylen and were subsequently mounted using permanent mounting media (Pertex, Histolab products AB).

Results

ATC cell lines are sensitive to lysis by expanded NK cells

In vitro, the majority of ATC cell lines were sensitive to lysis by expanded NK cells and several of the cell lines were equally or more sensitive to NK cell lysis than the NK cell sensitive cell line K562. In contrast, the PTC cell lines were less sensitive to NK cell lysis than the ATC cell lines (Figure 1A-B, Supplemental table 1) ATC cells from the NK cell-sensitive ATC cell lines LUTC-10, U-Hth 83 and U-Hth 104 as well as non-malignant thyroid cells isolated from atoxic goiter tissue were positive for MHC class I (Figure 1C). Furthermore, the expression of MHC class I was slightly higher in PTC cell lines compared with the ATC cell lines. However, there was no significant correlation observed between the level of NK cell-mediated lysis and MHC class I expression in a linear regression analysis of 7 ATC cell lines and 2 PTC cell lines ($R^2 = 0.35$, $p = 0.1$, data not shown). Importantly, expanded NK cells did not display any significant cytotoxicity against non-malignant thyroid cells, immortalized BJ fibroblast cells or autologous B and T cells (Supplemental figure 1A).
Blockade of NKG2D abrogates NK cell-mediated killing of ATC cell lines

In vitro, resting NK cells were ineffective at lysing ATC cells compared with expanded NK cells while the levels of lysis of the NK cell sensitive cell line MOLT-4 by resting and expanded NK cells were comparable (Figure 2A). The experiment was repeated with the LUTC-1, LUTC-10 and LUTC-12 cell lines with similar results (1.6 ± 3.6% vs 50.4 ± 19.0% specific lysis, p = 0.0023, n = 4, data not shown). The NKG2D receptor is ubiquitously expressed on NK cells although we show that NKG2D expression is increased after ex vivo expansion (Fig 2B). The mean fluorescence intensity (MFI) of NKG2D is increased from 85.0 ± 8.2 on resting NK cells to 1491 ± 785 after 11 days of ex vivo expansion (p = 0.037, n = 4, data not shown). In order to investigate the mechanism of NK cell-mediated killing of ATC cells, the activating ligands TRAIL, FasL, NKG2D and DNAM-1 as well as perforin-granzyme were blocked on expanded NK cells. Blockade of the NKG2D receptor or inhibition of perforin/granzyme-based cytotoxicity significantly reduced the NK cell-mediated killing of the ATC cell lines U-Hth 104, U-Hth 83, LUTC-2 and LUTC-10 from 32.3 ± 16.9 % by unblocked NK cells to 13 ± 12.4 (p < 0.05) and 4.3 ± 1.1 % (p < 0.05) respectively. NK cells blocked with antibodies targeting TRAIL, FasL or DNAM-1 did not significantly reduce NK cell-mediated lysis of ATC cells (Figure 2C). No significant changes in lysis of ATC cells in presence of isotypes and blocking antibodies targeting CD16 were observed, thus excluding the potential contribution of antibody-dependent cell-mediated cytotoxicity (ADCC) (data not shown).

NK cell-mediated lysis of ATC and PTC cell lines is dependent on the expression level of ULBP2/5/6 on tumor cells

