Generation 2.5 Antisense Oligonucleotides Targeting the Androgen Receptor and its Splice Variants Suppress Enzalutamide Resistant Prostate Cancer Cell Growth

Yoshiaki Yamamoto1,2, Yohann Loriot1, Eliana Beraldi1, Fan Zhang1, Alexander W Wyatt1, Nader Al Nakouzi1, Fan Mo1, Tianyuan Zhou3, Youngsoo Kim3, Brett P. Monia3, A. Robert MacLeod3, Ladan Fazli1, Yuzhuo Wang1, Colin C Collins1, Amina Zoubeidi1, and Martin Gleave1

1The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
2Department of Urology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
3Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., Carlsbad, CA

Corresponding author: Martin E Gleave, The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
2660 Oak Street, Vancouver, British Columbia, Canada V6H 3Z6.
Phone: 604-875-4818; Fax: 604-875-5654

Note: Y. Yamamoto and Y. Loriot contributed equally to this work.

Running title: Targeting AR in ENZ-R prostate cancer cells

Keywords: androgen receptor, prostate cancer, AR splice variants, enzalutamide resistant, antisense oligonucleotides

Disclosure of Potential Conflicts of Interest
Tianyuan Zhou, Youngsoo Kim, Brett P. Monia, and A. Robert MacLeod are employees of Isis Pharmaceuticals.

Word count (excluding references): 4957
Main Text Figures: 6
Supplementary Figures: 5
Supplementary Table: 1
Supplementary Material: 2
Translational relevance

Suppression of androgen receptor (AR) signaling with potent inhibitors like enzalutamide (ENZ) remains a therapeutic goal for castration resistant prostate cancer (CRPC); however, ENZ-resistant (ENZ-R) CRPC frequently occurs. We characterized functional consequences of changes in AR full-length (AR_{FL}) and variants (AR-Vs) levels associated with ENZ treatment response and resistance using AR-ASOs selectively targeting AR_{FL} alone or AR_{FL} + AR-Vs in several ENZ-R models. This study indicates the AR is an important driver of ENZ resistance and that while both AR_{FL} and AR-V7 levels are induced, AR_{FL} is the key mediator of ENZ resistance in the LNCaP model. However, the role of AR_{FL} and AR-Vs in progression to ENZ-R CRPC appears cell-line and context-dependent, and therefore ASO strategies targeting AR_{FL} and AR-Vs is a rational third-line approach for AR pathway inhibitor resistant CRPC.
ABSTRACT

Purpose: Enzalutamide (ENZ) is a potent androgen receptor (AR) antagonist with activity in castration resistant prostate cancer (CRPC); however, progression to ENZ-resistant (ENZ-R) CRPC frequently occurs with rising serum PSA levels, implicating AR full-length (AR_{FL}) or variants (AR-Vs) in disease progression.

Experimental Design: To define functional roles of AR_{FL} and AR-Vs in ENZ-R CRPC, we designed 3 antisense oligonucleotides (ASO) targeting exon-1, intron-1, and exon-8 in AR pre-mRNA to knockdown AR_{FL} alone or with AR-Vs, and examined their effects in three CRPC cell lines and patient-derived xenografts.

Results: ENZ-R-LNCaP cells express high levels of both AR_{FL} and AR-V7 compared to CRPC-LNCaP; in particular AR_{FL} levels were ~12-fold higher than AR-V7. Both AR_{FL} and AR-V7 are highly expressed in the nuclear fractions of ENZ-R-LNCaP cells even in the absence of exogenous androgens. In ENZ-R-LNCaP cells, knockdown of AR_{FL} alone, or AR_{FL} plus AR-Vs, similarly induced apoptosis, suppressed cell growth and AR-regulated gene expression, and delayed tumour growth in vivo. In 22Rv1 cells that are inherently ENZ-resistant, knockdown of both AR_{FL} and AR-Vs more potently suppressed cell growth, AR transcriptional activity and AR-regulated gene expression than knockdown of AR_{FL} alone. Exon-1 AR-ASO also inhibited tumor growth of LTL-313BR patient-derived CRPC xenografts.

Conclusions: These data identify the AR as an important driver of ENZ resistance, and while the contributions of AR_{FL} and AR-Vs can vary across cell systems, AR_{FL} is the key driver in the ENZ-R LNCaP model. AR targeting strategies against both AR_{FL} and AR-Vs is a rational approach for AR-dependent CRPC.
Introduction

First-line treatment for metastatic prostate cancer is androgen deprivation therapy (ADT), which reduces serum testosterone levels and androgen receptor (AR) activity. Despite high initial response rates, remissions are temporary with emergence of castration-resistant prostate cancer (CRPC), largely driven by AR reactivation despite low levels of serum testosterone. Serum prostate specific antigen (PSA) is an AR-regulated protein that serves as a useful marker of response and prognosis to ADT (1); indeed, rising PSA is the earliest sign of CRPC (2, 3). AR reactivation in CRPC involves AR gene amplification, mutations or splice variants (AR-Vs), as well as intratumoral steroidogenesis, increased coactivator expression, and activation of signal transduction pathways that sensitize AR to low levels of androgens (4-7). These mechanisms work in concert to drive CRPC progression, and highlight that targeting the AR remains a critical component of novel CRPC therapies (8, 9).

