Title: An Open-label, Multi-center, Phase 1/2 Study of JNJ-40346527, a CSF-1R Inhibitor, in Patients with Relapsed or Refractory Hodgkin Lymphoma

Authors

Bastian von Tresckow\(^1\)*, Franck Morschhauser\(^2\), Vincent Ribrag\(^3\), Max S. Topp\(^4\), Caly Chien\(^5\), Shobha Seetharam\(^6\), Regina Aquino\(^6\), Sonja Kotoulek\(^6\), Carla de Boer\(^7\), Andreas Engert\(^1\)

\(^1\)University Hospital of Cologne, Department I of Internal Medicine, Cologne, Germany
\(^2\)Centre Hospitalier Régional Universitaire (CHRU) de Lille, Lille, France
\(^3\)Institut Gustave Roussy, Villejuif, France
\(^4\)University Hospital of Wurzburg, Medical Clinic and Polyclinic II, Wurzburg, Germany
\(^5\)Janssen Research & Development, LLC., NJ, USA
\(^6\)Janssen Research & Development, LLC., PA, USA
\(^7\)Janssen Biologics B.V, Leiden, Netherlands

Running title: JNJ-40346527 for Relapsed or Refractory Hodgkin Lymphoma

Type: Research article, not invited

*Corresponding author
Dr. Bastian von Tresckow
University Hospital of Cologne, Department I of Internal Medicine
Bettenhaus, Level 0, Room 0.010, Kerpener Str 62
50937 Cologne, Germany
Tel: +49 221 478 98888
Fax: +49 221 478 98622
Email: bastian.von-tresckow@uk-koeln.de

Disclosures
Drs. Chien, and Seetharam, and Ms. Aquino and Kotoulek are employees of Janssen Research & Development, LLC. USA. Dr. de Boer is an employee of Janssen Biologics B.V, Leiden,
Netherlands. Dr. von Tresckow has received honoraria for consultancy and research funding from Novartis, and honoraria from Takeda as reimbursement of congress, travel, and accommodation costs and for preparation of scientific educational events. Dr. Morschhauser has received honoraria from Janssen Research & Development. Dr. Ribrag has membership on Board of Directors or advisory committees of Servier, Janssen Research & Development, Takeda Pharma GmbH and sanofi-aventis, and research funding committees of Servier, Bayer and sanofi-aventis. He has also received honoraria for consultancy from sanofi-aventis. Dr. Topp has received honoraria for consultancy from Amgen. Dr. Engert has received research funding and honoraria for consultancy from Millennium, Takeda.

Abstract: Structured (250/250 words)
Word count: 4029/5000 words
Table/figures: 6 + 1 supplementary table

Trial registration: ClinicalTrials.gov (NCT01572519)

Study funding: Janssen Research & Development, LLC.

Statement of translational relevance

In preclinical studies, JNJ-40346527, a selective inhibitor of colony stimulating factor-1 receptor (CSF-1R), reduced the viability of Hodgkin lymphoma (HL) cell lines, which aberrantly express lineage-inappropriate CSF-1R. Further, classical HL patient’s samples demonstrated expression of CSF-1R and its ligand, confirming activation of the CSF-1R pathway in classical HL. These findings provide a rationale for the use of JNJ-40346527 in the treatment of classical HL.
JNJ-40346527, demonstrated an acceptable safety and tolerability profile in patients with relapsed or refractory classical HL in this open-label, phase 1/2, multi-center study. Although, preliminary antitumor results suggested limited activity in monotherapy for the treatment of classical HL, the other study objectives of determining the recommended phase 2 dose, pharmacokinetic exposure, and biomarkers of target engagement were met. Thus, further evaluation of this drug in other cancers is warranted.

Keywords: colony stimulating factor-1 receptor; dose escalation; Hodgkin lymphoma; pharmacokinetics; relapsed
Abstract

Purpose: This phase 1/2 study investigated JNJ-40346527, a selective inhibitor of the colony stimulating factor-1 receptor (CSF-1R) tyrosine kinase as treatment for relapsed or refractory classical Hodgkin lymphoma (cHL).

Experimental design: Patients ≥18 years with histopathologically confirmed initial diagnosis of cHL that had relapsed or was refractory after ≥1 appropriate therapy were assigned to sequential cohorts of oral daily dose of JNJ-40346527 (150, 300, 450, 600 mg QD, and 150 mg BID). For the dose escalation phase, primary endpoint was to establish the recommended phase 2 dose. Secondary endpoints included safety, pharmacokinetics, and pharmacodynamics.

Results: 21 patients ([150 mg: 3; 300 mg: 5; 450 mg: 3, 600 mg: 3] QD, and 150 mg BID: 7) were enrolled, 10 men, median age 40 (range, 19–75) years, median number of prior systemic therapies 6 (range, 3–14). No dose limiting toxicities observed; maximum tolerated dose was not established. Best overall response was complete remission in 1 patient (duration, +352 days) and stable disease in 11 patients: (duration, 1.5–8 months). Median number of cycles: 4 (range, 1–16). Most common (≥20% patients) possibly drug-related adverse events (per investigator assessment) were nausea (n=6), headache and pyrexia (n=5 each). JNJ-40346527 exposure increased in near dose-proportional manner over dose range of 150–450 mg QD, but plateaued at 600 mg QD. Target engagement was confirmed (>80% inhibition of CSF-1R phosphorylation, 4 hours postdosing).

