TITLE: DOSE-RESPONSE RELATIONSHIP IN PHASE I CLINICAL TRIALS: A EUROPEAN DRUG DEVELOPMENT NETWORK (EDDN) COLLABORATION STUDY.

RUNNING HEAD: DOSE-RESPONSE IN PHASE I TRIALS.

AUTHORS:
Victor Moreno García1,2*, David Olmos1,2* #, Carlos Gomez-Roca3, Philippe A. Cassier1,2§, Rafael Morales-Barrera4, Gianluca Del Conte5, Elisa Gallerani6, Andre T. Brunetto1, Patrick Schöffski7, Silvia Marsoni8, Jan H.M. Schellens9, Nicolas Penel10, Emile Voest11, Jeffrey Evans12, Ruth Plummer13, Richard H. Wilson14, Jean Charles Soria3, Josep Tabernero4, Jaap Verweij15 and Stan B. Kaye1,2.

INSTITUTIONS:
1 The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.
2 The Institute of Cancer Research, Sutton, United Kingdom.
3 Drug Development Department (DITEP) Gustave Roussy, Villejuif, France.
4 Research Unit for Molecular Therapy of Cancer, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
5 Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
6 Istituto Oncologico della Svizzera Italiana, Bellinzona, Switzerland.
7 Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven; Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
8 Southern Europe New Drug Organization (SENDO) Foundation, Milan, Italy
Istituto di Candiolo, and Fondazione del Piemonte per l'Oncologia IRCCS, Italy
9 The Netherlands Cancer Institute, Amsterdam, The Netherlands.
10 Centre Oscar Lambret, Lille, France.
11 University Medical Center Utrecht, Utrecht, The Netherlands.
12 University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom.
13 Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, United Kingdom.
Centre for Cancer Research & Cell Biology, Queen's University Belfast, United Kingdom.
Erasmus University Medical Center, Rotterdam, The Netherlands.

* V. Moreno and D. Olmos have contributed equally to this manuscript.

#Current institution: Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
§ Current institution: Medical Oncology, Centre Léon Bérard, Lyon, France

CORRESPONDENCE:
Professor Stan B. Kaye
Royal Marsden NHS Foundation Trust
Drug Development Unit
Downs Road, SM2 5PT, Sutton
Tel.: +44-(0)20-86613539
Fax: +44-(0)20-86427979
email: stan.kaye@rmh.nhs.uk

Manuscript related correspondence:
Dr Victor Moreno Garcia
Medical Oncology and Oncology Phase I Unit
START-Madrid Fundación Jiménez Díaz
Email: victor.moreno@start.stoh.com

DISCLAIMERS:
None.

PRESENTED IN PART AT THE:
47th Annual Meeting of the American Society of Clinical Oncology, 2011, Chicago, IL, United States.
ACKNOWLEDGMENTS: The Drug Development Unit of the Royal Marsden NHS Foundation Trust and The Institute of Cancer Research is supported in part by a programme grant from Cancer Research UK. Support was also provided through the Experimental Cancer Medicine Centre Network by Cancer Research UK and the UK Departments of Health (to The Institute of Cancer Research, University of Glasgow, Queen’s University Belfast and Freeman Hospital, Newcastle upon Tyne, United Kingdom) and the National Institute for Health Research Biomedical Research Centre (jointly to the Royal Marsden NHS Foundation Trust and The Institute of Cancer Research). VMG is supported by Fundacion Para la Investigacion del Hospital Universitario La Paz, Madrid, Spain (FIBHULP) grant REX-09. D.O. was a recipient of the Spanish Society of Medical Oncology Fellowship 2009 to 2010. PAC is supported by a grant from the Fondation de France and the Fédération Nationale des Centres de Lutte Contre le Cancer (FNCLCC, French Federation of Cancer Centers).

Written on behalf of the European Drug Development Network (EDDN).

