Synergy between VEGF/VEGFR inhibitors and chemotherapy agents in the phase I clinic

Chad Tang, MD, MS1, Kenneth Hess, PhD2, Denis Leonardo F. Jardim, MD3, Debora De Melo Gagliato, MD3, Apostolia M Tsimberidou, MD, PhD3, Gerald Falchook MD3, Siqing Fu, MD, PhD3, Filip Janku, MD3, Aung Naing, MD3, Sarina Piha-Paul, MD3, Vivek Subbiah MD3, Jennifer Wheler, MD3, Ralph G. Zinner, MD3, Razelle Kurzrock, MD6, Lee M. Ellis, MD4,5, Funda Meric-Berstam, MD3, David S. Hong, MD3

Departments of radiation oncology1, biostatistics2, investigational cancer therapeutics3, surgical oncology4, and molecular and cellular oncology5, the University of Texas MD Anderson Cancer Center, Houston, USA. 6Moores Cancer Center, University of California San Diego Health System, San Diego, CA.

Running Title: VEGF/VEGFR inhibitors and chemotherapy

Key Words: VEGF inhibitors, VEGFR inhibitors, chemotherapy, phase I trials

Grant Support: David S. Hong research support from Amgen and Gerald Falchook research support from EMD Serono.

Acknowledgements: None

Conflicts of Interest: None
Corresponding author: David S. Hong, MD, Department of Investigational Cancer Therapeutics; The University of Texas MD Anderson Cancer Center; 1515 Holcombe Blvd., FC8.3050, Box 0455; Houston, TX 77030

Email: dshong@mdanderson.org; Phone 713-563-5844; Fax 713-563-0566

World Count (excluding references): 4,008

Tables: 2

Figures: 3
Abstract

Purpose: We hypothesized that chemotherapy synergizes with VEGF/VEGFR (VEGF/R) inhibitors in patients with advanced solid malignancies.

Patients and Methods: Patients treated on phase I protocols between December 2004 and July 2013 (n=1,498) were included in this analysis. The primary outcome was clinical benefit, defined as stable disease ≥6 months, complete response, or partial response. Two odds ratios (ORs) for achieving clinical benefit were calculated: one for patients treated with a VEGF/R inhibitors (OR with VEGF/R) and another for patients treated without (OR without VEGF/R). To compare these two ORs, an interaction term was included in the multivariate model: (chemotherapy/factor of interest)×(VEGF/R). We took significant interaction terms (interaction \(P<0.05 \)) to suggest effect modification (either synergy or antagonism) with VEGF/R inhibitors.

Results: All patients treated with VEGF/R inhibitors exhibited higher OR for clinical benefit than those who were not (OR=1.9 ([95% confidence interval [CI] 1.5-2.4], \(P<0.0001 \)). Use of chemotherapy agents concomitant with VEGF/R inhibitors was associated with significantly higher OR for clinical benefit compared to chemotherapy use without VEGF/R inhibitors (OR with VEGF/R=1.6 [95% CI 1.1-2.5] v. OR without VEGF/R=0.4 [95% CI 0.3-0.6], interaction \(P=0.02 \)). Specifically, the anti-metabolite class was associated with the greatest increase in OR for clinical benefit (OR with VEGF/R=2.7 [95% CI 1.5-4.7] v. OR without VEGF/R=0.2 [95% CI 0.1-0.3], interaction \(P=0.004 \)).
Conclusions: VEGF/R inhibitor was found to synergize with chemotherapeutics. This effect was most pronounced with the anti-metabolite class.

Statement of Translational Relevance

It is controversial whether inhibitors of VEGF and its receptor (collectively termed VEGF/R inhibitors) interact synergistically with chemotherapy. To address this question, we tested for significant therapy and patient subgroup interactions with VEGF/R inhibitors among patients with advanced solid disease treated on phase I protocols within a single department. This analysis identified a synergistic interaction between chemotherapy agents, most notably with the anti-metabolite class. These results provide an actionable hypothesis for future clinical and benchtop research. In addition, future analyses of aggregated phase I trials may serve as a useful adjunct in the increasingly rapid development of targeted agents in order to identify promising therapy combinations and patient subgroups to test in phase III trials.
Introduction

Inhibitors of vascular endothelial growth factors (VEGF) and their receptors (VEGFR) have been extensively studied in numerous cancer types. Bevacizumab was one of the first VEGF inhibitors and was found to be efficacious in metastatic non-small cell lung cancer and colorectal cancer through the pivotal ECOG studies E4599(1, 2) and E3200(3), respectively. Conversely, administration of bevacizumab failed to extend overall survival in other cancer types including breast(4) and pancreatic(5). Following these mixed signals, the FDA approved a number of more recent drugs with anti-VEGFR activity, including sorafenib in hepatocellular(6) and renal(7), sunitinib in renal(8) and neuroendocrine(9), and pazopanib for renal(10) cancer. However, despite the growing number of VEGF and VEGFR (VEGF/R) inhibitors, there remains little consensus on the optimal patient subgroups and therapy combinations.