Conclusions: JNJ-40346527, a selective inhibitor of CSF-1R was well-tolerated and preliminary antitumor results suggested limited activity in monotherapy for the treatment of cHL.
Introduction

Frontline standard treatment comprising of radiotherapy, combination chemotherapy, or combined modality therapy provides long-term survival in more than 80% of patients with classical Hodgkin lymphoma (cHL) (1, 2). However, depending on initial stage and first line therapy, approximately 10%-30% of patients presenting with cHL are expected to become refractory to initial therapy or to relapse (3, 4). Even at first relapse, approximately 50% of patients can be cured with high dose chemotherapy (HDCT) and autologous stem cell transplant (ASCT) (5). Despite these advances, patients relapsing after ASCT have a poor prognosis and treatment is often palliative (6, 7). Moreover, in the increasing number of older patients who do not tolerate current first line approaches and are not suitable for HDCT and ASCT at relapse, the prognosis is dismal (8). Recently, in a phase 2 study with patients with post-ASCT recurrence of HL, treatment with brentuximab vedotin, an antibody-drug conjugate (ADC) that selectively delivers an antimicrotubule agent into CD30-expressing cells, showed an overall response rate of 75%, with 34% complete responses (CR) and a median remission duration of 20 months for complete responders (9). Furthermore, the median overall survival (OS) was 40.5 months and the estimated 3-year survival rate was 54% (10). However, median PFS for all patients was 5.6 months and long-term remissions were reported in a small proportion of patients who did not require additional treatment (10). Therefore, there is still an unmet medical need for new targeted therapies that are able to suppress the oncogenic drivers of malignant cHL cells with tolerable side-effects in HL patients relapsing after ASCT or patients not suitable for ASCT.

Colony stimulating factor-1 receptor (CSF-1R), also known as cFMS (cellular homolog of the feline McDonough sarcoma virus oncogene [v-fms]) (11, 12) is an exclusive type III receptor tyrosine kinase for CSF-1 and interleukin (IL)-34, with high expression limited to macrophage
lineage and closely related to tyrosine-protein kinase kit (ckit) and fms-related tyrosine kinase-3 (flt-3). Macrophage infiltration correlates with poor prognosis, and has been observed in several types of human cancers (13-15). CSF-1 is implicated in tumor macrophage recruitment, survival, proliferation, and differentiation, osteoclast maturation/differentiation, primary tumor growth, metastasis, and patient outcome in several tumors and bone metastasis (16-20). Tumor-associated macrophages (TAMs) provide factors that promote tumor growth, angiogenesis and metastasis and high proportions of macrophages/TAMs are associated with adverse treatment outcome in cHL (14, 15, 21-23). Animal studies demonstrated that inhibition of macrophage infiltration in experimental tumors in mice, via CSF-1R blockade, had a significant effect on tumor growth (20, 24).

The cHL is characterized by presence of Reed-Sternberg tumor cells which are outnumbered by the surrounding inflammatory milieu of macrophages, B and T cells, eosinophils and other lymphoid cells (25). The hallmark of hematopoietic malignancies including cHL is reprogramming of the normal gene expression pattern (26, 27). In cHL, the B-cell derived clonal Reed Sternberg cells lose expression of B cell-specific genes and acquire the expression of B lineage inappropriate genes, such as the oncogenic tyrosine kinase receptor. Both CSF-1R and its ligand, CSF-1, are expressed in cHL cell lines and patient samples (11, 12, 17, 28). Reduced proliferation of several HL cell lines following inhibition of CSF-1R suggests that this pathway is used by cHL cells for growth (11). JNJ-40346527, an orally available selective inhibitor of CSF-1R, reduced the viability of HL cell lines which aberrantly express lineage-inappropriate CSF-1R confirming that the CSF-1R pathway is active in cHL cell lines (29). Furthermore, PCR and Taqman analysis of HL patient’s samples showed expression of CSF-1R. JNJ-40346527 also acts to prevent osteoclastogenesis and macrophage activation, survival and differentiation in an
arthrits model (unpublished data). In HL, secretion of macrophage migration inhibition factor may contribute to the proliferation of HL cells and therefore, the inhibition of HL tumor promoting macrophages could provide a second mechanism by which the compound would inhibit the tumor growth (15). These preclinical findings provided a rationale that inhibition of CSF-1R by JNJ-40346527 may result in sustained anti-proliferative activity.

The doses evaluated in the current study were based on the results of phase 1 studies of JNJ-40346527. In a single-dose phase 1 study of JNJ-40346527 (doses ranging from 10 mg QD to 450 mg BID [total daily dose of 900 mg]), the absorption of JNJ-40346527 was rapid (median t_{max} ranging from 1 to 3.5 hours) and both C_{max} and AUC values increased with dose up to the 450 mg QD dose (unpublished data). Further, in the multiple-dose phase 1 study of JNJ-40346527 (doses ranging from 50 mg QD to 300 mg BID [total daily dose of 600 mg] for 14 consecutive days), on Day 14, C_{max} appeared to increase dose proportionally following QD dosing (50-300 mg) while AUC on Day 14 appeared to increase dose proportionally across all dose regimens (50 mg QD to 300 mg BID) (unpublished data). This study investigated JNJ-40346527, as treatment for relapsed or refractory cHL by means of dose, safety, response rates, pharmacokinetics and pharmacodynamics correlative studies.