Content:

Words:

 Statement of translational relevance: 123
 Abstract: 250
 Text: 3203

3 Tables
3 Figures

1 Supplementary Figure
3 Supplementary Tables
References: 19
Statement of translational relevance
Phase I clinical trials for molecularly targeted agents (MTA) have been designed following the dose-response paradigm inherited from chemotherapy. However, the need to reach the maximum tolerated dose (MTD) to obtain benefit from these agents is controversial. In this study, we have reviewed data from 1182 patients treated within single agent phase I clinical trials including new MTA and chemotherapeutic agents. We have found that patients treated with chemotherapeutic agents do benefit from higher doses. However patients treated with MTA have better survival with intermediate doses not close to the MTD. These findings support the current view that phase I trials should not just try to define the MTD but rather to prove that the drug is tolerable at a biologically active dose.
ABSTRACT

INTRODUCTION: Since a dose-response relationship is characteristic of conventional chemotherapy, this concept is widely used for the development of novel cytotoxic (CTX) drugs. However, the need to reach the maximum tolerated dose (MTD) to obtain optimal benefit with molecularly targeted agents (MTA) is controversial. In this study we evaluated the relationship between dose and efficacy in a large cohort of phase I patients with solid tumors.

METHODS: We collected data on 1182 consecutive patients treated in phase I trials in 14 European institutions in 2005-2007. Inclusion criteria were: a) patients treated within completed single agent studies where a maximum-administered-dose was defined; b) RECIST/survival data available.

RESULTS: 72% of patients were included in trials with MTA (N=854) and 28% in trials with CTX (N=328). The objective response (OR) rate was 3% and disease control at 6 months was 11%. OR for CTX was associated with higher doses (median 92% of MTD); this was not the case for MTA, where patients achieving OR received a median of 50% of MTD. For trials with MTA, patients treated at intermediate doses (40-80%) had better survival compared to those receiving low or high dose (p=0.038). On the contrary, there was a direct association between higher dose and better OS for CTX agents (p=0.003).

CONCLUSION: While these results support the development of novel CTX based on MTD, we found no direct relationship between higher doses and response with MTA in unselected patients. However, the longest OS was seen in patients treated with MTA at intermediate doses (40-80% of MTD)
INTRODUCTION

Phase I trials aim at defining the recommended phase 2 dose (RP2D) of novel therapeutic agents. This is usually achieved through dose-escalation designs where successive cohorts of patients are treated with increasing doses of the medication until the pharmacologically active, yet tolerable, dose is reached. While these studies are in most diseases performed in healthy volunteers, phase I trials of antineoplastic agents are performed in patients with advanced disease because of the potentially toxic nature of anticancer drugs (1). Another feature of oncology trials is that the RP2D is generally estimated by defining the maximum tolerated dose (MTD) since this has been traditionally considered to be the most relevant surrogate for pharmacologically active dose. This paradigm stems from the observation that alkylating agents (one of the first class of antineoplastic agents) have a steep dose-response curve; this was supported by data from a meta-analysis of phase I trials of cytotoxic agents and studies in breast cancer showing that dose intensity of chemotherapeutic agents correlated with response rates and survival (2, 3). These concepts eventually culminated with the use of high-dose chemotherapy and autologous stem cell support. However the relevance of MTD in the definition of the RP2D is questioned in the era of newer molecularly targeted agents (MTA) and some authors have argued that other end-points such as definition of the optimal biological dose (OBD) could be an alternative to MTD.

Patients enrolled in phase I trials in oncology usually have experienced progression of their disease despite standard therapy and expect therapeutic benefit from their participation in such a trial. One of the main ethical concerns regarding phase I participation is the fact that some patients may be exposed to subtherapeutic doses of anticancer agent compared to those treated at or near the MTD(4). Two previous studies failed to show any correlation between dose and response in phase I clinical trials of MTA(5, 6). These were single centre studies that were possibly limited due to the different definitions of the MTD, dose normalisation methods and/or definition of groups based on arbitrary cut-offs.
Many authors have therefore argued that MTD should be maintained as the gold standard for the classical definition of the RP2D. In order to overcome some of these previous limitations, we used a large series of patients extracted from an international phase I database including single-agents trials of MTA and also of novel cytotoxics, which were employed as reference group to assess whether or not there was a correlation between dose and response in phase I trials of novel anticancer agents.

MATERIAL AND METHODS

Study design and patient eligibility
This study considered patients included in the European Drug Development Network (EDDN) database, an international consortium involving 14 oncology drug development units(7). This database included a total of 2182 patients, consecutively treated in Phase I trials from January 2005 to December 2007. As can be seen in Supplementary figure 1, for this study, 860 patients were excluded due to combination trials and another 140 patients were excluded due to missing information. The primary aim of this study was to determine the relationship between dose (expressed as a percentage of the MTD) and objective response (OR) (complete and partial response) by RECIST (8) in single-agent phase I trials with MTA. Secondary aims were to determine the relationship between dose and a) non-progression rates (NPR) (OR + stable disease [SD]) at 3- and 6-months; b) progression free survival (PFS) and overall survival (OS) and c) to compare these results with the reference group treated with CTX agents.