More potent AR pathway inhibitors like abiraterone (10, 11) and enzalutamide (ENZ) (12, 13) suppress ligand levels and binding to AR, respectively, inhibiting AR nuclear translocation and transcriptional activity. While these AR pathway inhibitors significantly prolong survival in CRPC, cancers often recur with rising serum PSA levels indicative of persistent AR activity. Therefore, loss of suppression of AR activity despite potent AR pathway inhibition remains a major problem in CRPC and additional novel agents with activity in abiraterone- or ENZ-resistant tumors is critical to improve control of CRPC.

Antisense oligonucleotides (ASO) offer one approach to selectively target genes and their splice variants. While ASOs are primarily used to inhibit “undruggable” targets (14, 15), they may also be of use against drug-resistant targets like nuclear AR in ENZ-resistance (ENZ-R). While AR extinction approaches using ASOs (16) or shRNA (17) can reduce AR levels and inhibit tumor growth in CRPC models, they have not been studied in the context of ENZ-R disease and their knockdown effects on full length AR (AR\textsubscript{FL}) and AR-Vs are undefined. This is particularly important since AR-Vs are emerging as a mechanism driving ligand-independent and ENZ-R AR transcription (18-20), which could be targeted with appropriately designed ASO.

In this study, we characterized changes in AR\textsubscript{FL} and AR-Vs levels associated with ENZ treatment response and resistance, and compared effects of AR-ASOs targeting either AR\textsubscript{FL} or AR\textsubscript{FL} and AR-Vs. ENZ exposure induces expression of both AR\textsubscript{FL} and AR-V7 in CRPC, and high levels of AR\textsubscript{FL} and AR-V7 are associated with ENZ-R CRPC. However, AR\textsubscript{FL} mRNA levels are 12 times higher than AR-V7. Despite differential effects on AR-Vs knockdown, all AR-ASO potently silenced AR\textsubscript{FL} levels and similarly induced apoptosis and cell growth inhibition in ENZ-R \textsc{LNCaP} cells. In contrast, knockdown of both AR\textsubscript{FL} plus AR-Vs more potently suppressed 22Rv1 cell growth, AR transcriptional activity and AR-regulated gene expression, compared to knockdown of AR\textsubscript{FL} alone. Overall, these results highlight AR\textsubscript{FL} as an important driver of ENZ-R CRPC and that while both AR\textsubscript{FL} and AR-V7 levels are induced during the evolution to ENZ-R, their biologic effects appear cell line and context dependent.
Materials and Methods

Cell Lines
LNCaP cells were provided by Dr. Leland W.K. Chung (1992, MDACC, Houston, TX) and authenticated with short tandem repeat (STR) profile analysis at Genetics Resources Core Facility (GRCF) at Johns Hopkins in January 2013. PC-3 and 22Rv1 cells were obtained from American Type Culture Collection and authenticated at GRCF in January 2013 and at IDEXX BioResearch (Columbia, MO) in September 2014, respectively. M12 cells stably expressing AR-V567es cDNA (M12 AR-V567es) were provided by Dr. Stephen R. Plymate (University of Washington School of Medicine) (5, 21) and no further authentication was done by our lab. LNCaP and 22Rv1 cells, and PC-3 cells were maintained in RPMI 1640 (Invitrogen Life Technologies, Inc.) and Dulbecco’s Modified Eagle’s Medium (DMEM; Invitrogen) respectively with 5% fetal bovine serum (FBS). M12 AR-V567es stable cells were cultured as described previously (5, 21).

Generation of castration- and ENZ-R LNCaP xenografts and cell lines
CRPC and ENZ-R LNCaP xenografts and cell lines were generated as previously described (22-24). The ENZ-R cell lines MR1F, MR57A, MR49F and MR49C were maintained in RPMI 1640 with 10 μmol/L ENZ (Haoyuan Chemexpress Co.) + 5% FBS; CRPC LNCaP VehD and VehA cells were derived from CRPC LNCaP vehicle treated tumors maintained in RPMI1640 with 5% charcoal-stripped serum (CSS). The authentication of MR49F, MR49C and VehD were performed at GRCF in January of 2013; and the other lines were not authenticated.