Materials and Methods

Patient population

Patients of either sex \geq18 years of age with a histopathologically confirmed initial diagnosis of cHL who had relapsed or refractory disease after at least 1 appropriate therapy (chemotherapy, radiation, allogeneic or autologous stem cell transplant) were included in the study. The patients
had to have received an ASCT, if eligible for transplant. If allogeneic transplant was received before enrollment, the patient had to be off immunosuppressive medication for at least 1 month. Additional inclusion criteria were an Eastern Cooperative Oncology Group Performance status (ECOG PS) score of 0–2, at least 3 weeks since the last chemotherapy or radiation and adequate bone marrow (absolute neutrophil count [ANC] ≥1000/mm3 [or ≥1.0 × 109/L], a platelet count 75,000/mm3 [or ≥75 × 109/L], and a hemoglobin level greater than 8.5 g/dL [or ≥85 g/L]), liver (serum total and direct bilirubin levels ≤2.0 × upper limit of normal [ULN], and serum ALT and AST levels ≤3.0 × ULN) and kidney (serum creatinine levels ≤1.5 × ULN or calculated glomerular filtration rate [GFR] of >60 mL/min/1.73 m2) function. Main exclusion criteria were as follows: known brain metastases or leptomeningeal disease, prior treatment with a CSF-1R inhibitor, major surgery within 3 weeks before screening, and other malignancies within 5 years.

The Independent Ethics Committee or Institutional Review Board at each study site approved the protocol and the study was conducted in accordance with the ethical principles that have their origin in the Declaration of Helsinki and that are consistent with Good Clinical Practices and applicable regulatory requirements. All patients or their legally acceptable representatives provided their written consent before entering the study.

Study design and treatment schedule

This open-label, multi-center dose-escalation phase 1/2 study of JNJ-40346527 in patients with relapsed or refractory cHL consisted of screening (day −28 to −1), an open-label treatment (treatment to continue until disease progression or unacceptable toxicity), and a follow-up phase. Patients self-administered JNJ-40346527 orally once daily (preferably in the morning shortly after breakfast) or twice daily on a continuous dosing schedule at approximately the same time each day.
Each 21 consecutive days constituted 1 treatment cycle. The study used a traditional 3+3 dose-escalation design. Dose-limiting toxicities (DLT) were assessed during the first treatment cycle. Dose levels assessed were 150 mg, 300 mg, 450 mg, 600 mg once daily (QD) and 150 mg twice daily (BID). If one of the first 3 patients had a DLT, the cohort was expanded to 6 patients. Dose escalations continued until the maximal tolerated dose (MTD) was determined (defined as the highest dose at which less than one third of the patients in a dose level cohort experience DLT), the highest dose cohort was reached, or an appropriate dose for phase 2 was determined based on PK, PD, and response data. The DLT evaluation period began with the first dose of JNJ-40346527 and ended after 21 days of dosing (1 cycle, including any treatment delays within the cycle) immediately before the initiation of the second cycle. The National Cancer Institute-Common Terminology Criteria for Adverse Events (NCI-CTCAE version 4.03) were used to grade toxicity. Dose limiting toxicities were defined as follows: Any grade 3 or grade 4 non-hematologic toxicity including persistent grade ≥2 nausea or vomiting despite prolonged anti-emetic treatment; Grade 4 neutropenia (ANC\(<500/mm^3\)>7 days febrile neutropenia (\([\text{ANC}<1000/mm^3\text{ with a single temperature of }\geq38.3°C\text{ or sustained temperature of }\geq38°C\text{ for over one hour}]\) or sepsis); or grade 4 thrombocytopenia (platelet count <25,000/mm\(^3\)>5 days and not responding to transfusion support. Excluded for DLT were grade 3 nausea or vomiting or diarrhea responding to treatment, isolated grade 3 gamma glutamyl transferase (GGT) elevations, grade 3 fatigue/asthenia.

Patients who experienced a DLT were not substituted with another patient. Patients who discontinued the 1st cycle without experiencing a DLT were replaced to ensure 3 safety and PK evaluable patients per dose cohort. All available data were reviewed by the study evaluation team (SET). The SET consisted of the principal investigators (or their designees), the sponsor's...
medical monitors, and the sponsor's clinical pharmacologist. No intra-patient dose escalation was permitted. Treatment was continued until disease progression or unacceptable toxicity (based on investigator decision) occurred. Only patients who discontinued study treatment before disease progression or because of treatment-related grade 3 or higher toxicity participated in the follow-up phase.

Study endpoints

Safety evaluations

Safety evaluations included all AEs, clinical laboratory tests, vital sign measurements, physical examinations, ECGs, and ECOG PS.

Efficacy evaluations

Patients were evaluated using computed tomography (CT) scans with IV contrast of the neck, chest, abdomen, and pelvis and whole body positron emission tomography (PET) scans. Disease response was assessed according to the Revised Response Criteria for Malignant Lymphoma (Cheson criteria) (30). The analysis of response rate included data from physical examination, CT and [¹⁸F]-fluorodeoxyglucose (FDG)-PET or magnetic resonance imaging (MRI) scan (if applicable to evaluate sites of disease that cannot be adequately imaged using CT). Patients who completed 2 cycles of therapy were restaged and those who achieved a response or stable disease could continue treatment until disease progression. The evaluations were performed throughout the study for each patient (baseline, end of cycle 2 (=6 weeks), end of cycle 6 (=18 weeks), thereafter per hospital standard practice with a minimum every 3 months) using the same method of assessment.