All patients included in the database met the eligibility criteria for each study. Specific criteria for this study included: I) patients treated in single-agent dose-escalation phase I trials; II) a maximum administered dose (MAD) was established in the drug schedule in which each patient was treated. All patients included in this analysis gave informed consent to take part in each phase I trial approved by local Institutional Review Boards (IRBs). IRBs also granted their approval for this analysis.

The MTD in this study was defined as “the highest administered dose level below that dose which ≥33%of patients experience a DLT”, independently of the original definition established by particular studies. The dose received by each patient was
normalized by the ratio: [(dose received/MTD or MAD)*100]. We also calculated the time per treatment index (TPTi): a ratio of the time interval between diagnosis of advanced/metastatic cancer and Phase I trial entry, over the number of lines of systemic treatment [log (Time+1 /treatments+1)]; its aim is to reflect baseline tumor kinetics at study entry(7).

Statistical considerations

Traditional dose-escalation methods usually considered a minimum of 25% change for dose-increase and/or reduction during dose-escalation (9). Thus for our primary aim, we considered that to detect a true difference in mean-dose (%) of at least 25% between responders (patients with OR) and non-responders (NR), with an α- and a β-errors of 0.10, we will need approximately 900 patients in a two-tailed t-student test (base in our previous data (6, 7) a OR rate for single-agent trials >3%, unequal σ values for both groups ≤0.4).

Differences in mean-dose between other response groups were explored using Student's t-test for independent groups. Non-parametric statistics, i.e. Mann-Whitney U test, were used to compare doses in different response groups treated with CTX. In addition, we divided our patients according to received-dose in three different cohorts: low-doses (<40% of MTD), medium doses (40%-80% of MTD) and high doses, (>80% MTD). Categorical variables were compared with a Chi-square test. When a significant association with dose and response was found, its independent value was studied in a multivariate stepwise logistic regression model considering all variables with a p-value <0.10. Censored data for this endpoint were considered missing and not considered for the analyses. Median survival times for each dose-cohort (low, medium and high doses) were estimated using the Kaplan-Meier method, and the survival curves generated for each group were compared using the log-rank test. If a significant association between survival and dose was found, the independent association of dose with survival was studied using a multivariate stepwise Cox regression in which all variables with a P-value<0.10 in the univariate analysis were included. The survival analysis was on intention-to-treat. All significant P-values (<0.05) were two-sided. The SPSS program (Version 19.0, SPSS Inc., Chicago, IL) was used for statistical analysis.
RESULTS

A total of 1182 patients were eligible for this study. Eight hundred and fifty four patients (72%) were included in trials of MTA and 328 patients (28%) were treated in trials with novel cytotoxics (CTX). Baseline characteristics of the eligible patients are summarised in Table 1.

Patients dose
Median dose received for patients treated with MTA was 73% of the MTD (range 0.3-240.0%) and distribution according to dose levels was: 235 patients (27.0%) in low doses (<40% of the MTD), 224 (26.0%) in medium doses (40-80% of the MTD), and 395 (46.0%) in high doses (>80% of the MTD). Median dose for patients treated with CTX was 64% of MTD (range 1.5-200%) and distribution according to dose levels was: 88 patients (27.0%) in low doses, 141 (43.0%) in medium doses, and 99 (30.0%) in high doses. Prognostic factors were well balanced in the three groups of patients as can be seen in Supplementary Table 1.

Responses and outcomes
Median time on treatment was 18.8 weeks (0.1-192.0). The best response was complete response (CR) for 2 patients treated with MTA and partial response (PR) for 32 patients (3.0%) [26 (3%) in MTA and 8 (2.0%) in CTX (p=0.7)], stable disease (SD) in 422 patients (36.0%) [334 (39%) in MTA and 88 (27.0%) in CTX (p<0.001)], and progressive disease (PD) in 726 (61.0%) [494 (58%) in MTA and 232 (71%) in CTX (p<0.001)]. There were significantly more patients with clinical benefit at 3 and 6 months (OR+SD) in the MTA group (p<0.01 for both) (Table 2). However, as can be seen in Table 1 there were significantly more patients with short TPTi (<24 weeks-per-treatment) in trials with CTX: 62.0% vs. 53.0% (p=0.006).
Dose and Response

There was no direct relationship between higher doses and response in patients treated with MTA. As can be seen in Figure 1A, patients that achieved an objective response (OR; CR+PR), received a median dose of 50.0% whilst patients with SD or PD received a median dose of 73.0% and 80.0% respectively (p=0.6). However, in trials of CTX agents, there was a trend towards higher doses received by responder patients: those with OR received a median dose of 92.0% and patients with SD and PD 60.0% and 64.0% respectively (p=0.08 and p=0.05) (Figure 1B). When OR was grouped with prolonged stabilization [non-progression rate (NPR) at 3 and 6 months] we did not find any differences in doses received between "responders" and "non-responders" (Figures 1C-1F).