Molecular profiling
Transcriptome sequencing was performed using Illumina GA-II (Michael Smith Genome Sciences Centre, Vancouver, BC) in four ENZ-R LNCaP and two CRPC LNCaP xenografts using established protocols (25). We used TopHat (26) to map RNA-Seq reads to the genome (hg19). Determination of AR expression (including splice variants) and an estimate of the ratio of AR-V7 to ARFL are shown in Supplementary Materials and Methods S1.

Genome copy number profiling was performed on Agilent SurePrint G3 Human CGH Microarray Kit, 4x180K in 4 ENZ-R LNCaP and 2 CRPC LNCaP xenografts tumors as described previously (27). Array CGH copy number data are available at GEO accession number GSE55345. To test for the F876L mutation we performed PCR and Sanger sequencing across exon 8 of the AR gene in genomic DNA from the MR49F cell line, using standard techniques.

Antisense, siRNA and plasmid transfection
Antisense AR (AR-ASO) used in this study contain constrained-ethyl (cEt) chemistry (Gen 2.5) and were identified by screening over 1400 ASOs against the full length AR genomic sequence. The AR-ASO targeting exon-1, intron-1, exon-8, and scrambled (SCRB) control sequences were 5’-GCGACTACTACAACCTT-3’, 5’-CAACCATTAAATCAAC-3’ and 5’-
GCCACGGGAAGTTTAG-3′ and 5′-CAGCGCTGACACAGTTTCAT-3′ respectively. SCRB oligonucleotides with the same chemistry were supplied by ISIS Pharmaceuticals (Carlsbad, CA). Prostate cells were treated with oligonucleotides using protocols described previously (28, 29). For siRNA transfection, cells were treated with AR Exon 2b (30), AR Exon CE3 (31) or Scramble siRNA using Oligofectamin as described previously (28). AR-V7 plasmid (a generous gift from Dr. Stephen R. Plymate) was transfected using Lipofectin following the manufacture’s protocol.

Western blot
Total proteins were extracted using radioimmunoprecipitation assay buffer and submitted to Western blot analysis as previously described (32). Primary antibodies are shown in Supplementary Materials and Methods. NuCLEAR Extraction Kit (Sigma-Aldrich) was used according to manufacturer’s protocol.

Quantitative Reverse Transcription-PCR
Total RNA was extracted using TRizol (Invitrogen Life Technologies, Inc.) as previously reported (29). Primers (supplemental Table 1) were normalized to b-actin levels as an internal standard, and the comparative cycle threshold (Ct) method was used to calculate relative quantification of target mRNAs. Each assay was conducted in triplicate.

AR transcriptional activity
Cells were seeded at a density of 2.5 × 10^5 in 6-well plates and treated with AR-ASO or SCRB in CSS media. The next day cells were transfected with ARR-3 luciferase reporter along with Renilla plasmid as described previously (29). All experiments were carried out in triplicate.

Cell proliferation and cell cycle assays
Cells were cultured in CSS media, transfected with AR-ASO or SCRB, and cell growth measured by crystal violet assay as previously described (33). Cell cycle distribution was analyzed by flow cytometry (Beckman Coulter Epics Elite, Beckman, Inc.) as described previously (29). Each assay was done in triplicate three times.

In vivo studies
Athymic mice were castrated and inoculated subcutaneously with 2×10^6 ENZ-R MR49F cells; mice were treated with ENZ 10 mg/kg/each p.o. daily for maintenance of ENZ resistance. Once tumors reached 200 mm^3, mice were randomly assigned to 12.5 mg/kg exon-1 or exon-8 AR-ASO or SCRB i.p. once daily for 5 days and then 3 times per week thereafter. Each experimental group consisted of 11 mice. Tumor volume and serum PSA were measured as previously described (29). When tumor volume reached 10% or more of body weight, mice were sacrificed and tumors were harvested for evaluation of protein expression by Western blot analyses, mRNA expression by real-time monitoring of PCR, and immunohistochemistry. All animal procedures were carried out according to the guidelines of the Canadian Council on Animal Care and appropriate institutional certification.
Patient-derived LTL-313BR CRPC xenograft tumors (www.livingtumorlab.com) were grafted under the renal capsules as previously described (34). Once tumors reached palpable, mice were randomly assigned to 40 mg/kg exon-1 AR-ASO or SCRB. Each experimental group consisted of 9 mice. PSA was measured on day 17 and 24. Tumors were harvested on day 24 and tumor volume and tumor weights were measured as previously described (34).

Immunohistochemistry
Immunohistochemistry was performed as previously described previously (29).