Pharmacokinetic evaluation
Blood samples for pharmacokinetic (PK) studies were collected on days 1 and 21, predose and 30 mins 1, 2, 3, 4, 6, 8 and 24 hours postdose, and on days 7 and 14, predose and 4 hours postdose during the 1st cycle from all patients for the measurement of plasma concentrations of JNJ-40346527 using a validated liquid chromatographic tandem mass spectrometric method. The following PK parameters were calculated using noncompartmental methods with WinNonlin Version 5.2.1 (Pharsight Corporation, Mountain View, CA): maximum observed plasma concentration (C_{max}), trough plasma concentration prior to dosing or at the end of the dosing interval (C_{0}), observed plasma concentration at 4 hours after dosing (C_{4}), time to reach C_{max} (t_{max}), area under the plasma concentration-time curve from time 0 to time 24 hours after dosing (AUC_{24}).

Pharmacodynamic evaluation

Blood samples (whole blood and plasma) were collected at day 1, 7, 14 and 21. Biomarkers included CSF-1 in plasma or tumor tissue and phosphorylated CSF-1R/total CSF-1R in peripheral blood mononuclear cells (PBMC).

To measure phosphorylated CSF-1R/total CSF-1R, PBMC lysates were prepared from blood collected from patients stimulated with either CSF-1 (8 μg/mL in PBS) or vehicle control. Immunoprecipitation (IP) coupled with Western based approach was used to measure ratio of p-CSF-1R to CSF-1R in the PBMCs. Briefly, immunoprecipitation for each sample and control was carried out using biotinylated human M-CSF-1R capture antibody for CSF-1R and biotin-conjugated anti-phosphotyrosine capture antibody was used for p-CSF-1R (31). Resolved proteins were transferred to a nitrocellulose membrane and CSF-1R blots were probed with CSF-1R antibody at 1:2000 in milk buffer and p-CSF-1R blots were probed with phospho-M-CSF Receptor (Tyr723) antibody at 1:1000 dilution. Chemiluminescence was detected using
the ChemiDoc XRS+ System with supercooled CCD camera. Band intensities were measured at ~150-165kDa, the estimated molecular weight for CSF-1R after accounting for glycosylation, and quantified with the Image Lab image acquisition and analysis software (Bio-Rad).

Statistical design and analysis

Sample size determination

The sample size estimated for the phase 1 portion of the study was based on the utilization of a traditional 3+3 design. The sample size estimated for a phase 2 part assumed a 30% overall response rate. A sample size of 27 response-evaluable patients at specified dose level (including patients treated at the same dose during phase 1 and in the expansion cohort, if deemed appropriate) would provide a 2-sided 95% confidence interval (CI) (14%; 50%). To account for a dropout rate of approximately 10%, up to 30 patients treated in total at the recommended phase 2 dose (including patients treated at the same dose during phase 1 and in the expansion cohort) were planned to be enrolled.

Safety evaluations, PK parameters, and PD biomarker parameters were summarized descriptively.

The ‘Treated Population’, used for all safety analyses and for efficacy analysis consisted of all patients who received ≥1 dose of the study drug. The ‘Response-Evaluable Population’ consisted of all patients who received ≥1 dose of study drug and had a posttreatment disease assessment. The ‘PK Population’ consisted of all patients who had sufficient and interpretable PK assessments to calculate the non-compartmental PK parameters.
Results

Demographics

A total of 21 patients were enrolled during the dose escalation phase 1 part of the study. In the 300 mg QD cohort, there were 2 patients enrolled that showed rapid PD during the 1st cycle and discontinued after 15 days and 6 days, respectively. Patients were still counted for the overall safety tabulations, but excluded for DLT assessment as they discontinued so rapidly. In the 150 mg BID cohort, 3 patients were included for DLT assessment and 4 additional patients to further assess safety, PK and PD. The median age of the patients was 33 years (range: 19-75 years) (Table 1). Most patients (n=16, 76.2%) had Stage IV Hodgkin lymphoma and nodular sclerosis (n=19, 90.5%) at study entry (Table 1).

All patients discontinued the study; 18 (85.7%) patients discontinued due to progressive disease, and 1 (4.8%) patient discontinued with complete response (CR) after one year of treatment, 1 patient by investigator decision (SD with increase in lesions’ sizes and increased PET activity), and 1 patient due to AEs (lung embolism [noted at cycle 1 day 1], which was a pre-existing event at study entry). The median duration of treatment was 9.9 weeks (range, 0 to 49 weeks), during which patients received a median of four cycles of treatment (range, 1 to 16 cycles) (Supplementary Table 1).

The median number of prior therapies was 6 (range, 3 to 14). There were 9/21 patients who were refractory to last treatment. No noteworthy prior/concomitant medications were taken. Of the 21 patients, 13 received brentuximab vedotin before they entered the study (response after brentuximab vedotin: n=1 with CR, n=2 with PR, n=5 with SD; n=3 with PD, and n=3 were not evaluable).
Pharmacokinetics

Based on trough plasma JNJ-40346527 concentrations on Days 7, 14, and predose and 24 hour concentrations on Day 21, JNJ-40346527 appears to have reached steady-state by Day 21 for all doses. C_{max} and AUC$_{24}$ of JNJ-40346527 increased with increasing dose from 150 mg QD to 450 mg QD on Day 21 (Table 2 and Figure 1). However, exposure was paradoxically lower at 600 mg QD compared to 450 mg QD. Mean AUC$_{24}$ values were comparable between 300 mg QD and 150 mg BID on Day 21 while mean C_{max} was lower following BID dosing. Among all dose levels, PK at 150 mg BID was associated with the lowest C_{max} to C_{min} ratio (approximately 2.5) and less fluctuations on drug concentrations over the dosing interval. This appears to be consistent with the sustained pFMS inhibition (>90%) observed at the 150 mg BID dose level. Therefore, 150 mg BID dose included 3 patients for DLT assessment and 4 additional patients to further assess safety, PK and PD.