When patients were divided into three groups according to dose received, the results were similar. We found a slightly higher response rate for patients in the medium doses for trials with MTA [4.1% vs. 3.0% (low) and 2.6% (high) dose] and for patients treated at high doses with CTX although results were not statistically significant (Figure 2). In line with this, the NPR at 3 and 6 months for patients treated with MTA in the medium doses were higher than those treated at low or high doses (Table 3).

Dose and Survival outcomes

After a median follow-up of 43.0 weeks (range 0.4-229), median PFS for the entire cohort was 8.0 weeks [95% Confidence Interval (CI): 7.6-8.4]; median PFS for patients treated with MTA was 8.0 weeks (95%CI 7.3-8.7) and was 7.1 weeks (95%CI 5.8-8.4) (p<0.001) for patients treated with CTX. The median OS was 34.9 weeks (CI=95% 32.1-37.7); 34 weeks (CI95% 30.9-37.1) for patients treated with MTA and 37.3 (CI95% 32-42.6) for patients treated with CTX (p=0.61).

In patients treated with MTA there was a higher PFS for patients treated at intermediate dose (median 9.9 weeks) compared to 7.9 and 8.0 weeks for patients treated at high and low doses respectively (p=0.008) (Figure 3A). Similarly, the overall survival was worse for patients treated at high doses (median 30.4 weeks) than those treated at intermediate (34.1 weeks) and low dose (35.0 weeks) (p=0.038) (Figure 3B). In patients treated with CTX agents there was a trend towards better PFS at high doses (median 8.6 weeks) compared to 6.4 and 6.1 weeks for patients treated at intermediate and low doses respectively (p=0.07).
(Figure 3C). The OS was also better for patients treated at high doses (Figure 3D).

In the multivariate model adjusted for clinical and demographic variables the dose (continuous) was not predictive of OS for patients treated with either CTX (HR=0.7, p=0.3) or MTA (HR=1.1, p=0.4). Because the OR and NPR at 3 and 6 months consistently pointed to a non-linear relationship between dose and clinical benefit from MTA, we analyzed the multivariate model for overall survival with dose as a categorical variable in three groups. As expected, patients treated with MTA at intermediate doses had a better survival (HR=0.8 p=0.037) than patients treated at low or high doses (Supplementary Table 2). The model also confirmed the results for CTX agents were patients treated at higher doses had better survival than patients treated at doses below 80% (HR=1.29 and HR=2.1 for low and medium doses respectively) (Supplementary Table 3).

Trials with no MTD

In six trials of MTA [146 patients (12%)] the MTD was not reached and the dose-selection was based on pharmacokinetic/pharmacodynamic data. The results in this subgroup were similar to the entire cohort of patients treated with MTA. Seven patients achieved a partial response (4.8%) with median dose received of 25% of the MAD (range 12.5-50%) while non-responding patients received a median dose of 50% (0.3-125%) (p=0.236). Six of the responders were treated in the low dose cohort and the other one in the intermediate dose group. PFS and OS were similar for the three groups of low medium and high dose (PFS: 8, 8.3 and 8.7 weeks respectively p=0.9 and OS: 37.4, 37 and 62 weeks p=0.29).