To identify which NKG2D-ligands were responsible for the increased killing by NK cells, the ATC cell lines were analyzed for the expression of NKG2D ligands. We found that ULBP2/5/6 was expressed on all of the ATC cell lines although there was little or no expression of ULBP1, ULBP3, MICA or MICB on the ATC cell lines. We did not observe expression of any NKG2D ligands on non-malignant thyroid tissue including atoxic goiter and follicular adenoma. Although there was great
variability in expression of NKG2D-ligands in FNA from ATC patients, we also detected expression of NKG2D ligands including ULBP2/5/6 on tumor cells in all patients (Figure 3A, Supplemental figure 1B). In formalin-fixed paraffin-embedded tumor material from untreated ATC patients we observe ULBP2/5/6 expression in ATC cells while there was no expression in normal thyroid tissue (Figure 3B). Expression of ULBP2/5/6 was significantly higher on ATC cell lines (n=14) compared with PTC cell lines (n=3) (p = 0.047, data not shown). In a regression analysis, the mean fluorescence intensity expression of ULBP2/5/6 on ATC (n=13) and PTC (n=2) cell lines correlated with their susceptibility to NK cell lysis (R²=0.595, p=0.002, Figure 3C). No correlation between lysis and surface expression of the NKG2D ligands MICA, MICB, ULBP-1 or ULBP-3 was observed (data not shown). In addition, ATC cell lines expressed the DNAM-1 ligands poliovirus receptor (PVR) (n=2) and Nectin-2 (n=2), as well as the death receptors Fas (n=2) and TRAIL-receptors (n=2). However, expression of these ligands and death receptors did not correlate with the sensitivity to NK cell lysis in vitro (data not shown). Blocking of ULBP2/5/6 on ATC cells from four different ATC cell lines in co-culture with expanded NK cells resulted in a significantly reduced NK cell-mediated lysis of the ATC cells (average reduction of lysis 38.2 ± 9.5%, p = 0.033, Figure 3D). Furthermore, ATC cell lines silenced for ULBP2 was significantly less susceptible to NK cell-mediated lysis (data not shown). Thus, the ULBP2 receptor may represent the major NKG2D-ligand responsible for the sensitivity of ATC cell lines. We were able to isolate and expand NK cells from one ATC patient from whose tumor we were also able to establish a cell line. In an autologous cytotoxicity assay against the LUTC-17 cell line, we found that the NK cells killed the LUTC-17 cell lines and upon receptor blockade with ULBP2/5/6-antibody, the lysis was reduced by 47.8% while blocking of NKG2D on NK cells resulted in 80.4% reduced lysis (Supplemental figure 1C). Importantly, blockade of MHC class I on tumor cells did not increase the lysis significantly. The NK cell-mediated lysis of autologous ATC cells in absence or presence of MHC class I blocking antibody was 30.7% or 37.0% respectively (data not shown).
ATC intratumoral NK cells express CXCR3 and ATC cell lines secrete CXCL10 resulting in chemoattraction of expanded NK cells In order to assess the NK cell chemoattracting properties of ATC cells we analyzed the secretion of CXCL10 by ATC cells. The CXCL10 secretion was significantly higher in the ATC cell lines LUTC-2, LUTC-10 and U-Hth 104 (1833 ± 80 pg/ml) than in the PTC cell lines LUTC-4, LUTC-5 and LUTC-13 (682 ± 160 pg/ml) after stimulation with 3 ng/ml IFNγ (p = 0.0004, Figure 4A). In comparison, the melanoma cell line EST112 produced similar levels of CXCL10 as the PTC cell lines. Although no significant differences in transwell assays were observed, expanded NK cells showed a higher migratory capacity toward supernatant from LUTC-10 tumor cells treated with 5 ng/ml IFNγ compared with supernatant from untreated LUTC-10 tumor cells (4.5-fold increased migration) or medium containing IFNγ (2.7-fold increased migration). The NK cell migration was attenuated in presence of anti-CXCL10 antibodies (Figure 4B). We next analyzed the expression of CXCR3 on NK cells in FNA specimens and PBMC from ATC patients and found that the expression of CXCR3 was higher on intratumoral NK cells than on blood-derived NK cells (Figure 4C). An analysis of CXCR3-expression on NK cells from three ATC patients revealed that, on average 56.1 ± 18.2% of NK cells from FNA were positive for CXCR3 compared with 4.6 ± 3.0% on NK cells from PBMC (p = 0.03, data not shown). To confirm that expression was not limited to cell lines in vitro, formalin-fixed paraffin-embedded ATC tissue as well as normal thyroid tissue (parathyroid adenoma) was stained for CXCL10. Tumor sections from an untreated ATC patient and normal thyroid tissue stained positive for CXCL10 (Figure 4D).