Biomarkers

From phospho-CSF-1R analysis, more than 80% to 90% inhibition of pCSF-1R was observed at 4 hours post-treatment on days 1, 7, 14 and 21 in most patient samples in all cohorts (Figure 2a and 2b), confirming target engagement by JNJ-40346527. The phospho-CSF-1R inhibition seemed to drop at trough (i.e., 24 hours post-dosing at day 21) at QD doses, but sustained inhibition was observed at the 150 mg BID dose level at both peak and trough, and therefore this was recommended as the most optimal phase 2 dose.

Safety

Overall, 90.5% (19/21) treated patients experienced 1 or more AEs. The most frequently reported AEs (occurring in ≥20% of the patients) included pyrexia (n=11, 52.4% patients), nausea and headache (each n=7, 33.3% patients), vomiting (n=6, 28.6% patients), and anemia (n=5, 23.8%
patients). Grade 3 TEAEs were reported in 7 (33%) patients (anemia and lymphopenia [n=3, 14.3%]; gastric obstruction, peripheral edema, abnormal hepatic function, hyperlipasemia, and hypoalbuminemia [n=1, 4.8%], and grade 4 (laryngeal inflammation) and 5 (oropharyngeal pain) TEAEs in 1 (4.8%) patient each. Total 81.0% (17/21) treated patients experienced 1 or more drug-related AEs (Table 3). No DLTs were identified. The MTD was not reached. Serious AEs were recorded in four patients; two patients had SAEs of dyspnea, one of which was grade 4. One patient had lung disorder that was reported as an AE leading to death due to disease progression (grade 5), and one patient had gastric obstruction (grade 3).

A grade 3 or 4 laboratory abnormality was reported in 12 (57.1%) patients. Most common was decreased lymphocyte counts that occurred in 9 (42.9%) patients. None of these abnormalities led to dose reduction or treatment discontinuation, except a grade 2 elevation of creatine kinase that led to a dose reduction. Two (9.5%) patients discontinued treatment, both due to non-drug related TEAEs (grade 3 limb edema and grade 3 lung disorder). There were 3 deaths that occurred, the cause of death in all the cases was disease progression and lung disorder was reported to be the cause of death in 1 patient. This patient progressed on the lung lesion and developed an interstitial pneumonitis; no infection could be documented. Of the other 2 patients who died one had been admitted to the intensive care unit with worsening of dyspnea and fever, ten days before death. The event of dyspnea led to patients’ persistent/significant disability, however, the patient was discharged on the next day. For the third patient, at the time of death, the events of enzyme abnormality (alkaline phosphatase levels elevated) and hypoalbuminemia had not resolved while, the event of oral candidiasis was reported as resolving. Two of the deaths occurred within 30 days of the last dose of study treatment.

Efficacy
One patient treated with 150 mg QD, had a best overall response of CR with a PFS of 352+ days. This male patient had multiple relapsed disease and received HDCT and ASCT after initial combined modality treatment. At post-ASCT relapse he was treated with IGEV (ifosfamide, gemcitabine, vinorelbine, steroids) (32) followed by involved-field radiation therapy and achieved a PET positive PR. The patient then entered the current trial. During the treatment period, the tumor shrank and became PET negative. Overall, 11 (55.0%) patients had stable disease (SD) and 8 (40.0%) patients had progressive disease (PD) (Table 4). PFS for all treated patients ranged from 2 days to 352+ days.

Discussion

JNJ-40346527, a CSF-1R inhibitor demonstrated an acceptable safety and tolerability profile in patients with relapsed or refractory cHL in this open-label, phase 1/2, multi-center study. One patient (5.0%) treated with 150 mg QD had a best overall response of CR across all treatment groups with PFS of 1 year, and 11 (55.0%) patients had SD. Baseline characteristics of patients (median of 6 prior regimen including brentuximab vedotin for 13/21pts and 9/21 refractory to last prior therapy) suggest we enrolled a very poor-risk group of patients, which could have contributed to the failure in achieving target efficacy outcomes. No DLTs were reported and MTD was not reached.

The doses to be evaluated in the present study (150-600 mg per day) are within the dose range that was deemed safe and well-tolerated in healthy participants (unpublished data). These doses have also been demonstrated to be pharmacologically active ex vivo with maximal inhibition of CSF-1R phosphorylation (>95%) being achieved at a dose of 450 mg or higher in the single-dose
study and at a dose of 150 mg once daily or higher in the multiple-dose study. Both PK and PD analyses showed that there was target engagement at all dose levels, with optimal inhibition of p-CSF-1R at 150 mg BID. The primary goal of the PD biomarker analysis was to assess inhibition of CSF-1R mediated biological effects by JNJ-40346527 (as an indicator of target engagement by the compound) to analyze differences between responders and nonresponders, and to determine if the markers could be used to classify patients as potential responders before treatment. Tumor tissue analyses were not performed since pre- and post-treatment tumor biopsies were not obtained and only one patient reported a CR prior to the study being terminated. The 150 mg BID dose was selected as the recommended phase 2 dose based upon the PK and PD results over 24 hours after dosing. Based on these results increasing dose or changing administration schedule was not expected to result in an increased target engagement, inhibition of phosphorylation and thus higher efficacy.