DISCUSSION

Our analysis evaluate the dose-effect relationship for both novel cytotoxic drugs and MTA in a large European multi-institutional oncology phase I trials cancer population. Our results confirm the impact of higher doses of experimental cytotoxic drugs in OR, OS and toxicity as well as the utility of current development design based on MTD. For MTAs, our findings support the observation of others (5, 6, 10) that higher doses do not correlate with an increase in response or survival in unselected patients. The relationship between dose and response with
cytotoxic drugs has not been addressed since the early trials which established the dose-response paradigm (2, 3). Our results with novel cytotoxics are in line with these observations with classic chemotherapy as patients receiving >80% of the MTD have higher response rates and longer OS than patients at <80% MTD (52 vs. 34 weeks) with a trend towards longer PFS (8.6 vs. 6.8 weeks). Interestingly, dose level was not predictive of OS in the multivariate model adjusted to clinical and demographic data, suggesting that other variables such as performance status and TPTI have much greater impact on survival. Postel-Vinay et al (6) and Jain et al (5) have already addressed the question about the correlation between clinical benefit and dose in MTA phase I clinical trials with similar results. Postel-Vinay et al showed, with a cohort of 135 patients treated at the Royal Marsden Hospital that patients with 0-33%, 34%-66 % or 67%-100% of the MTD have the same percentage of non-progression rate (combining CR + PR + SD at 3 and 6 months), concluding that potential clinical benefit is not confined to patients treated at the higher doses. Jain et al showed that in 683 patients treated at the MD Anderson Cancer Center, time to treatment failure were not significantly different between patients treated at lower or higher doses, with a trend for longer time in the lower doses. Our results support these conclusions and add the value of a reference group using a similar cohort of phase I trial patients treated with cytotoxic agents in clinical development. A recently published meta-analysis by Gupta et al (11) suggested that patients treated with doses >60% MTD (in a model controlling prognostic demographic variables as PS, LDH, albumin and others) had a better overall response rate (CR+PR) and OS. Their data-set include dose information from 1262 patients with solid tumors treated across 6 dose levels (<20%, 20-40%, 40-60%, 60-80%, 80-100% and >100%). However it is difficult to directly compare our results since there is no specific mention about the exact contribution of each dose level to the final result (more patients could be in the “high dose group” while receiving a dose of 60-80% which would fall into the intermediate dose level that we found to be more active).

Our finding that patients treated with MTA receiving 40-80% of the MTD showed a significant increase in PFS and OS compared to the higher doses is not surprising. It has already been observed that higher doses do not necessarily mean increase in clinical benefit, especially in those tumors with predictive biomarkers of response (12, 13). It is well known that higher doses of MTA might be tolerable
during the short dose-limiting-toxicity (DLT) period (usually 3 to 4 weeks), but chronic toxicity can limit the long term tolerance. In fact, a publication by Postel-Vinay et al shows that in a cohort of 445 phase I trial patients, 30% patients interrupted temporarily or definitively experimental treatment and 10% reduced the administered dose, in most cases after cycle 2 (14). There are other examples of an increase in clinical benefit with lower-than-MTD doses as with temsirolimus (15) or cediranib (16). Despite this, phase I trial design for MTA still favors classical MTD evaluation rather than the association of pharmacokinetic or pharmacodynamic endpoints and/or objective responses (17).

Our study has some limitations. In the era of MTA, not only OR but also prolonged SD may be of clinical benefit in cancer patients. Due to the inherent characteristics of phase I trials, in which patients with excellent performance status and optimal organ function are accepted, there is a selection bias towards patients with slow growing tumors. In our cohort, 44% of patients presented with "slow growing" tumors as defined by TPTi ≥ 24 weeks-per-treatment, and in the group of patients treated with MTAs, 59% fell into this category. This highlights the fact that PFS or time-to-progression in non-randomized phase I trial patients with SD as best response could be misleading as markers of efficacy. We conclude that not only RECIST but complementary tumor response evaluation techniques such as circulating tumor cells or DNA, PET-scans or dynamic evaluation of tumor growth before and during experimental treatment should be implemented to better characterize potential tumor response in these patients (18).