To improve clinical efficacy, bench-top and clinical research has focused on combining these agents with other therapeutics, most notably chemotherapy. Numerous hypotheses have arisen to support synergistic interactions between these two agents. One such hypothesis is that inhibition of angiogenesis produces transient and long-term hemodynamic phenomena by modifying vasculature architecture resulting in a net improvement in chemotherapy mass transport (11, 12). Chemotherapy cytotoxicity directed towards cancer vasculature has also been proposed to synergize with VEGF/R inhibitors (13-15). However, the proposed synergy between these agents has not been extensively validated. Although many phase III trials have combined VEGF/R inhibitors with chemotherapy, most of these
trials were conducted with disparate chemotherapy classes on different patient subgroups thereby complicating a fair assessment of these factors (5, 16-18).

We sought to test the hypothesis that chemotherapy agents synergize with VEGF/R inhibitors by assessing the probability of clinical benefit in patients enrolled in phase I trials at the Department of Investigational Therapeutics at MD Anderson Cancer Center. In addition, we further tested whether patient diagnoses or mutational status predicted for response with VEGF/R inhibitors.

Patients and Methods

Patient Characteristics

Following Institutional Review Board approval, 1,498 patients were included in this study. Inclusion criteria were recurrent and/or metastatic disease on a phase I clinical trial within the Department of Investigational Therapeutics at the MD Anderson Cancer Center from December 2004 to July 2013. Exclusion criteria were lack of clinical or objective evaluation on protocol, treatment for non-malignant conditions, or treatment for lymphoma or leukemia. ClinicalTrials.gov identifiers (NCT numbers) are listed for all trials included in this analysis (Supplementary Appendix 1).

Treatment and evaluation

After meeting individual trial inclusion criteria, patients were initiated on phase I trials judged to be clinically appropriate by the attending physician. Treatment was continued until patient withdrawal of consent or the development of unacceptable
toxicity, progressive disease, or death. Clinical assessments generally consisted of baseline measurements followed by interim evaluation prior to each treatment cycle. Imaging was conducted at baseline and with every other treatment cycle (~6-8 wks). Imaging evaluation entailed computed tomography (CT) scan, magnetic resonance imaging, and/or positron emission tomography (PET). Objective responses were categorized via response evaluation criteria in solid tumor (RECIST) criteria (19, 20) and reported as the best achieved response. All patients receiving PET imaging also received a co-registered CT scan, from which RECIST criteria measurements were obtained. In the event that a patient was treated on more than one phase I trial, the protocol that yielded the best response was analyzed.

Tissue samples and molecular analyses

All pathology analyses were conducted on archival formalin-fixed, paraffin-embedded tissue blocks or materials from fine needle aspirates obtained from clinical diagnostic or therapeutic procedures. Histologies were centrally reviewed and confirmed at our institution prior to protocol initiation. MET and HER2 amplification status were assessed via fluorescent in situ hybridization (FISH) and expressed as a ratio with a centromeric control gene. Samples were considered amplified at signal ratios ≥2. Mutational analyses were performed in Clinical Laboratory Improvement Amendment (CLIA)-certified laboratories as part of a gene panel or as a single test.

Statistics
The outcome of interest was clinical benefit, which was defined as stable disease ≥6 months or objective evidence of partial or complete response via RECIST criteria (19, 20). Multivariate odds ratios (ORs) were generated via logistic regression. First, an overall OR for clinical benefit was calculated associating each the factor of interest/chemotherapy with frequency of clinical benefit among the entire cohort. Then for each factor of interest/chemotherapy, two odds ratios (ORs) for achieving clinical benefit were calculated within a multivariate model: one for patients treated with VEGF/R inhibitors (OR with VEGF/R) and another for patients who did not receive these inhibitors (OR without VEGF/R). To compare these two ORs, an interaction term was included in the multivariate model: (chemotherapy/factor of interest)×(VEGF/R). We took significant interaction terms (interaction $P<0.05$) to suggest effect modification (either synergy or antagonism) with VEGF/R inhibitor use. Supplementary Appendix 2 illustrates example calculations for synergistic and antagonistic interactions. Other adjusted covariates included: number of prior systemic therapies, number of agents utilized during the best phase I protocol, age, gender, race, favorable/unfavorable diagnoses, year of treatment initiation, and chemotherapy class. Favorable and unfavorable diagnoses were defined as ≥40% or <40% proportion of clinical benefit among all patients, respectively (as listed in Table 2 footnote).