High-dose chemotherapy supported by ASCT is considered the standard of care in patients with HL which has relapsed, or is refractory to conventional chemoradiotherapy. Patients with relapsed HL after ASCT and patients not suitable for ASCT at first relapse have a poor prognosis, hence new approaches are needed (33). Although, brentuximab vedotin has shown high efficacy and excellent tolerability in this group of patients (10), patients relapsing after or refractory to brentuximab vedotin still have few therapeutic options. In other B-cell neoplasms that targeted small molecule inhibitors have shown high efficacy however, an effective small molecule inhibitor for the treatment of relapsed HL has not been reported yet (34, 35). An interplay of several mechanisms underlies the development of cancer, and various multi-targeted small molecule tyrosine kinases are now in routine use for the management of different solid tumor indications which were earlier considered to be unresponsive to systemic therapy (36-38).
CSF-1R/CSF-1 signaling strongly correlates for instance with poor prognosis in breast cancer, and inhibition of this signaling pathway impaired CSF-1 induced cell proliferation in cell lines (39-41). Despite successful inhibition of proliferation and invasion in HL cell lines, this study did not show high efficacy in late stage cHL patients who had undergone several prior treatments before enrollment. This is possibly in part due to the high tumor burden and dedifferentiation of HL tumor cells in these patients. Interestingly, the patient with the CR had a low tumor burden before study entry and might thus have been more responsive to the treatment.

Limitation of single-target molecules that are upstream in the signaling cascade is that tumors can activate alternate parallel or downstream messengers that can compromise the efficacy (42). Furthermore resistance to these single-target molecules is a problem. Further clinical studies are required to assess the effect of these novel single-target molecules, perhaps in combination with other agents, for the management of cancer, and correlation of PD and biomarker studies is essential to decipher the signaling mechanism, to ensure optimal efficacy with manageable toxicity profile (42, 43).

In conclusion, the advent of CSF-1R inhibitors which possess the novel dual ability to regulate the tumor cells and the surrounding macrophage behavior could revolutionize the understanding and treatment of difficult to treat resistant cancers such as cHL. Although, the objective of at least 30% overall response rate was not met and further dose increases were not expected to improve PK and PD outcomes, JNJ-40346527 demonstrated an acceptable safety and tolerability profile and the other study objectives of determining the recommended phase 2 dose, PK exposure, and biomarkers of target engagement were met. Due to the favorable toxicity profile of JNJ 40346527 and the demonstration of its pharmacological activity in terms of CSF-1R-inhibition in relapsed HL, further evaluation of this drug in other cancers is warranted.
Acknowledgements

The authors thank the study patients, without whom this study would never have been accomplished. Dr. Sangita P. Patil (SIRO Clinpharm Pvt. Ltd.) provided writing assistance for this manuscript and Dr. Namit Ghildyal (Janssen Research & Development, LLC) provided editorial support for the development of this manuscript.
References

tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia. Mol Cancer Ther 2009;8:3151-61.

Legends:

Figure 1: Comparative mean (SD) pharmacokinetic profiles of JNJ-40346527 on day 21 for all cohorts

Figure 2A: Inhibition of Colony Stimulating Factor-1 Receptor Phosphorylation

Figure 2B: Representative Western blot

Table 1: Baseline demographics

Key: QD: once a day; BID: twice a day; HL: Hodgkin Lymphoma; SD: standard deviation

Percentages are calculated with the number of patients in all treated patients population with non-missing values for that parameter as the denominator.

Table 2: Pharmacokinetic Parameters

AUC \(_{24}\): area under the plasma concentration-time curve from time 0 to time 24 hours after dosing; C\(_0\): trough plasma concentration prior to dosing or at the end of the dosing interval; C\(_4\): observed plasma concentration at 4 hours after dosing; C\(_{\text{max}}\): maximum observed plasma concentration; T\(_{\text{max}}\): time to reach C\(_{\text{max}}\)

\(^1\)Mean (SD) for all parameters; median (range) for T\(_{\text{max}}\); NC: not calculated

Table 3: Treatment-emergent Drug-related Adverse Events by Worst Toxicity Grade in at least 2 Patients in any Group (Treated Patients)

CPK: creatine phosphokinase; TEAE: treatment-emergent adverse events

Table 4: Best Overall Response by Cheson Criteria (Response-evaluable Patient Population)

QD: once a day, BID: twice a day.

\(^a\)Patients who received at least 1 dose of the study treatment, and had baseline and at least one post-treatment tumor assessment

\(^b\)Objective response rate = complete response or partial response

Note: Percentages calculated with the number of evaluable patients as denominator.
Supplementary Table 1: Extent of Exposure

Key: QD=Once a day, BID=Twice a day; SD=standard deviation
Table 1: Baseline demographics