Statistical analysis
All *in vitro* data were assessed using the Student *t* test and one-way ANOVA test. Tumor volume and serum PSA levels of mice were compared using the Kruskal–Wallis and Wilcoxon rank sum test (JMP version 8). Levels of statistical significance were set at *P* < 0.05.
Results

AR\textsubscript{FL} and AR-V7 are highly expressed in ENZ-R cell lines and xenograft tissues

To characterize the role of AR signalling in ENZ resistance, the effects of ENZ treatment on AR\textsubscript{FL}, AR-V expression, and PSA levels were assessed in several ENZ-R cell lines. AR\textsubscript{FL} and AR-V7 protein (Fig. 1A, left) and mRNA (Fig. 1A, right) levels were increased in ENZ-R LNCaP derived cell lines compared to CRPC LNCaP-derived (VehD and VehA) cells; moreover, short-term ENZ treatment induced AR\textsubscript{FL} and AR-V7 mRNA levels in parental LNCaP cells (Supp Fig. S1). AR-V7 protein levels, however, were much lower than AR\textsubscript{FL} protein levels and most apparent on western blot with prolonged exposure (Fig. 1A, left).

Next, levels of AR\textsubscript{FL} and AR-V7 were assessed in several ENZ-R xenografts. Quantitative RT-PCR (Fig. 1B) and RNA seq (Fig. 1C, left) demonstrated higher AR\textsubscript{FL} and AR-V7 mRNA levels in tumor tissues from ENZ-R LNCaP xenografts compared to CRPC LNCaP xenografts; however, AR\textsubscript{FL} mRNA levels were ~12-fold higher than AR-V7, as assessed by RNA seq (Fig. 1C, right).

While transcriptome sequencing detected many AR-Vs in tumor tissues from ENZ-R LNCaP xenografts, only AR-V7 was predominantly expressed (35). Recent reports have linked a mutation in the ligand binding domain of AR (F876L) to ENZ resistance (36-38). This mutation was not detectable by RNA-Seq in the ENZ-R LNCaP xenografts. However, PCR and Sanger sequencing across the AR ligand-binding domain in MR49F cells was positive for the F876L mutation, as well as the parental T877A mutation. DNA copy number analysis revealed an absence of focal AR amplification (39) (Supp Fig. S2A). Therefore, high AR mRNA expression appears independent of genetic alterations, potentially indicating epigenetic mechanisms of up-regulation and epithelial plasticity. The integrative genome viewer (IGV) analysis on mRNA sequencing data across exon 8 of the AR has been performed in LNCaP derived MR49F and VehD CRPC cells as well as LTL-313BR tumors. It shows that MR49F carries the F876L mutation at a frequency of 63% (blue) and there is no detection of mutation F876L in LTL-313BR and VehD CRPC. As a control, the native LNCaP T877A mutation (orange) is clearly present in 100% of reads (Supp Fig. S2B).

Subcellular fractionation studies detected higher levels of both AR\textsubscript{FL} and AR-V7 proteins in the nucleus in MR49F compared to parental LNCaP in response to ENZ treatment (Fig. 1D). Importantly, this high nuclear accumulation of AR\textsubscript{FL} is seen even in the absence of exogenous androgens, suggesting that AR\textsubscript{FL} is driving ENZ resistance. Immunohistochemical analysis also demonstrated higher levels of AR\textsubscript{FL} in the nucleus of ENZ-R compared to castrate-resistant LNCaP tumours (Supp Fig. S3). Collectively, these data indicate that ENZ induces increased expression levels of AR\textsubscript{FL} and AR-V7, and both are associated with development of ENZ resistance in the LNCaP model. However, although levels of AR-V7 are low compared to AR\textsubscript{FL},
the latter is localized in both cytoplasm and nucleus of ENZ-R LNCaP cells, while AR-V7 is confined almost exclusively to the nuclear fraction.

AR-ASO Knockdown of AR_{FL} and AR-Vs

To define the functional role of AR_{FL} and AR-Vs in ENZ resistance, 3 ASO sequences were designed to target exon-1, intron-1, or exon-8 in AR pre-mRNA (Fig. 2A) to selectively knockdown AR_{FL} alone, or knockdown AR_{FL} plus AR-Vs simultaneously. All three AR-ASO dose-dependently decreased AR_{FL} in both parental LNCaP (Supp Fig. S4A) and ENZ-R LNCaP MR49F (Fig. 2B, top panel) and MR1F (Supp Fig. S4B) cell lines. Since AR-V’s are COOH-truncated, exon-1 and intron-1 AR-ASOs potently suppressed levels of AR_{FL} and AR-V7, while exon-8 AR-ASO only reduced levels of AR_{FL}. Quantitative real-time PCR analysis confirmed that both exon-1 and intron-1 AR-ASO, but not exon-8, reduced AR-V7 mRNA levels (Fig. 2B, bottom panel).