ATC-infiltrating NK cells display a suppressed phenotype compared with peripheral blood NK cells

To further analyze the phenotype of ATC tumor-derived NK cells, FNA and peripheral blood from 6 ATC patients was stained for NK cell markers. FNA samples were also stained for expression of NKG2D-ligands on tumor cells. In 6 ATC patients the percentage of NK cells in the lymphocyte population was significantly lower in FNA than in PBMCs (p = 0.006, Figure 5A). The frequencies of
CD3+CD56- in the lymphocyte population was 49.8 ± 16.3% and 57.5 ± 21.2% in PBMC and FNA respectively (p = 0.44) and the frequency of CD3+CD56+ cells in the lymphocyte population was 9.3 ± 5.3% and 4.2 ± 2.9% in PBMC and FNA respectively (p = 0.03) (data not shown). Furthermore, a decreased proportion of CD56dim NK cells in the NK cell population was found in the FNA compared to in PBMCs (p = 0.015, Figure 5B). We analyzed the CXCR3 expression on CD56dim and CD56bright NK cells in two ATC patients. The percentage of CXCR3-positive cells in the CD56bright NK cell population was on average 91.6% compared with 50.7% in the CD56dim NK cell population. The third patient was not analyzed due to insufficient number of cells in the CD56bright population. Moreover, intratumoral NK cells expressed higher levels of the activation marker CD69 compared with NK cells in PBMCs (p = 0.025, Figure 5C). Importantly, a reduced expression of NKG2D on NK cells was observed in FNA compared with PBMC in 5 out of 6 patients although the difference was not statistically significant. In one patient, the NKG2D expression was elevated on intratumoral NK cells (p = 0.35, Figure 5D).

ATC cell lines expressing COX-2 suppress NK cells via PGE2

Given the suppressed phenotype of ATC-infiltrating NK cells, we sought to elucidate the mechanism of NK cell suppression by ATC cells. Four out of 8 ATC cell lines stained positive for expression of COX-2, the enzyme that catalyzes the synthesis of PGE2. Co-culture with supernatants from COX-2 positive ATC cell lines resulted in significantly lower expression of NKG2D on NK cells compared with when co-cultured with COX-2 negative ATC cell lines (p = 0.02, Figure 6A). We proceeded to co-culture expanded NK cells with supernatant from the COX-2 positive cell line LUTC-17 which reduced the expression of NKG2D on NK cells. However, NKG2D expression was restored to baseline in presence of neutralizing antibodies against PGE2 while neutralization of TGFβ did not restore the NKG2D expression (Figure 6B). Neutralization of IL-10 or IL-6 in NK cells cultured with LUTC-17 supernatant did not affect the NKG2D levels (data not shown). Moreover, the cytotoxic capacity of NK cells was reduced after co-culture with supernatant from LUTC-17, but was restored
after neutralization of PGE2 (Figure 6C). Of note, no difference in susceptibility to NK cell killing was observed between COX-2 positive and COX-2 negative ATC cell lines.
Discussion

We show that ATC cells express high levels of ULBP2/5/6 and are sensitive to NKG2D-mediated lysis by NK cells. Furthermore, ATC tumors chemoattract CXCR3-positive NK cells \textit{in vitro} and \textit{in vivo}. Intratumoral NK cells display a suppressed phenotype and \textit{in vitro}, COX-2 positive ATC cell lines inhibit NKG2D expression and cytotoxicity of NK cells via production of PGE2.

Adoptive transfer of \textit{ex vivo} expanded NK cells are being increasingly used to treat different forms of malignancies and technical improvements for large-scale GMP-grade production of NK-cells for adoptive transfer has escalated over the past decades (18). However, the clinical success of NK cell adoptive cell transfer against solid tumors has been limited due to several factors: resistance of tumor cells to NK cell lysis, poor migration of infused NK cells towards tumors and suppression of NK cell activity in the tumor microenvironment.