Continuous variables were compared via Student’s t-test, while categorical variables were compared using chi-squared and Fisher exact tests. Recursive partitioning analysis was conducted to separate patients treated with VEGF/R inhibitors into strata based on frequency of clinical benefit. All P-values were two-
sided when appropriate with significance considered at the $P<0.05$ level. Analyses were conducted using SAS ver. 9.3 and JMP ver. 10 (both SAS Institute Inc., Cary NC).

Results

Patient Characteristics

Baseline and treatment characteristics stratified by VEGF/R inhibitor treatment are summarized in Table 1. Almost equal numbers of patients were treated on protocol with (n=741) and without (n=757) VEGF/R inhibitors. No baseline demographic variables were significantly different when stratified by VEGF/R inhibitor use (all $P>0.05$). However, patients treated with a VEGF/R inhibitor exhibited lower proportions of *PIK3CA*, *EGFR*, or *BRAF* mutation and were treated on protocols with a greater number of simultaneous agents in addition to a higher frequency of alkylating or anthracycline chemotherapeutics (all $P<0.05$).

Overall Response

Among the entire cohort, 469 (31%) patients achieved clinical benefit on their best phase I protocol. This included 160 partial responses (11%), 8 complete responses (0.5%), and 301 instances of stable disease ≥6 months (20%). Time-to-failure (TTF) was defined as duration on the best phase I trial. Median TTF was 3.4 mo (range 0.1-95.5 mo) and was significantly longer ($P<0.0001$) in patients treated with VEGF/R inhibitors (median 4.0 mo; range 0.1-72.7 mo) compared with those who were not (median 2.7 mo; range 0.1-95.5 mo). Assessing the entire cohort, VEGF/R inhibitor was associated with a higher frequency of clinical benefit (OR=1.9 ([95% confidence
interval [CI] 1.5-2.4, P<0.0001). Significance held on multivariate analysis (OR=1.7 [95% CI 1.3-2.2], P=0.0001).

VEGF/R inhibitors were classified into 3 mutually exclusive categories: bevacizumab alone (n=443), multikinase inhibitors (n=243), or simultaneous bevacizumab and multikinase inhibitors (n=65). Of note, the only VEGF inhibitor (antibody or otherwise) assessed in our pooled analysis of phase I protocols was bevacizumab, while numerous multikinase VEGFR inhibitors were utilized. On multivariate analysis, no differences in the OR for clinical benefit were observed when comparing between VEGF/R inhibitor classes: bevacizumab alone (OR=1 reference), multikinase inhibitors (OR=0.9 reference to bevacizumab [95% CI 0.6-1.3], P=0.5), simultaneous multikinase-inhibitors and bevacizumab (OR=1.0 reference to bevacizumab [95% CI 0.5-1.8], P=0.97).

Chemotherapy and VEGF/R response

The frequency of clinical benefit among all patients within this study who received chemotherapy was 23%. Among the entire cohort, chemotherapy use was not associated with a higher probability of clinical benefit (OR=1.0 [95% CI 0.8-1.3], P=0.99). Assessing individual chemotherapy classes, only anthracyclines were associated with higher OR for clinical benefit among the entire cohort (OR=1.6 [95% CI 1.1-2.4], P=0.02). Of note, the only anthracycline utilized in this study was doxorubicin.

VEGF/R inhibitor use was found to modify the effects of chemotherapy on multivariate analysis. Use of any chemotherapy agent concomitant with VEGF/R
inhibitors was associated with a significantly higher OR for clinical benefit compared to chemotherapy use without VEGF/R inhibitors, suggesting a synergistic interaction (OR with VEGF/R=1.6 [95% CI 1.1-2.5] v. OR without VEGF/R=0.4 [95% CI 0.3-0.6], interaction \(P=0.02 \)). All chemotherapy classes were associated with improved OR for clinical benefit in conjunction with a VEGF/R inhibitor; however, wide differences were noted between classes. The multivariate OR for clinical benefit in patients receiving a VEGF/R inhibitor (y-axis) versus the OR for clinical benefit in patients who did not (x-axis) is presented in Figure 1. Synergy was identified when the observed joint effect of chemotherapy in conjunction with VEGF/R inhibitors was significantly larger than the product of the observed individual effects of chemotherapy and VEGF/R inhibitors. To aid interpretation, chemotherapy classes exhibiting significant synergy are presented in bold with the corresponding interaction \(P \)-values.