22Rv1 cells express high levels of endogenous AR-Vs, but exhibit relatively low levels of AR activity and PSA expression. While all 3 ASO potently reduced AR_{FL} levels, only exon-1 and intron-1 AR-ASO dose-dependently reduced AR-Vs; in contrast and similar to LNCaP-derived ENZ-R cell lines, exon-8 AR-ASO did not alter AR-Vs protein levels (Fig. 2C, top panel). Quantitative real-time PCR indicated that AR-V7 mRNA was decreased by exon-1 and intron-1 AR-ASO but not by exon-8 AR-ASO (Fig. 2C, bottom panel).

M12 prostate cancer cells, which are engineered to stably express AR-V567es, were used to further assess differential effects of the 3 AR-ASO on silencing AR-V567es. As expected, only exon-1 AR-ASO decreased AR-V567es protein and mRNA levels (Fig. 2D). Intron-1 ASO did not silence AR-V567es because the construct lacks intron-1.

Effects of AR-ASO on AR-regulated genes and AR transcriptional activity

Differential knockdown of AR-V’s by exon-1 vs exon-8 AR-ASO was used to evaluate their relative contribution to the overall AR-regulated transcriptome in ENZ-R LNCaP (MR49F) and 22Rv1 cells. Quantitative real-time PCR was used to measure expression levels of several AR-regulated genes, PSA, FKBP5, TMPRSS2, and NKX3.1. In MR49F cells, all three AR-ASO similarly decreased the basal mRNA levels of these AR-regulated genes (Fig. 2B, bottom panel). Both exon-1 and exon-8 AR-ASO also potently suppressed R1881-stimulated AR transactivation in MR49F (Fig. 2E). Since exon-8 AR-ASO does not reduce AR-V7 levels, these data suggest that most AR transcriptional activity in ENZ-R LNCaP cells is driven by AR_{FL}.

In contrast, in 22Rv1 cells, which express high levels of endogenous AR-Vs but relatively low levels of AR_{FL} activity and PSA expression, exon-1 and intron-1 AR-ASO more potently suppressed AR-dependent gene expression compared to exon-8 AR-ASO. In fact, near complete inhibition of AR_{FL} alone without inhibition of AR-V7 (using exon-8 ASO) had very little effect on the expression of the 4 AR-regulated genes (Fig. 2C, bottom). Similarly, AR reporter activity
using an ARR-3 luciferase reporter assay in 22Rv1 cells indicates that both basal and R1881-stimulated AR transactivation were reduced to a greater extent by exon-1 AR-ASO compared to exon-8 AR-ASO (Fig. 2F).

Effects of AR-ASO on cell growth and apoptosis

Differential knockdown of AR_{FL} and AR-Vs by exon-1 vs exon-8 AR-ASO was used to evaluate relative biologic contributions of AR_{FL} vs AR-V7 in regulating ENZ-R LNCaP and 22Rv1 cell survival and growth. Cell growth assays were performed in castrate-sensitive LNCaP, 4 different ENZ-R LNCaP-derived cells, 22Rv1, and AR-negative PC3 cell lines (as controls). As expected, AR-ASO treatment did not affect PC-3 cell growth over the concentrations used. Despite differential effects on AR_{FL} and AR-V knockdown (Fig. 2B and Supp Fig. S4), all AR-ASO similarly inhibited castrate-sensitive and ENZ-R LNCaP cell growth (Fig. 3A). Exon-1 and exon-8 AR-ASO similarly induced apoptosis in ENZ-R cells as measured by caspase-3 and PARP cleavage (Fig. 3B). The fraction of ENZ-R LNCaP cells undergoing apoptosis (sub-G1 fraction) was similarly increased by exon-1 and exon-8 AR-ASO, and was accompanied by cell cycle arrest (Fig. 3C, left) and decreased levels of cell-cycle proteins, CDK4 and cyclin D1 (Fig. 3C, right). These data suggest that, since both AR-ASO similarly silenced AR_{FL} levels, inhibited cell growth, and induced apoptosis in LNCaP-derived ENZ-R despite differential effects on AR-V knockdown, most AR pathway-derived cytoprotection is driven by AR_{FL} in ENZ-R LNCaP model. In 22Rv1 cells, however, knockdown of both AR_{FL} and AR-Vs more potently suppressed cell growth compared to knockdown of AR_{FL} alone, suggesting a significant role for AR-Vs in this cell system (Fig. 3D).