Little is known about immune responses in thyroid cancer and the role of NK cells has not been studied in the context of ATC. However, toxic reactions in the thyroid gland has been reported in several clinical trials involving either administration of activated immune cells or immunostimulatory cytokines such as IL-2 or IFNα, indicating that the thyroid gland may be particularly sensitive to lysis by activated immune cells (19, 20). Studies investigating the clinical effect of the anti-CTLA4 monoclonal antibody Ipilimumab have reported cases of hypothyroidism and thyroiditis (21, 22). Furthermore, patients suffering from Graves’ disease and Hashimoto’s thyroiditis have increased activity of peripheral NK cells (23).

We demonstrate that NKG2D/ULBP2/5/6 signaling is the major mechanism of sensitivity of ATC cells to lysis by expanded NK cells. Upon binding of the NKG2D-receptor, NK cells release perforin and granzyme to induce apoptosis of the target cells (9). In the present study we did not analyze for correlation of apoptotic signaling pathways and the expression of ULBP2/5/6 in targeted tumor cells. In agreement with previous studies, showing that insufficient release of perforin/granzyme by resting NK cells contribute to the low cytotoxic capacity of resting NK cells, we demonstrate that resting NK cell do not but expanded NK cells do kill ATC cell \textit{in vitro} and that neutralization of perforin by
expanded NK cells results in reduced lysis of ATC cells by expanded NK cells (24). These findings provide an explanation as to why expanded NK cells display potent cytotoxicity against ATC cells expressing high levels of ULBP2/5/6 while NKG2D-low resting NK cells are ineffective at killing ATC cells. We previously showed that expansion of NK cells results in increased expression of NKG2D, TRAIL, FasL, CD56, CD48, and CD25 and these NK cells displayed significantly higher cytotoxicity against tumor cell in vitro. Furthermore, the expression of NKG2D on NK cells varied significantly between donors and maintenance of NKG2D expression on expanded NK cells is highly dependent on sustained IL-2 stimulation (17). This highlights the importance of monitoring the expression levels of NKG2D in NK cells for clinical use. When blocking ULBP2/5/6 on tumor cells or NKG2D on NK cells we found an increased resistance of ATC cells to lysis by both allogeneic and autologous NK cells. We also confirmed the expression of ULBP2/5/6 on ATC cells in FNA as well as in tumor sections from untreated ATC patients. We could not detect ULBP2/5/6 expression in non-malignant thyroid tissue and observed only minimal killing of thyroid goiter cells in vitro. It has previously been shown that ULBP2 as well as other NKG2D ligands are overexpressed in several human cancers (25, 26) and that ectopic expression of NKG2D-ligands in mice results in NK cells overcoming MHC class I-induced inhibition, thus promoting tumor rejection (27). ULBP2 has characteristics that distinguish it from ULBP1 and ULBP3. The ULBP1-3 molecules are all anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) domain. However, it has been shown that ULBP2, but not ULBP1 and -3 can relocate to the cell surface in the absence of a GPI moiety as a transmembrane protein which allows for more stable interaction with NKG2D-receptors on NK cells (28). Moreover, soluble levels of ULBP2 have been correlated with reduced survival in cancer patients which has not been shown for other NKG2D-ligands (29).