Our results do support the current concept of biomarker-driven phase I clinical trials. Furthermore, to define a RPD2 for a MTA based only on the MTD in unselected population could be detrimental to candidate patients. Using the classic definition of MTD (<33% of patients with DLT during the first cycle) many patients who could benefit from the treatment, may not be able to tolerate it due to excessive toxicity whereas lower doses could achieve equivalent antitumor activity. Thus, the primary objective of the phase I trial should be not just to define the MTD but rather to prove that the drug is tolerable at a biologically active dose. In many new anticancer agents not only toxicity but mostly efficacy will determine the RP2D, and potential treatment benefit will depend more on the presence of a particular mutation and target modulation rather than the dose (19).
In conclusion, these results support the development of novel CTX agents based on MTD. We also found that patients treated at intermediate dose levels (40-80% of the MTD) obtained greater clinical benefit from phase I trials of MTA. We did not find a benefit for utilizing doses close to the MTD in unselected patients treated with MTA, and this should be borne in mind in the clinical development plans of these agents.
Table 1. Baseline patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>ALL N (%)</th>
<th>MTA N (%)</th>
<th>CTX N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1182</td>
<td>854</td>
<td>328</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>677 (57)</td>
<td>503 (59)</td>
<td>174 (53)</td>
</tr>
<tr>
<td>Female</td>
<td>505 (43)</td>
<td>351 (41)</td>
<td>154 (47)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>58.4 (18.5-85.5)</td>
<td>58.4 (18.5-85.5)</td>
<td>58.1 (18.5-82.3)</td>
</tr>
<tr>
<td>Performance status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECOG 0</td>
<td>424 (36)</td>
<td>286 (34)</td>
<td>138 (42)</td>
</tr>
<tr>
<td>ECOG 1</td>
<td>713 (60)</td>
<td>535 (63)</td>
<td>178 (53)</td>
</tr>
<tr>
<td>ECOG 2</td>
<td>45 (4)</td>
<td>33 (4)</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Number of previous systemic treatments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>3 (0-11)</td>
<td>2 (0-9)</td>
<td>3 (0-11)</td>
</tr>
<tr>
<td>Time from advanced disease to Phase I (months)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>17.8 (0-302)</td>
<td>18.9 (0-193)</td>
<td>15.1 (0-302)</td>
</tr>
<tr>
<td>Number of metastatic sites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>2 (0-6)</td>
<td>2 (0-6)</td>
<td>2 (0-6)</td>
</tr>
<tr>
<td>Site of metastases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver metastases</td>
<td>588 (50)</td>
<td>439 (51)</td>
<td>149 (45)</td>
</tr>
<tr>
<td>Lymph nodes</td>
<td>547 (46)</td>
<td>435 (51)</td>
<td>112 (34)</td>
</tr>
<tr>
<td>Lung metastases</td>
<td>564 (48)</td>
<td>406 (47)</td>
<td>158 (48)</td>
</tr>
<tr>
<td>Bone metastases</td>
<td>191 (16)</td>
<td>158 (18)</td>
<td>33 (10)</td>
</tr>
<tr>
<td>Tumor type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal</td>
<td>227 (19)</td>
<td>160 (19)</td>
<td>67 (20)</td>
</tr>
<tr>
<td>Upper gastrointestinal</td>
<td>143 (12)</td>
<td>105 (12)</td>
<td>38 (12)</td>
</tr>
<tr>
<td>Gynaecological</td>
<td>144 (12)</td>
<td>103 (12)</td>
<td>41 (12)</td>
</tr>
<tr>
<td>Sarcomas and Connective tissue</td>
<td>140 (12)</td>
<td>101 (12)</td>
<td>39 (12)</td>
</tr>
<tr>
<td>Lung and mesothelioma</td>
<td>104 (8)</td>
<td>74 (9)</td>
<td>30 (9)</td>
</tr>
<tr>
<td>Melanoma</td>
<td>93 (8)</td>
<td>65 (8)</td>
<td>28 (9)</td>
</tr>
<tr>
<td>Genitourological (non-prostate)</td>
<td>75 (6)</td>
<td>63 (7)</td>
<td>12 (4)</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>65 (5)</td>
<td>59 (7)</td>
<td>6 (2)</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>64 (5)</td>
<td>40 (5)</td>
<td>24 (7)</td>
</tr>
<tr>
<td>Head and neck</td>
<td>45 (4)</td>
<td>31 (4)</td>
<td>14 (4)</td>
</tr>
<tr>
<td>Other</td>
<td>82 (7)</td>
<td>53 (6)</td>
<td>29 (9)</td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiogenesis</td>
<td>52 (4)</td>
<td>52 (6)</td>
<td></td>
</tr>
<tr>
<td>Apoptosis</td>
<td>40 (3)</td>
<td>40 (5)</td>
<td></td>
</tr>
<tr>
<td>Cell adhesion/migration</td>
<td>29 (3)</td>
<td>29 (3)</td>
<td></td>
</tr>
<tr>
<td>Cell cycle/mitosis</td>
<td>93 (8)</td>
<td>54 (6)</td>
<td>39 (12)</td>
</tr>
<tr>
<td>DNA repair</td>
<td>59 (5)</td>
<td>47 (5)</td>
<td>12 (4)</td>
</tr>
<tr>
<td>DNA</td>
<td>163 (14)</td>
<td>163 (14)</td>
<td></td>
</tr>
<tr>
<td>Downstream signalling</td>
<td>95 (8)</td>
<td>95 (11)</td>
<td></td>
</tr>
<tr>
<td>Epigenetics and transcription</td>
<td>65 (6)</td>
<td>65 (8)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>75 (6)</td>
<td>53 (6)</td>
<td>22 (7)</td>
</tr>
<tr>
<td>Protein degradation</td>
<td>10 (1)</td>
<td>10 (1)</td>
<td></td>
</tr>
<tr>
<td>Tyrosine-kinase receptor</td>
<td>339 (29)</td>
<td>339 (40)</td>
<td></td>
</tr>
<tr>
<td>Steroid synthesis</td>
<td>17 (1)</td>
<td>17 (2)</td>
<td></td>
</tr>
<tr>
<td>Stress response</td>
<td>19 (2)</td>
<td>19 (2)</td>
<td></td>
</tr>
<tr>
<td>Tissue remodelling</td>
<td>15 (1)</td>
<td>15 (2)</td>
<td></td>
</tr>
<tr>
<td>Tubulin</td>
<td>111 (10)</td>
<td>19 (2)</td>
<td>92 (28)</td>
</tr>
<tr>
<td>TPTi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow growing (≥24 w/treatment)</td>
<td>517 (45)</td>
<td>399 (47)</td>
<td>118 (38)</td>
</tr>
<tr>
<td>Fast growing (<24 w/treatment)</td>
<td>643 (55)</td>
<td>450 (53)</td>
<td>193 (62)</td>
</tr>
</tbody>
</table>