Among specific classes of chemotherapy agents, anti-metabolic chemotherapeutics (gemcitabine, capecitabine, 5-FU, 5-Azacytidine, TAS-106, pemetrexed, and pralatrexate) exhibited the greatest synergy with VEGF/R inhibitors (OR with VEGF/R=2.7 [95% CI 1.5-4.7] v. OR without VEGF/R=0.2 [95% CI 0.1-0.3], interaction \(P=0.004 \)). In addition, platinum agent use (carboplatin, cisplatin, or oxaliplatin) was also associated with higher OR for clinical benefit in conjunction with a VEGF/R inhibitor (OR with VEGF/R=1.7 [95% CI 1.0-3.0] v. OR without VEGF/R=0.2 [95% CI 0.1-0.4], interaction \(P=0.03 \)). Illustrative calculation of the univariate OR for clinical benefit associated with anti-metabolite chemotherapy is presented in Supplementary Appendix 2.
Mutation status and VEGF/R response

The most common genetic mutation detected among the entire cohort was in *TP53* (39%) followed by *KRAS* (16%). *KRAS* mutations were associated with significantly lower OR for clinical benefit among all patients (OR=0.5 [95% CI 0.3-0.7], \(P=0.0004 \)). However, no significant differences in OR for clinical benefit were associated with *KRAS* mutations with VEGF/R inhibitor use compared to without (OR with VEGF/R=0.5 [95% CI 0.3-0.9] v. OR without VEGF/R=1.0 [95% CI 0.5-1.8], interaction \(P=0.4 \)) (Fig. 2). Analysis of specific *KRAS* mutations revealed point mutations at G12 (n=64, 81% of tested) and G13 (n=10, 13%) to be most prevalent. There was no significant difference in the frequency of known activating *KRAS* mutations in patients who received VEGF/R inhibitors (n=69, 87%) compared with those who did not (n=70, 91%; \(P=0.6 \)). A description of *MET, KRAS*, and *NRAS* mutations in relation to their functional significance and VEGF/R inhibitor use is presented in Supplemental Table 1.

In contrast, among the entire cohort, *BRAF* mutation was associated with significantly higher OR for clinical benefit (OR=2.3 [95% CI 1.5 to 3.4], \(P<0.0001 \)). Interestingly, the OR for clinical benefit was significantly greater in patients who did not receive VEGF/R inhibitors compared to those who did, suggesting an antagonistic interaction (OR with VEGF/R=0.6 [95% CI 0.3-1.6] v. OR without VEGF/R=2.5 [95% CI 10-63], interaction \(P=0.0006 \)). In contrast, patients with *TP53* mutations treated with VEGF/R inhibitors exhibited significantly higher OR for clinical benefit compared with patients who were not, suggesting a synergistic
interaction (OR with VEGF/R=1.3 [95% CI 0.6-2.7] v. OR without VEGF/R=0.1 [95% CI 0.06-0.3], interaction \(P=0.003 \)).

As the prognosis of \textit{BRAF} mutations is variable depending on cancer type, stratification of \textit{BRAF} mutants by diagnoses is presented in Supplemental Table 2. \textit{BRAF} mutation was most frequently observed in melanoma (66 of 129 tested, 51%) and thyroid (15 of 47 tested, 32%) cancer. To test whether the observed antagonism between \textit{BRAF} mutations and VEGF/R inhibition results not from biologic synergy but instead from not receiving a highly efficacious therapy, melanoma patients treated with \textit{BRAF} inhibitors (21) were removed from the regression model (n=43). In this sensitivity analysis, \textit{BRAF} mutation did not significantly interact with VEGF/R inhibitor use (OR with VEGF/R=0.7 [95% CI 0.3-1.7] v. OR without VEGF/R=4.6 [95% CI 1.8-11.7], interaction \(P=0.11 \)).