In tumor material from ATC patients we observed a significant enrichment of CXCR3-positive NK cells compared with circulating NK cells in the same patients where only a fraction of NK cells expressed the CXCR3 receptor. This finding, together with our observation that ATC cell lines were prone to produce high levels of CXCL10 which could chemoattract NK cells in vitro, indicates that in the ATC patients, CXCR3-expressing NK cells may have migrated to the tumor via CXCL10-induced
chemoattraction. Stimulation of thyroid follicle cells by pattern-associated molecular patterns (PAMPs) induces cytokine production including the chemokines CXCL9, CXCL10 and CXCL11 (30). Antonelli and colleagues have reported that patients with autoimmune thyroiditis and Graves disease have elevated serum levels of CXCR3-ligands and that primary thyrocytes can be stimulated to secrete CXCL11 after treatment with IFNα-β and –γ (31, 32). Moreover, it has been shown that PTC cells are more prone to secrete CXCL10 than normal thyroid follicular cells upon stimulation with IFNγ (33). We show that ATC cells secrete significantly higher levels of CXCL10 compared with PTC cells after stimulation with minute doses of IFNγ. In the microenvironment of an inflamed gland or a tumor, the local infiltration of immune cells such as NK cells, NKT cells γδ T cells, TH1 and TH2 cells contributes to a sustained secretion of IFNγ as well as other cytokines that can synergize with IFNγ to trigger a release of IFN-γ-inducible cytokines, such as CXCL10 (34-37). ATC cells cultured in presence of expanded NK cells resulted in secretion of high levels of CXCL10 by the ATC cell lines (data not shown). Furthermore, while resting NK cells express low levels of CXCR3, the CXCR3 expression on NK cells is highly upregulated after ex vivo expansion (data not shown). Thus, adoptively infused CXCR3-expressing NK cells would be recruited to the tumor via CXCL10-induced chemoattraction and further reinforce the secretion of CXCL10 from the tumor by production of IFNγ.

In vitro, expanded NK cells actively migrated toward supernatant from IFNγ-treated ATC cells. Neutralization of CXCL10 in the supernatant resulted in a partial reduction of NK cell migration indicating that other IFNγ-inducible CXCR3 ligands may be responsible for the chemoattraction of NK cells.

In our analysis of patient material from ATC patients we found that the NK cell population constituted a lower percentage of the total lymphocyte population in the FNA compared with PBMCs. Also, the percentage of CD56dim NK cells was lower in the tumor compared to in peripheral blood. Gogali and colleagues have recently reported that in PTC patients, CD56dim NK cells were lower in PTC tissue than in peripheral blood although the ratio of CD56dim NK cells in the PTC-infiltrating NK cell population correlated positively with disease stage (38). There are several possible explanations for the skewed ratio between CD56bright and CD56dim NK cells in tumors. Studies have shown that
intratumoral CD56dim NK cells are preferentially eliminated either by susceptibility to apoptosis or to suppression by reactive oxygen species present in the tumor microenvironment (39, 40). We observed that in PBMC from ATC patients, CXCR3 is predominantly expressed on CD56bright NK cells compared to CD56dim NK cells. This distribution of CXCR3 on NK cells has previously been described in healthy individuals and in patients with hepatitis C (41, 42). We also found that the percentage of CXCR3-positive cells in FNA was higher in the CD56bright NK cell population than in the CD56dim NK cell population, indicating that the CD56bright NK cells may have been preferentially recruited to the tumor possibly explaining the skewed ratio of CD56dim NK cells. However, we see that the CXCR3 expression on CD56dim NK cells is higher in FNA than in PBMC indicating that CD56dim NK cells are also enriched in in ATC tumors. In 5 out of 6 ATC patients, we found a lower expression of NKG2D on intratumoral NK cells compared with NK cells derived from peripheral blood.