Since ENZ-R LNCaP cells express low levels of AR-V7 (~8%) compared to AR_{FL}, we transiently transfected AR-V7 in MR49F cells to further assess relative role of AR_{FL} vs AR-V in AR pathway activation in ENZ-R LNCaP cells. Transient transfection of AR-V7 increased levels of ligand-independent AR transactivation (Supp Fig. S5). Exon-1 ASO reduced both AR_{FL} and AR-V7 levels (Fig. 4A), and more potently suppressed FKBP5 mRNA expression (Fig. 4B) and AR transactivation (Fig. 4C) compared to exon-8 AR-ASO. However, exon-1 and 8 AR-ASO treatment in ENZ-R LNCaP AR-V7 overexpressing cells similarly decreased PSA protein and mRNA expression (Fig. 4A and B), induced apoptosis as measured by caspase-3 and PARP cleavage (Fig. 4D) and cell growth inhibition (Fig. 4E). These results confirm that the biologic consequences of AR activity in ENZ-R LNCaP cells are principally driven by AR_{FL} and suggest that some AR target genes such as FKBP5 may be preferentially regulated by AR-V7.

Effects of specific AR-V silencing in ENZ-R LNCaP and 22Rv1 cells

While ENZ-R LNCaP cells express low levels of AR-V7 compared to AR_{FL}, this variant always exists in nucleus and has constitutive ligand-independent activity. ENZ-R LNCaP cells expressed AR-V7 without DNA rearrangement while 22Rv1 cells have a rearrangement with 35-kb tandem duplication encompassing AR exon 3 and high expression of truncated AR-Vs AR 1/2/3/2b and
AR 1/2/3/CE3 (AR-V7) (20, 40). To further define the functional role of AR-Vs in ENZ-R LNCaP and 22Rv1 cells, we used a CE3 siRNA that specifically silenced AR-V7, but not AR_Fl in ENZ-R LNCaP cells, and used CE3 and E2b siRNA to specifically silence AR-Vs in 22Rv1. In ENZ-R LNCaP cells, AR-V7 knockdown did not decrease PSA protein or mRNA levels, did not induce apoptosis as measured by caspase-3 and PARP cleavage (Fig. 5A left and 5B left), and did not inhibit cell growth (Fig. 5C left). In 22Rv1 cells, AR-V7 knockdown decreased PSA protein and mRNA levels, and induced apoptosis (Fig. 5A and B right) and cell growth inhibition (Fig. 5C right). These data indicate that the biologic consequences of AR-V are cell-type specific, with 22Rv1 cells driven by AR-Vs (20) whereas ENZ-R LNCaP cells are driven predominantly by AR_Fl.

AR-ASO inhibit ENZ-R LNCaP and patient-derived CRPC tumor growth in vivo

The *in vivo* activity of exon-1 and exon-8 AR-ASO were evaluated using MR49F LNCaP xenografts. At baseline, mean tumor volume and serum PSA levels were similar in both groups. Exon-1 and Exon-8 AR-ASO significantly reduced mean tumor volume from 2653 mm^3^ to 1168 and 994 mm^3^ by 3 weeks (**; p<0.01 and **; p<0.01 respectively), compared to SCRB (Fig. 6A, left); serum PSA levels were also significantly lower (*; p<0.05 and *; p<0.05) (Fig. 6A, right). There was no significant difference between the two AR-ASO treatment groups. Waterfall plots of best tumor volume and serum PSA decline per mouse at any time are shown in Fig. 6B.

AR_Fl and PSA protein expression in tumors collected from representative MR49F xenografts (n = 4 per group) similarly decreased after treatment with exon-1 and exon-8 AR-ASO (Fig. 6C left). Exon-1 ASO significantly decreased expression of both AR_Fl and AR-V7 mRNA; in comparison, exon-8 ASO significantly decreased AR_Fl without reducing AR-V7 mRNA levels in tumors collected from MR49F xenografts (Fig. 6C right). PSA mRNA levels were significantly decreased after treatment with both exon-1 and exon-8 AR-ASO compared with SCRB; mRNA levels of AR-regulated genes were also reduced (Fig. 6C right) by both AR-ASOs. Immunohistochemical analysis revealed that tumors treated with exon-1 or -8 AR-ASO had significantly higher apoptosis rates than SCRB controls (Fig. 6D right) as shown by increased TUNEL staining (Fig. 6D left). Collectively, these data suggest that exon-1 AR-ASO inhibited expression levels of AR_Fl and AR-V7 with suppression of ENZ-R LNCaP tumor growth and the biologic consequences of AR activity in ENZ-R LNCaP cells are principally driven by AR_Fl.