\textit{Diagnoses and VEGF/R response}

Frequency of overall response varied greatly between diagnoses (\textbf{Table 2}). Clinically favorable diagnoses within this study (\(\geq 40\% \) clinical benefit among all patients) were thymic (75% response), thyroid (70%), adrenal (46%), nonsquamous head and neck cancer (44%), unknown primaries (44%), and small bowel (40%). In contrast, clinically unfavorable diagnoses (<20% clinical benefit among all patients) were lower bowel (19%), lung (18%), cutaneous (18%) (other than melanoma), mesothelioma (17%), gastroesophageal (17%), uterine (17%), and central nervous system (11%).
On multivariate analysis, diagnoses of melanoma (OR with VEGF/R=0.5 [95% CI 0.2-0.9] v. OR without VEGF/R=13 [95% CI 6.7-26], interaction $P<0.0001$) and pancreatic cancer (OR with VEGF/R=0.2, [95% CI 0.06-0.8] v. OR without VEGF/R=7.0 [95% CI 1.9-25], interaction $P=0.03$) were associated with lower OR for clinical benefit with VEGF/R inhibitors compared to without (Fig. 3). Illustrative calculation of the univariate OR for clinical benefit associated with melanoma diagnosis is presented in Supplementary Appendix 2. A sensitivity analysis was conducted once again removing melanoma patients who received BRAF inhibitors (n=43). This analysis revealed no significant interactions between melanoma diagnosis and VEGF/R use (OR with VEGF/R=0.5 [95% CI 0.2-0.9] v. OR without VEGF/R=0.9 [95% CI 0.5-1.9], interaction $P=0.48$).

Discussion

This is to our knowledge the first study to aggregate patient-level data from multiple phase I trials to explore the interaction of chemotherapy with VEGF/R inhibitors. Significant findings include the association between VEGF/R inhibitors with higher frequency of clinical benefit among all patients, a finding that held on multivariate analyses and remained consistent across different VEGF/R inhibitor categories. Chemotherapy use was not associated with higher probability for clinical benefit among all patients; however, concomitant chemotherapy use with a VEGF/R inhibitor was associated with significantly higher OR for clinical benefit, suggesting a synergistic interaction. Among chemotherapy classes, the highest degree of synergy with VEGF/R inhibitors was exhibited by anti-metabolites followed by
platinum agents. Regarding mutational status and cancer diagnoses, \textit{BRAF} mutations or diagnosis of melanoma or pancreatic cancer were associated with significantly lower OR for clinical benefit with VEGF/R inhibitor use compared to without. On the other hand, TP53 mutations were associated with significantly higher OR for clinical benefit. Finally, although KRAS mutations were associated with significantly lower OR for clinical benefit among the entire cohort, ORs were not significantly modified by VEGF/R inhibitor use.

A consistent finding was the higher OR for clinical benefit with the combination of chemotherapy and VEGF/R inhibitors, suggesting synergy between these systemic agents (\textbf{Fig. 1}). Among chemotherapy agents, this effect was most pronounced with the anti-metabolite class. One hypothesis is that chemotherapeutics, especially anti-metabolites, exhibit potent cytotoxic anti-vasculature effects that synergizes with VEGF/R inhibitors (13-15). Another hypothesis is that angiogenesis inhibitors might “normalize” leaky tumor vasculature, resulting in a transient “burst” of mitotic activity that render tumor cells more susceptible to cell cycle-dependent chemotherapy such as anti-metabolites. Furthermore, such normalization in tumor vasculature and corresponding decrease in tumor interstitial fluid pressure have been hypothesized to facilitate chemotherapy delivery to tumors (11, 12).

Another finding in this study was that pancreatic cancer and melanoma were associated with significantly lower OR for clinical response with VEGF/R inhibitor use compared to without VEGF/R inhibitor. This finding is consistent with phase III trials that did not show a survival benefit with the addition of bevacizumab in these
cancers (5, 18). Resistance to these inhibitors may reflect an underlying hypoxic drive, which is either not affected by or produces significant compensatory mechanisms when treated with VEGF/R inhibitors (22, 23). Specific to pancreatic cancer is the hypoxic desmoplastic stroma, which may represent a microenvironment less sensitive to angiogenesis inhibition (24, 25). However, it is important to note that reduced OR for clinical benefit with VEGF/R inhibitor use may not reflect an antagonistic effect, but may instead result from exclusion of more efficacious therapies. For example, melanoma diagnosis and \textit{BRAF} mutations were associated with lower OR for clinical benefit with VEGF/R inhibitors. This finding may reflect the opportunity cost of \textit{BRAF} mutated melanomas patients not enrolled on \textit{BRAF} inhibitor trials due to their enrollment on trials with VEGF/R inhibitors (21, 26). This hypothesis is supported by sensitivity analyses removing melanoma patients treated with BRAF inhibitors from the regression model. In these analyses both the diagnosis of melanoma and BRAF mutation status did not significantly interact with VEGF/R inhibitor use (both \(P>0.05\)).