Interestingly, we observed an increased expression of NKG2D on the intratumoral NK cells in one of the ATC patients. We also observed that NK cells in ATC FNA expressed elevated levels of CD69 compared to NK cells in peripheral blood. This finding suggest that intratumoral NK cells are in an activated state although previous studies have shown that elevated CD69 expression on NK cells is detrimental to anti-tumor activity of NK cells due to induced TGFβ synthesis (43, 44). There are several mechanisms that may suppress NK cells in the tumor microenvironment. Activated NK cells and NK cells from cancer patients can express the inhibitory receptor programmed death 1 (PD-1) which delivers an inhibitory signal to NK cells upon ligation with tumor cells expressing PD-L1 or PD-L2 (45). We found that ATC cell lines express PD-L1 but did not suppress NK cell cytotoxicity (data not shown). It is known that COX-2, which is the key regulator of PGE2 synthesis (46), is expressed in several tumor types (47, 48) and can suppress the cytotoxicity and NKG2D expression on NK cells (49). In vitro, we found that ATC cell lines with high expression of COX-2 down-regulated the expression of NKG2D on expanded NK cells more than ATC cell lines with low expression of COX-2 expression. Furthermore, expression of NKG2D and cytotoxic activity of NK cells, which was downregulated upon co-culture with supernatant from a COX-2 positive ATC cell line, was restored to normal levels upon neutralization of PGE2 in the co-culture. Although NKG2D expression is downmodulated on expanded NK cells after exposure to COX-2 positive ATC cells, the NKG2D-
levels remain significantly (15-fold) higher than NKG2D-levels on resting NK cells (data not shown) indicating that they may still be more effective against COX-2 positive ATC tumors than endogenous NK cells. Shedding of NKG2D-ligands from tumors cells due to overexpression of metalloproteases has also been shown to inhibit NK cells by downregulating surface expression of NKG2D (50). We detected varying levels of soluble ULBP2 in ATC cultures *in vitro*. However, we did not observe any restoration of NKG2D levels on NK cells after co-culturing NK cells with the ULBP2-secreting ATC cell line LUTC-17 in the presence of ULBP2/5/6-blocking antibodies (data not shown). In an attempt to treat ATC xenografts we only observed a minor delay in the tumor progression in mice treated with NK cells compared with untreated mice (data not shown). Although we did not investigate the activity of tumor-infiltrating NK cells, we speculate that the immunosuppressive nature and aggressiveness of ATC tumors may have contributed to the ineffectiveness of NK cell infusion.

In summary, few tumor types that are responsive to NK cell therapy, either due to resistance to lysis or due to ineffective recruitment and infiltration of NK cells. Our findings collectively show that ATC may be a promising target for NK cell-based adoptive cell therapy. We describe ATC to be sensitive to lysis by expanded NKG2D-positive NK cells and able to chemoattract adoptively transferred expanded CXCR3 positive NK cells. Our findings also indicate that PGE2 may be the predominant factor for suppression of NK cells induced by COX-2 positive ATC cells. Therefore, screening for ULBP2/5/6, CXCL10, and COX-2 in cytological examination of FNA from ATC patients could be used as a predictive marker for treatment with adoptive NK cell therapy and efforts to reduce the effects of PGE2 adjunct to NK cell infusion are warranted.
References

Figure Legends
Figure 1. (A) Specific lysis of the ATC cell line LUTC-10 and the PTC cell line LUTC-4 by allogeneic NK cells in a 4h cytotoxicity assay. K562 was used as a positive control for NK cell killing. (B) Average lysis of 12 ATC cell lines, 2 PTC cell lines and K562 by expanded allogeneic NK cells isolated from 5 healthy donors. Effector-target ratio = 3:1, 18h co-culture. (C) Surface expression of MHC class I on non-malignant thyroid cells isolated from an atoxic goiter and on the ATC cell lines LUTC-10, U-Hth 83 and U-Hth 104. Solid grey histograms represent staining with isotype control antibody and open histograms represent staining with pan-MHC class I antibody.

Figure 2. (A) Specific lysis of the LUTC-8 and MOLT-4 cell lines by resting (Res) and expanded (Exp) NK cells in an 18h cytotoxicity assay. One out of four representative experiments is shown. (B) Surface expression of NKG2D on resting NK cells and expanded NK cells on day 11 of expansion. One out of four representative experiments is shown (C) NK cell specific lysis of LUTC-2, LUTC-10, U-Hth 83 and U-Hth 104 cell lines. NK cells were treated with concanamycin A (CMA, 100 nM) to block perforin/granzyme based cytotoxicity or blocking antibodies against TRAIL (RIK-2, 10 µg/ml), FasL (NOK-1, 2,5 µg/ml), NKG2D (1D11, 10 µg/ml) or DNAM-1 (TX25, 5 µg/ml) 30 minutes prior to and during tumor cell co-culture. Effector-to-target ratio = 3:1. NK cells were co-cultured with ATC cell lines for 5h except for the U-Hth 104 cell line where the co-culture period was 18h. Paired two-tailed t-test was used to calculate statistical significance between the blocking conditions. NS = not significant compared to unblocked.