Next, the *in vivo* activity of exon-1 AR-ASO was evaluated in LTL-313BR patient-derived xenografts. At baseline, mean serum PSA levels were similar in both groups. Exon-1 AR-ASO significantly reduced mean tumor volume and tumor weight from 919 mm^3^ to 574 mm^3^ and from 1463 mg to 841 mg by 24 days (**; p<0.01 and **; p<0.01 respectively), compared to SCRB (Fig. 6E, left); serum PSA levels were also significantly lower (**; p<0.01) (Fig. 6E, right).
Discussion

The AR remains a central driver of CRPC progression following first line ADT (17), resulting from AR gene amplification, promiscuous AR mutants, altered expression of co-regulators, activation by oncogenic signaling pathways, and increased androgen biosynthesis (4-6, 41). ENZ is an AR antagonist that binds potently to its ligand binding domain (LBD) to inhibit AR nuclear translocation and transactivation (12), and results in 37% reduction in risk of death in post-docetaxel CRPC (42). Despite this benefit, primary resistance to ENZ is observed in about 30% of patients, and acquired resistance develops in initial responders, often associated with reactivation of AR signalling and rising PSA levels (12, 13). One mechanism of persistent AR signalling in ENZ-resistant CRPC involves treatment-induced AR mutations in the LBD. We detected the F876L AR mutation, reported to be ENZ-specific, in the LBD of AR_{FL} in MR49F cells, which may contribute to ENZ-resistance (36-38).

Another potential mechanism of persistent AR signalling in ENZ-resistant CRPC involves treatment-induced AR splicing to encode for transcriptionally active COOH-terminally truncated AR-V proteins containing the NH2-terminal and central DNA binding domains that lack the LBD (30). AR-Vs facilitate ligand-independent transcriptional activity and cell growth in various model systems (4, 5, 30, 43). AR-V7 is one of the most studied AR-Vs and reported to be associated with recurrence following surgery (4) and poor survival (43) and accumulating evidence links AR-Vs with CRPC and resistance to AR pathway inhibitors like abiraterone (18) and ENZ (19, 20). AR-V overexpression has been reported to provide a growth advantage under castrate conditions (4, 5, 31).

While recent reports link AR-Vs to CRPC, the biologic significance of AR-Vs in AR-regulated cell survival and proliferation, independent of AR_{FL}, remains a controversial issue of clinical relevance as new AR antagonists are designed to also inhibit AR-V activity. For example, the activity of AR-Vs has been reported to remain dependent on endogenous AR_{FL} (44). Our study using ASO-directed knockdown also suggests that the biologic consequences of AR-V7 are cell line-dependent, and driven mainly by AR_{FL} in ENZ-R LNCaP cells. While we found AR-V7 expression is induced by ENZ and highly expressed in ENZ-R LNCaP cells, AR_{FL} levels also increase and remain >12 fold higher than AR-V7 levels in all ENZ-R LNCaP cells. While AR_{FL} silencing has been reported to increase AR-V7 levels (19), we did not detect increased AR-V7 expression in parental and ENZ-R LNCaP cells after treatment with exon-8 AR-ASO targeting only AR_{FL}. We did, however, see increased AR-V7 after AR_{FL} knockdown when AR-V7 was transiently transfected, which may reflect challenges with detecting induction when initial AR-V7 levels are very low and AR_{FL} knockdown induces apoptosis.

To define the biologic consequences of AR_{FL} and AR-V7 induction in ENZ resistance, ASOs were designed to suppress both AR_{FL} and AR-Vs, or AR_{FL} alone. Despite differential effects on AR-V knockdown, all AR-ASO potently silenced AR_{FL} levels and similarly induced apoptosis and inhibited cell growth in LNCaP-derived ENZ-R cell lines. These data suggest that while
ENZ induces both AR_{FL} and AR-V7 levels, the biologic consequences are mainly driven by AR_{FL} in the ENZ-R LNCaP model (44). On the other hand, in 22Rv1 cells endogenously expressing higher AR-Vs levels and lower AR_{FL} levels, exon-1 AR-ASO more potently suppressed endogenous AR_{FL} and AR-V7 expression levels, cell growth, AR transcriptional activity, and AR-regulated gene expression compared to exon-8 ASO. Cell line dependence may partially explain this disparate data regarding biologic relevance of AR_{FL} vs AR-Vs in CRPC cell survival and AR pathway inhibitor resistance. 22Rv1 cells contain an intragenic rearrangement of AR with tandem duplication encompassing AR exon 3 and high expression of AR-Vs (20, 39). Compared to LNCaP cells, AR signalling in 22Rv1 is regulated to a much greater extent by AR-Vs, possibly reflecting structural AR gene alterations in 22Rv1 than in LNCaP (20, 39). A recent study evaluated the roles of AR_{FL} and AR-V species in CRPC ENZ responsiveness in the context of rearrangement-driven changes in AR splicing (20). Unlike CRPC LNCaP-derived cells, 22Rv1 cells display robust growth under castrate conditions and ENZ treatment, despite inhibition of AR-regulated genes. Knock-down of AR-Vs, but not full-length AR, reduced the androgen-independent growth rate of 22Rv1 cells (20).