In contrast, patients with \textit{TP53} mutations exhibited a higher rate of clinical benefit with VEGF/R inhibitors, a finding observed in our previous work (27). Possible explanations include a role of \textit{TP53} mutations in promoting vascularization. This hypothesis is supported by clinical studies associating this mutation with increased vessel density within clinical studies (28) and neovascularization in xenograft models (29). With regard to other mutations, patients exhibiting MET mutation and amplifications appeared to have opposite albeit non-significant interactions with VEGF/R inhibitors (Fig. 2). Analyzing specific mutation sites
revealed the most common MET alteration to be N375S (60%), which has been suggested to be an inactivating mutation/polymorphism (30). As such, the observed differences in clinical benefit between MET mutations and alterations may be explained by the function of this predominate alteration (Fig. 2). Similarly NRAS and KRAS also exhibit analogous functions, but appear to have different (once again, non-significant) interactions with VEGF/R inhibitors. Unfortunately, give the unknown activity of NRAS mutations presented here, it is difficult to interpret this finding. Given the limited number of patients exhibiting specific gene mutations, further analysis of mutation interaction with VEGF/R inhibitors is warranted.

There are several limitations that must be considered. First, many VEGFR inhibitors target multiple receptor tyrosine kinases (31, 32). Although, our analysis stratifying by VEGF/R inhibitor class did not reveal significant differences between classes, we cannot exclude the contributions of off-target effects. We regret to report that due to the ongoing nature of many of these trials, we are unable to disclose investigational agent identity. However, we present a list of NCT number of all trials included (Supplementary Appendix 1). Second, as specific attending physicians selected the most appropriate trial for each patient, there was non-random pairing of patients and systemic agents. Although we attempted to control for baseline differences through multivariate analyses, statistical manipulations must be considered a poor substitute for adequate randomization. Also, as patients were treated on different phase I protocols, often in the setting of a dose-finding design, efficacious doses may not have been achieved. In addition, drug toxicity data is also not available in this analysis. Presentation of such data would allow greater clinical
context to the current efficacy analysis. Finally, although we control for the number of prior systemic therapies, our database lacks information on prior VEGF/R inhibitor use. It should be noted that we view these results as exploratory and therefore did not adjust for multiple testing.

Despite these limitations, numerous strengths of our analysis deserve mention. First, this analysis included a large numbers of patients that were subjected to regular and stringent radiographic monitoring per protocol stipulations. Furthermore, as the development pipeline for new targeted therapies often transition rapidly between phase I to III trials, it is often difficult to generate effective subgroup analyses or predict optimal therapy combinations prior to phase III trial initiation. To our knowledge, this analysis is the first patient-level analysis of this size assessing interactions within combination therapies with VEGF/VEGFR inhibitors.

In conclusion, we believe that our results generate a number of actionable hypotheses with respect to VEGF/R inhibitor. Perhaps most prominent among these is the synergy with chemotherapy use, specifically anti-metabolites. If validated, these findings offer interesting insights into the biology of clinical angiogenesis inhibition and may guide future trial design.
References

Figure Legends

Fig 1. Odds ratios (ORs) for clinical benefit among different chemotherapy classes in patients treated with concomitant VEGF/R inhibitors (Y-axis: OR with VEGF/R inhibitors) plotted against the ORs for clinical benefit in patients who did not receive VEGF/R inhibitors (X-axis: OR without VEGF/R inhibitors). Dashed line indicates equivalent ORs with and without VEGF/R inhibitor use. Points above this line indicate potential synergistic interactions, while those below indicate antagonistic interactions. Points are scaled to the relative number of patients within each plot. In instances of significant interaction (interaction $P<0.05$), the point is filled and P-value displayed.