Figure 3. (A) Surface expression of ULBP2/5/6 on non-malignant thyroid cells (isolated from an atoxic goiter and a follicular thyroid adenoma), cells from the ATC cell lines LUTC-10 and U-Hth 83 and cells in FNA from two untreated ATC patients. Solid grey histograms represent staining with isotype control antibody and open histograms represent staining with ULBP2/5/6 antibody.(B) Immunohistochemical analysis of ULBP2/5/6 protein expression (brown) in an angioinvasive tumor thrombus analyzed on paraffin-embedded tumor material from an untreated ATC-patient and from normal thyroid tissue (20x magnification). (C) Linear regression (Spearman.rank analysis) of ULBP2/5/6 MFI and NK cell specific lysis of 13 ATC and 2 PTC cell lines. (D) NK cell specific lysis of the ATC cell lines LUTC-2, LUTC-10, U-Hth 83 and U-Hth 104 in an 18 h cytotoxicity assay.
Tumor cells were pretreated with ULBP2/5/6-specific blocking antibody (1 µg/ml) 30 minutes prior and during the cytotoxicity assay. Effector-to-target ratio was 3:1 except for LUTC-10 where it was 0.3:1. Paired two-tailed t-test was used to calculate statistical significance.

Figure 4. (A) CXCL10 ELISA of tumor supernatants from 3 ATC cell lines (LUTC-2, LUTC-10, U-Hth 104), 3 PTC cell lines (LUTC-4, LUTC-5, LUTC-13) and 1 melanoma cell line (EST112) after 24 h stimulation with increasing doses of IFNγ. (B) Two hour transwell chemotaxis assay of expanded NK cells migrating towards medium containing 5ng/ml IFNγ, supernatant from untreated LUTC-10 cells or supernatant from LUTC-10 cells treated with 5 ng/ml IFNγ for 24 h. The NK cell migration towards IFNγ-treated LUTC-10 supernatant was also performed in the presence of blocking antibodies targeting CXCL10. The graph indicates enumeration of NK cells in five randomly chosen fields of each transwell membrane. The experiment is representative of three independent experiments. (C) CXCR3 expression (open histogram) on NK cells in PBMCs (CXCR3 MFI: 33) or FNA (CXCR3 MFI: 460) from an ATC patient. Light grey histograms represent staining with isotype control antibody. Percentage of CXCR3+ cells is indicated in the graph. (D) Immunohistochemical analysis of CXCL10 protein expression (brown) in an angioinvasive tumor thrombus analyzed on paraffin-embedded tumor material from an untreated ATC-patient and from normal thyroid tissue (20x magnification).

Figure 5. (A) Percentage of viable (7AAD-) NK cells (CD3-CD56+ cells) in the lymphocyte population in peripheral blood mononuclear cells (PBMC) and in fine-needle aspirates (FNA) from ATC patients. (B) Percentage of CD56dim NK cells of the NK cell population in PBMC and FNA from ATC patients. (C) CD69 and (D) NKG2D MFI on NK cells in PBMC and FNA from ATC patients. Paired two-tailed t-tests were used to calculate statistical significance between FNA and PBMC samples.
Figure 6. (A) Mean fluorescence intensity (MFI) of NKG2D on expanded NK cells cultured for 24 h with culture medium or with supernatant (SN) from ATC cells that are either negative (n = 4) or positive (n = 4) for COX-2 expression. (B) NKG2D MFI and (C) specific lysis of K562 cells by NK cells cultured with either medium or with LUTC-17 SN for 24h in the presence of neutralizing antibodies targeting TGFβ or PGE2. In the cytotoxicity assays the effector-to-target ratio was 3:1 and the NK cells were co-cultured with target cells for 5h. The experiment was performed three times and statistical significance was calculated using paired two-tailed t-test. COX-2 neg = cyclooxygenase-2 negative. COX-2 pos = cyclooxygenase-2 positive.
Figure 1