<table>
<thead>
<tr>
<th>Treated, n</th>
<th>150 mg QD</th>
<th>300 mg QD</th>
<th>450 mg QD</th>
<th>600 mg QD</th>
<th>150 mg BID</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>48.0 (24.9)</td>
<td>33.4 (10.0)</td>
<td>49.0 (18.5)</td>
<td>29.3 (10.5)</td>
<td>38.6 (18.6)</td>
<td>38.9 (16.7)</td>
</tr>
<tr>
<td>≤45, n (%)</td>
<td>2 (66.7)</td>
<td>4 (80.0)</td>
<td>1 (33.3)</td>
<td>3 (100.0)</td>
<td>5 (71.4)</td>
<td>15 (71.4)</td>
</tr>
<tr>
<td>> 45, n (%)</td>
<td>1 (33.3)</td>
<td>1 (20.0)</td>
<td>2 (66.7)</td>
<td>0</td>
<td>2 (28.6)</td>
<td>6 (28.6)</td>
</tr>
<tr>
<td>HL Stage at Entry, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stage II</td>
<td>1 (33.3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (4.8)</td>
</tr>
<tr>
<td>Stage III</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (33.3)</td>
<td>3 (42.9)</td>
<td>4 (19.0)</td>
</tr>
<tr>
<td>Stage IV</td>
<td>2 (66.7)</td>
<td>5 (100.0)</td>
<td>3 (100.0)</td>
<td>2 (66.7)</td>
<td>4 (57.1)</td>
<td>16 (76.2)</td>
</tr>
<tr>
<td>HL Subtype, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nodular Sclerosis</td>
<td>2 (66.7)</td>
<td>5 (100.0)</td>
<td>3 (100.0)</td>
<td>2 (66.7)</td>
<td>7 (100.0)</td>
<td>19 (90.5)</td>
</tr>
<tr>
<td>Mixed Cellularity</td>
<td>1 (33.3)</td>
<td>0</td>
<td>0</td>
<td>1 (33.3)</td>
<td>0</td>
<td>2 (9.5)</td>
</tr>
<tr>
<td>Patients with prior systemic therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>4.0 (3; 12)</td>
<td>9.0 (5; 13)</td>
<td>8.0 (4; 14)</td>
<td>6.0 (4; 12)</td>
<td>6.0 (3; 10)</td>
<td>6.0 (3; 14)</td>
</tr>
<tr>
<td>1 to 5, n (%)</td>
<td>2 (66.7)</td>
<td>1 (20.0)</td>
<td>1 (33.3)</td>
<td>1 (33.3)</td>
<td>3 (42.9)</td>
<td>8 (38.1)</td>
</tr>
<tr>
<td>> 5, n (%)</td>
<td>1 (33.3)</td>
<td>4 (80.0)</td>
<td>2 (66.7)</td>
<td>2 (66.7)</td>
<td>4 (57.1)</td>
<td>13 (61.9)</td>
</tr>
<tr>
<td>Patients who received ASCT/alloTx, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (66.7)</td>
<td>5 (100.0)</td>
<td>2 (66.7)</td>
<td>3 (100.0)</td>
<td>6 (85.7)</td>
<td>18 (85.7)</td>
<td></td>
</tr>
<tr>
<td>Prior radiotherapy, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (100.0)</td>
<td>4 (80.0)</td>
<td>3 (100.0)</td>
<td>3 (100.0)</td>
<td>4 (57.1)</td>
<td>17 (81.0)</td>
<td></td>
</tr>
</tbody>
</table>

Key: ASCT/alloTx: autologous or allogenic stem cell transplant; BID: twice a day; HL: Hodgkin Lymphoma; QD: once a day; SD: standard deviation

Percentages are calculated with the number of patients in all treated patients population with non-missing values for that parameter as the denominator.

Note: One patients each in the 150 mg QD, 600 mg QD and 150 mg BID cohort had a prior surgery on HL lesions, like lymph nodes etc.
Table 2: Pharmacokinetic Parameters

<table>
<thead>
<tr>
<th>Day</th>
<th>PK parameters</th>
<th>150 mg QD (n=3)</th>
<th>300 mg QD (n=5)</th>
<th>450 mg QD (n=3)</th>
<th>600 mg QD (n=3)</th>
<th>150 mg BID (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$^{1}T_{\text{max}}$ (h),</td>
<td>4.1 (1.0-4.5)</td>
<td>3.0 (2.0-4.0)</td>
<td>2.1, 2.1</td>
<td>3.0 (2.0-4.0)</td>
<td>1.0 (1.0-6.0)</td>
</tr>
<tr>
<td></td>
<td>C_{max} (ng/mL)</td>
<td>278 (71.4)</td>
<td>552 (198)</td>
<td>552, 655</td>
<td>358 (244)</td>
<td>313 (86.9)</td>
</tr>
<tr>
<td></td>
<td>AUC$_{24}$ (ng.h/mL)</td>
<td>1931 (404)</td>
<td>3935 (2001)</td>
<td>2536, 4135</td>
<td>2657 (1255)</td>
<td>NC</td>
</tr>
<tr>
<td>7</td>
<td>C_{0} (ng/mL)</td>
<td>78.3 (23.5)</td>
<td>131 (70.4)</td>
<td>314 (134)</td>
<td>123 (54.0)</td>
<td>270 (157)</td>
</tr>
<tr>
<td></td>
<td>C_{4} (ng/mL)</td>
<td>285 (140)</td>
<td>388 (271)</td>
<td>952 (275)</td>
<td>433 (359)</td>
<td>363 (120)</td>
</tr>
<tr>
<td>14</td>
<td>C_{0} (ng/mL)</td>
<td>108 (15.6)</td>
<td>138 (30.7)</td>
<td>285 (115)</td>
<td>156 (83.3)</td>
<td>229 (40.4)</td>
</tr>
<tr>
<td></td>
<td>C_{4} (ng/mL)</td>
<td>317 (72.7)</td>
<td>394 (193)</td>
<td>980 (205)</td>
<td>672 (424)</td>
<td>367 (124)</td>
</tr>
<tr>
<td>21</td>
<td>T_{max} (h)</td>
<td>1.0, 3.1</td>
<td>4.1 (4.0-5.9)</td>
<td>3.0 (2.0-4.5)</td>
<td>3.9 (3.0-4.0)</td>
<td>2.5 (1.9-8.0)</td>
</tr>
<tr>
<td></td>
<td>C_{max} (ng/mL)</td>
<td>304, 321</td>
<td>598 (156)</td>
<td>1157 (409)</td>
<td>843 (394)</td>
<td>483 (182)</td>
</tr>
<tr>
<td></td>
<td>AUC$_{24}$ (ng.h/mL)</td>
<td>3417, 3436</td>
<td>7588 (2248)</td>
<td>12804 (4875)</td>
<td>6961 (2656)</td>
<td>7471 (2349)</td>
</tr>
<tr>
<td></td>
<td>C_{0} (ng/mL)</td>
<td>100, 101</td>
<td>160 (63.2)</td>
<td>277 (89.0)</td>
<td>129 (45.4)</td>
<td>196 (41.0)</td>
</tr>
</tbody>
</table>