Fig 2. Odds ratios (ORs) for clinical benefit among different mutations in patients treated with concomitant VEGF/R inhibitors (Y-axis: OR with VEGF/R inhibitors) plotted against the ORs for clinical benefit in patients who did not receive VEGF/R inhibitors (X-axis: OR without VEGF/R inhibitors). Dashed line indicates equivalent ORs with and without VEGF/R inhibitor use. Points above this line indicate potential synergistic interactions, while those below indicate antagonistic interactions. Points are scaled to the relative number of patients within each plot. In instances of significant interaction (interaction $P<0.05$), the point is filled and P-value displayed.
Fig 3. Odds ratios (ORs) for clinical benefit among different diagnoses in patients treated with concomitant VEGF/R inhibitors (Y-axis: OR with VEGF/R inhibitors) plotted against the ORs for clinical benefit in patients who did not receive VEGF/R inhibitors (X-axis: OR without VEGF/R inhibitors). Dashed line indicates equivalent ORs with and without VEGF/R inhibitor use. Points above this line indicate potential synergistic interactions, while those below indicate antagonistic interactions. Points are scaled to the relative number of patients within each plot. In instances of significant interaction (interaction $P<0.05$), the point is filled and P-value displayed.
<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Frequency of clinical benefit without VEGF/R (n=757)</th>
<th>Frequency of clinical benefit with VEGF/R (n=741)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>414 (55%)</td>
<td>412 (56%)</td>
</tr>
<tr>
<td>Male</td>
<td>343 (45%)</td>
<td>329 (44%)</td>
</tr>
<tr>
<td>Age at phase I (median, range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59 (19-90)</td>
<td></td>
<td>58 (4-88)</td>
</tr>
<tr>
<td>Number of agents used in best phase I (median, range)</td>
<td>2 (1-3)</td>
<td>2 (1-4)</td>
</tr>
<tr>
<td>Number of prior systemic treatments (median, range)</td>
<td>3 (0-14)</td>
<td>3 (0-15)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>619 (82%)</td>
<td>570 (77%)</td>
</tr>
<tr>
<td>Black</td>
<td>56 (7%)</td>
<td>80 (11%)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>54 (7%)</td>
<td>66 (9%)</td>
</tr>
<tr>
<td>Asian</td>
<td>28 (4%)</td>
<td>25 (3%)</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Chemotherapy Use</td>
<td>183 (24%)</td>
<td>168 (23%)</td>
</tr>
<tr>
<td>Alkylating</td>
<td>3 (<1%)</td>
<td>19 (3%)</td>
</tr>
<tr>
<td>Taxanes</td>
<td>85 (11%)</td>
<td>87 (12%)</td>
</tr>
<tr>
<td>Anti-Metabolite</td>
<td>49 (6%)</td>
<td>66 (9%)</td>
</tr>
<tr>
<td>Platinum</td>
<td>55 (7%)</td>
<td>67 (9%)</td>
</tr>
<tr>
<td>Anthracycline</td>
<td>10 (1%)</td>
<td>96 (13%)</td>
</tr>
<tr>
<td>Others</td>
<td>35 (5%)</td>
<td>26 (4%)</td>
</tr>
<tr>
<td>Mutations/Amplifications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTEN expression loss</td>
<td>97/325 (22%)</td>
<td>71/320 (22%)</td>
</tr>
<tr>
<td>TP53 mutation</td>
<td>66/176 (37%)</td>
<td>61/151 (40%)</td>
</tr>
<tr>
<td>KRAS mutation</td>
<td>79/500 (16%)</td>
<td>77/465 (17%)</td>
</tr>
<tr>
<td>PIK3CA mutation</td>
<td>73/561 (13%)</td>
<td>46/514 (9%)</td>
</tr>
<tr>
<td>HER2 amplification</td>
<td>17/248 (7%)</td>
<td>20/253 (8%)</td>
</tr>
<tr>
<td>MET mutation</td>
<td>26/256 (10%)</td>
<td>16/202 (8%)</td>
</tr>
<tr>
<td>NRAS mutation</td>
<td>13/353 (4%)</td>
<td>16/277 (6%)</td>
</tr>
<tr>
<td>BRAF mutation</td>
<td>79/515 (15%)</td>
<td>24/456 (5%)</td>
</tr>
<tr>
<td>EGFR mutation</td>
<td>27/414 (7%)</td>
<td>10/386 (3%)</td>
</tr>
<tr>
<td>MET amplification</td>
<td>14/379 (4%)</td>
<td>6/324 (2%)</td>
</tr>
<tr>
<td>KIT mutation</td>
<td>4/287 (1%)</td>
<td>5/245 (2%)</td>
</tr>
</tbody>
</table>

Frequency (percent proportions) displayed for all categorical variables and median (range) displayed for all continuous variables.