A

% Specific lysis

E:T ratio

LUTC-10 (ATC)
LUTC-4 (PTC)
K562

B

% Specific lysis

ATC PTC K562

C

Counts

MHC class I

Atoxic goiter LUTC-10 U-Hth 83 U-Hth 104
Figure 2

A

B

<table>
<thead>
<tr>
<th>Counts</th>
<th>NKG2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>isotype ctrl (resting NK)</td>
<td>=</td>
</tr>
<tr>
<td>isotype control (expanded NK)</td>
<td>=</td>
</tr>
<tr>
<td>NKG2D (resting NK)</td>
<td>=</td>
</tr>
<tr>
<td>NKG2D (expanded NK)</td>
<td>=</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>E:T ratio</th>
<th>Res NK vs LUTC-8</th>
<th>Exp NK vs LUTC-8</th>
<th>Res NK vs MOLT-4</th>
<th>Exp NK vs MOLT-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

p < 0.05

<table>
<thead>
<tr>
<th>Unblocked</th>
<th>Perf/Gran</th>
<th>TRAIL</th>
<th>FasL</th>
<th>NKG2D</th>
<th>DNAM-1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NS

= isotype control (expanded NK)
Figure 3

A

ATC cell lines

Non-malignant Thyroid cells

LUTC-10 U-Hth 83

ATC cells from FNA

ULBP2/5/6

B

UBLP2/5/6 expression

Normal thyroid tissue

ATC tumor tissue

C

% NK cell-specific lysis

ULBP2/5/6 MFI

R² = 0.5579
p = 0.0014

D

% Specific lysis

Unblocked α ULBP2

LUTC-2 LUTC-10 U-Hth 83 U-Hth 104

Figure 3

Normal thyroid tissue

ATC tumor tissue

% NK cell-specific lysis

ULBP2/5/6 MFI

R² = 0.5579
p = 0.0014

% Specific lysis

Unblocked α ULBP2

LUTC-2 LUTC-10 U-Hth 83 U-Hth 104

Downloaded from clincancerres.aacrjournals.org on November 6, 2017. © 2014 American Association for Cancer Research.
Figure 4

A

CXCL10 (pg/ml)

IFNg (ng/ml)

LUTC-2
LUTC-10
U-Hth 104
LUTC-4
LUTC-5
LUTC-13
EST112

B

Membrane count (cells/field)

IFNg alone
LUTC-10
LUTC-10 + IFNg
LUTC-10 + IFNg + αCXCL10

C

PBMC

% of max

FNA

71%

D

CXCL10 expression

Normal thyroid tissue

ATC tumor tissue
Figure 5

A

NK cells (% of lymphocytes)

p = 0.006

PBMC FNA

B

CD56dim NK cells (% of CD3+ CD56+ cells)

p = 0.015

PBMC FNA

C

CD69 (MFI)

p = 0.025

PBMC FNA

D

NKG2D (MFI)

p = 0.35

PBMC FNA
Figure 6

A

B

C

p = 0.02

p < 0.05

LUTC-17 SN
Human anaplastic thyroid carcinoma cells are sensitive to NK cell-mediated lysis via ULBP2/5/6 and chemoattract NK cells

Erik Wennerberg, Aline Pfefferle, Lars Ekblad, et al.

Clin Cancer Res Published OnlineFirst September 11, 2014.

Updated version Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-0291

Supplementary Material Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2014/09/12/1078-0432.CCR-14-0291.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.