AUC$_{24}$: area under the plasma concentration-time curve from time 0 to time 24 hours after dosing; C_{0}: trough plasma concentration prior to dosing or at the end of the dosing interval; C_{4}: observed plasma concentration at 4 hours after dosing; C_{max}: maximum observed plasma concentration; T_{max}: time to reach C_{max}

1Mean (SD) for all parameters; median (range) for T_{max}; NC: not calculated
Table 3: Treatment-emergent Drug-related Adverse Events by Worst Toxicity Grade in at least 2 Patients in any Group (Treated Patients)

<table>
<thead>
<tr>
<th>TEAE toxicity</th>
<th>Grade 1</th>
<th>Grade 2</th>
<th>Grade 3</th>
<th>Grade 4</th>
<th>Grade 5</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Patients with drug-related TEAEs, n (%)</td>
<td>8 (38.1)</td>
<td>6 (28.6)</td>
<td>3 (14.3)</td>
<td>0</td>
<td>0</td>
<td>17 (81.0)</td>
</tr>
<tr>
<td>Drug-related TEAEs in ≥2 patients, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>3 (14.3)</td>
<td>3 (14.3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6 (28.6)</td>
</tr>
<tr>
<td>Headache</td>
<td>4 (19.0)</td>
<td>1 (4.8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5 (23.8)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>4 (19.0)</td>
<td>1 (4.8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5 (23.8)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3 (14.3)</td>
<td>1 (4.8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4 (19.0)</td>
</tr>
<tr>
<td>Anemia</td>
<td>0</td>
<td>2 (9.5)</td>
<td>1 (4.8)</td>
<td>0</td>
<td>0</td>
<td>3 (14.3)</td>
</tr>
<tr>
<td>Abdominal Pain Upper</td>
<td>2 (9.5)</td>
<td>1 (4.8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 (14.3)</td>
</tr>
<tr>
<td>Constipation</td>
<td>2 (9.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (9.5)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>0</td>
<td>2 (9.5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (9.5)</td>
</tr>
<tr>
<td>Blood CPK increased</td>
<td>1 (4.8)</td>
<td>1 (4.8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (9.5)</td>
</tr>
<tr>
<td>Enzyme abnormality</td>
<td>1 (4.8)</td>
<td>1 (4.8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (9.5)</td>
</tr>
</tbody>
</table>

CPK: creatine phosphokinase; TEAE: treatment-emergent adverse events
Table 4: Best Overall Response by Cheson Criteria (Response-evaluable Patient Population)

<table>
<thead>
<tr>
<th></th>
<th>150 mg QD</th>
<th>300 mg QD</th>
<th>450 mg QD</th>
<th>600 mg QD</th>
<th>150 mg BID</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients(^a), n</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Objective response rate(^b)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (5.0%)</td>
</tr>
<tr>
<td>Complete Response</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (5.0%)</td>
</tr>
<tr>
<td>Partial Response</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stable Disease</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>11 (55.0%)</td>
</tr>
<tr>
<td>Progressive Disease</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>8 (40.0%)</td>
</tr>
</tbody>
</table>

QD: once a day, BID: twice a day.

\(^a\)Patients who received at least 1 dose of the study treatment, and had baseline and at least one post-treatment tumor assessment

\(^b\)Objective response rate= complete response or partial response

Note: Percentages calculated with the number of evaluable patients as denominator.
Figure 2A

Inhibition of pFms

- 150mg QD
- 450mg QD
- 600mg QD
- 150mg BID
Figure 2B

<table>
<thead>
<tr>
<th>pFMS/FMS Ratio</th>
<th>0.7</th>
<th>8.7</th>
<th>0.1</th>
<th>0.5</th>
<th>0.4</th>
<th>0.5</th>
<th>0.3</th>
<th>0.6</th>
<th>0.2</th>
<th>0.5</th>
<th>0.2</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Inhibition</td>
<td>0.0</td>
<td>94.0</td>
<td>94.1</td>
<td>92.5</td>
<td>94.4</td>
<td>87.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-dose, Day 1 4hr post-dose, Day 7 4hr post-dose, Day 14 4hr post-dose, Day 21 4hr post-dose, Day 21 24hr post-dose
Clinical Cancer Research

An Open-label, Multi-center, Phase 1/2 Study of JNJ-40346527, a CSF-1R Inhibitor, in Patients with Relapsed or Refractory Hodgkin Lymphoma

Bastian von Tresckow, Franck Morschhauser, Vincent Ribrag, et al.

Clin Cancer Res Published OnlineFirst January 27, 2015.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-1845

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2015/01/29/1078-0432.CCR-14-1845.DC1

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.