*The frequency of mutations/amplifications is displayed over the number of patients tested

Note: use of chemotherapy and the presence of mutations/amplifications do not represent mutually exclusive categories.
Table 2. Rate of clinical benefit with VEGF/VEGFR inhibition

<table>
<thead>
<tr>
<th>Diagnoses</th>
<th>Frequency without VEGF/R (n=757)</th>
<th>Frequency with VEGF/R (n=741)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid*</td>
<td>11/21 (52%)</td>
<td>43/56 (77%)</td>
</tr>
<tr>
<td>Thymic*</td>
<td>1/1 (100%)</td>
<td>5/7 (71%)</td>
</tr>
<tr>
<td>Adrenal*</td>
<td>5/9 (56%)</td>
<td>9/13 (69%)</td>
</tr>
<tr>
<td>Head and Neck (non-squamous histology)*</td>
<td>12/32 (38%)</td>
<td>12/22 (55%)</td>
</tr>
<tr>
<td>Cervix</td>
<td>3/14 (21%)</td>
<td>11/22 (50%)</td>
</tr>
<tr>
<td>Renal</td>
<td>6/25 (24%)</td>
<td>8/16 (50%)</td>
</tr>
<tr>
<td>Small Bowel*</td>
<td>2/7 (29%)</td>
<td>4/8 (50%)</td>
</tr>
<tr>
<td>Mesothelioma§</td>
<td>0/4 (0%)</td>
<td>1/2 (50%)</td>
</tr>
<tr>
<td>Ovarian</td>
<td>21/66 (32%)</td>
<td>37/84 (44%)</td>
</tr>
<tr>
<td>Prostate</td>
<td>7/20 (35%)</td>
<td>8/18 (44%)</td>
</tr>
<tr>
<td>Hepatobiliary</td>
<td>4/18 (22%)</td>
<td>13/30 (43%)</td>
</tr>
<tr>
<td>Breast</td>
<td>19/65 (29%)</td>
<td>26/64 (41%)</td>
</tr>
<tr>
<td>Unknown Primary*</td>
<td>4/8 (50%)</td>
<td>4/10 (40%)</td>
</tr>
<tr>
<td>Bladder</td>
<td>2/11 (18%)</td>
<td>5/13 (38%)</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>7/37 (19%)</td>
<td>23/63 (37%)</td>
</tr>
<tr>
<td>Head and Neck (squamous histology)</td>
<td>7/35 (20%)</td>
<td>5/15 (33%)</td>
</tr>
<tr>
<td>Genitourinary (other than prostate)§</td>
<td>0/5 (0%)</td>
<td>1/3 (33%)</td>
</tr>
<tr>
<td>Lower Bowel§</td>
<td>13/128 (10%)</td>
<td>38/135 (28%)</td>
</tr>
<tr>
<td>Lung§</td>
<td>9/66 (14%)</td>
<td>9/32 (28%)</td>
</tr>
<tr>
<td>Gastroesophageal§</td>
<td>3/31 (10%)</td>
<td>6/23 (26%)</td>
</tr>
<tr>
<td>Melanoma</td>
<td>39/94 (41%)</td>
<td>12/55 (22%)</td>
</tr>
<tr>
<td>Cutaneous (other than melanoma)§</td>
<td>2/13 (15%)</td>
<td>2/9 (22%)</td>
</tr>
<tr>
<td>Uterus§</td>
<td>2/22 (9%)</td>
<td>6/26 (20%)</td>
</tr>
<tr>
<td>Pancreas</td>
<td>6/20 (30%)</td>
<td>3/20 (15%)</td>
</tr>
<tr>
<td>Central Nervous System§</td>
<td>1/5 (20%)</td>
<td>0/4 (0%)</td>
</tr>
</tbody>
</table>

Frequency (percent proportions) displayed for all variables

*Defined as favorable histology in multivariate analyses (≥40% rate of clinical benefit) within entire cohort which includes both VEGF/VEGFR inhibited and non-inhibited

§ Defined as unfavorable histology in multivariate analyses (≤20% rate of clinical benefit) within entire cohort which includes both VEGF/VEGFR inhibited and non-inhibited
Synergy between VEGF/VEGFR inhibitors and chemotherapy agents in the phase I clinic
Chad Tang, Kenneth R. Hess, Denis L Fontes Jardim, et al.

Clin Cancer Res Published OnlineFirst October 14, 2014.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-1582

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2014/10/15/1078-0432.CCR-14-1582.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.