MTA: molecularly targeted agents. CTX: cytotoxic chemotherapy. TPTi: time per treatment interval (log ratio of time between advanced disease diagnosis and phase I entry to number of treatment lines); Slow vs. Fast growing tumor is defined as TPTi ≥ 24 weeks per treatment)* Data available for 1137 patients.
Table 2. Responses by treatment

<table>
<thead>
<tr>
<th></th>
<th>Total evaluable</th>
<th>MTA</th>
<th>CTX</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td></td>
</tr>
<tr>
<td>RECIST best response</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR/PR</td>
<td>34 (3)</td>
<td>26 (3)</td>
<td>8 (2)</td>
<td>0.69</td>
</tr>
<tr>
<td>Disease Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR+SD>3 months</td>
<td>294 (25)</td>
<td>238 (28)</td>
<td>56 (17)</td>
<td><0.01</td>
</tr>
<tr>
<td>OR+SD>6 months</td>
<td>131 (11)</td>
<td>108 (13)</td>
<td>23 (7)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Table 3. Response and non-progression rate at 3 and 6 months by dose and agent.

<table>
<thead>
<tr>
<th>Dose</th>
<th>OR (CR+PR)</th>
<th>NPR 3 (OR+SD > 3months)</th>
<th>NPR 6 (OR+SD > 6months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>MTA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><40</td>
<td>7 (3%)</td>
<td>228 (97%)</td>
<td>61 (26%)</td>
</tr>
<tr>
<td>40-80</td>
<td>9 (4%)</td>
<td>215 (96%)</td>
<td>77 (34.4%)*</td>
</tr>
<tr>
<td>>80</td>
<td>10 (2.5%)</td>
<td>385 (97.5%)</td>
<td>100 (25.3%)</td>
</tr>
<tr>
<td>CTX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><40</td>
<td>2 (2.3%)</td>
<td>86 (97.7%)</td>
<td>18 (20.5%)</td>
</tr>
<tr>
<td>40-80</td>
<td>1 (0.7%)</td>
<td>140 (99.3%)</td>
<td>18 (12.8%)</td>
</tr>
<tr>
<td>>80</td>
<td>5 (5.1%)</td>
<td>94 (94.9%)</td>
<td>20 (20.2%)</td>
</tr>
</tbody>
</table>

Chi square test. *p=0.04; IIp=0.01

Figure Legends

Figure 1. RECIST response according to percentage of the MTD received.

A. Differences in dose (% of the MTD) received by RECIST response for patients treated with molecularly targeted agents.
B. Differences in dose (% of the MTD) received by RECIST response for patients treated with cytotoxic agents.
C. Differences in dose (% of the MTD) received by 3 months-clinical benefit for patients treated with molecularly targeted agents.
 (OR: objective response. SD: stable disease. PD: progressive disease)
D. Differences in dose (% of the MTD) received by 3 months-clinical benefit for patients treated with cytotoxic agents. (OR:
 objective response. SD: stable disease. PD: progressive disease)
E. Differences in dose (% of the MTD) received by 6 months-clinical benefit for patients treated with molecularly targeted agents.
 (OR: objective response. SD: stable disease. PD: progressive disease)
F. Differences in dose (% of the MTD) received by 6 months-clinical benefit for patients treated with cytotoxic agents. (OR:
 objective response. SD: stable disease. PD: progressive disease)

Figure 2. Relationship between mean percentage of MTD received and objective response.

Figure 3. Relationship between percentage of MTD received and survival.

a) Progression Free Survival for Molecularly Targeted Agents % of the MTD received.
b) Overall Survival for Molecularly Targeted Agents % of the MTD received.
c) Progression Free Survival for Cytotoxic Chemotherapy by % of the MTD received.
d) Overall Survival for Cytotoxic Chemotherapy by % of the MTD received.
References

Figure 1

A. Molecularly Targeted Agents

B. Cytotoxic Agents

*Mann-Whitney U test.

Figure 1

Mann-Whitney U test.
Figure 2

A. Molecularly Targeted Agents

- Low Dose (<40%): CR/PR - 37.9%, SD - 42.7%, PD - 2.5%
- Medium Dose (40-80%): CR/PR - 59.1%, SD - 53.2%, PD - 39.1%
- High Dose (>80%): CR/PR - 58.4%

B. Cytotoxic Agents

- Low Dose (<40%): CR/PR - 31.8%, SD - 22.7%, PD - 5.1%
- Medium Dose (40-80%): CR/PR - 65.9%, SD - 28.3%, PD - 0.7%
- High Dose (>80%): CR/PR - 76.6%

Y-axis represents percentage of patients

*p=0.58; ▲p=0.55; ▼p=0.37
*p=0.10; ▲p=0.29; ▼p=0.13
Figure 3

Molecularly Targeted Agents

<table>
<thead>
<tr>
<th>Condition</th>
<th>Median (weeks)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 80% MTD</td>
<td>30.4</td>
<td>25.7-35.1</td>
</tr>
<tr>
<td>40-80% MTD</td>
<td>34.1</td>
<td>24.4-43.8</td>
</tr>
<tr>
<td>< 40% MTD</td>
<td>35</td>
<td>28.7-41.2</td>
</tr>
</tbody>
</table>

Cytotoxic Chemotherapy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Median (weeks)</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 80% MTD</td>
<td>51.3</td>
<td>40-62.6</td>
</tr>
<tr>
<td>40-80% MTD</td>
<td>34.7</td>
<td>24.5-44.9</td>
</tr>
<tr>
<td>< 40% MTD</td>
<td>31.1</td>
<td>23.7-38.5</td>
</tr>
</tbody>
</table>

Graphical Representation

- **Panel A**: Progression Free Survival for Molecularly Targeted Agents
- **Panel B**: Overall Survival for Molecularly Targeted Agents
- **Panel C**: Progression Free Survival for Cytotoxic Chemotherapy
- **Panel D**: Overall Survival for Cytotoxic Chemotherapy

- **Panel A** and **Panel C**:
 - Median progression free survival times: 7.9 weeks (95% CI: 7-8.8), 9.9 weeks (95% CI: 6.7-9.3), 8 weeks (95% CI: 6.7-9.3)
 - **Panel B** and **Panel D**:
 - Median overall survival times: 30.4 weeks (95% CI: 25.7-35.1), 34.1 weeks (95% CI: 24.4-43.8), 35 weeks (95% CI: 28.7-41.2), 51.3 weeks (95% CI: 40-62.6), 34.7 weeks (95% CI: 24.5-44.9), 31.1 weeks (95% CI: 23.7-38.5)

- **Panel B and Panel D**: Statistical significance noted with p-values: 0.008, 0.038, 0.072, 0.003
DOSE-RESPONSE RELATIONSHIP IN PHASE I CLINICAL TRIALS: A EUROPEAN DRUG DEVELOPMENT NETWORK (EDDN) COLLABORATION STUDY

Victor Moreno Garcia, David Olmos, Carlos Gomez-Roca, et al.

Clin Cancer Res Published OnlineFirst September 24, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-0719

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2014/09/20/1078-0432.CCR-14-0719.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.