Although, AR targeting approaches with ASOs or siRNA have been reported previously (16, 45, 46), no study so far has reported on pharmacologic AR inhibition in vivo in the context of ENZ-resistant disease. ASOs are chemically modified stretches of single stranded DNA complementary to an mRNA region in a target gene that inhibit gene expression by forming RNA/DNA duplexes that are then degraded (15). Short tissue half-life of first-generation phosphorothioate ASO, along with in vivo delivery of siRNA, remain significant barriers to clinical development of ASO or siRNA targeting the AR. In this study, we used a panel of highly optimized, next-generation constrained-ethyl (cEt) modified ASOs (Gen 2.5), which demonstrated favorable physicochemical, biochemical, and pharmacokinetic properties in vivo (47, 48). The improved resistance against nuclease-mediated metabolism results in a significantly improved tissue half-live in vivo, resulting in a longer duration of action and a more intermittent dosing schedule. Moreover, Gen 2.5-modified ASOs display significantly superior efficacy in tissues that are less sensitive to earlier generation ASO chemistries, including tumor cells. In this study, we show for the first time that systemic administration of an AR-ASO potently suppressed levels of both AR full length and AR-Vs and inhibited AR activity in vivo. An exon-1 targeting AR-ASO inhibited in vivo growth of ENZ-R LNCaP tumors, with significant knockdown of AR and AR-V7 expression in vivo, providing pre-clinical proof as a promising next generation anti-AR agent. No AR knockdown or antitumor activity was observed with multiple control oligonucleotides.

In summary, these results highlight the AR as an important driver of ENZ resistance and that while both AR_{FL} and AR-V7 levels are induced, AR_{FL} is an important mediator of ENZ resistance in the ENZ-R LNCaP model. However, the role of AR_{FL} and AR-V7 in progression to ENZ-R CRPC appears to be context-dependent, and therefore, ASO strategies that target AR_{FL} and AR-Vs is a rational third-line approach for AR pathway inhibitor resistant CRPC.
Acknowledgments

We thank Mary Bowden, Virginia Yago, Darrell Trendall and Estelle Li for technical assistance.

Grant Information

The work was supported by a Prostate Cancer Foundation and Prostate Cancer Canada STAR grant (SP2013-02) from the Safeway Foundation.
References

Figure legends

Figure 1. **AR_{FL} and AR-V7 are highly expressed in ENZ-R cells and xenografts.** A, Castration resistant (CR) and ENZ-R LNCaP cells were cultured in medium with 5% CSS and AR_{FL}. AR-V7 and PSA protein and AR_{FL} and AR-V7 mRNA expression levels were measured by Western blotting and quantitative real-time PCR. AR-V7 protein was detected with anti-AR-V7 monoclonal antibody (AG10008), which only detects AR-V7. B, mRNA was extracted from 6 CR LNCaP and 6 ENZ-R LNCaP xenograft tumors and AR_{FL} and AR-V7 mRNA were analyzed by quantitative real-time PCR. C, transcriptome sequencing (4 ENZ-R LNCaP and 2 CRPC LNCaP xenografts) detected many AR-Vs in ENZ-R-LNCaP cells, but only AR-V7 is overtly expressed. AR_{FL} and AR-V7 mRNA expression (C, left) and mean their ratio (C, right) were examined in ENZ-R LNCaP xenograft tumors. Please note that the F876L mutation was not detectable in the ENZ-R LNCaP xenograft tumors. D, LNCaP and MR49F cells were cultured for 3 days in media supplemented with CSS and ENZ, followed by 1 nM R1881 and for Western blotting, after cells were harvested and fractioned into nuclear and cytoplasmic extracts, protein extracts were analyzed by Western blotting for AR_{FL} and AR-V7. Lamin B1 and α-tublin are shown as markers for nuclear and cytoplasm, respectively. ***, p<0.001; **, p<0.01; *, p<0.05.

Figure 2. **Effects of AR-ASO on AR_{FL}, AR-Vs, AR-regulated gene expression levels and AR transcriptional activity in ENZ-R LNCaP and 22Rv1 cells.** A, Three AR-ASO sequences were designed to target exon-1, intron-1, and exon-8, in AR. B, MR49F cells were treated for 48 hours in media with ENZ supplemented with CSS with the indicated AR-ASO. AR_{FL}, AR-V7, PSA and vinculin protein were analyzed by Western blotting and AR_{FL}, AR-V7, and AR regulated target mRNA expression were analyzed by quantitative real-time PCR. AR-V7 protein was detected with anti-AR-V7 monoclonal antibody. C, 22Rv1 cells were treated for 48 hours in CSS media with 3 types of AR-ASO and AR_{FL}, AR-Vs and β-Actin protein were analyzed by Western blotting and AR_{FL}, AR-V7, and AR regulated target mRNA expression were analyzed by quantitative real-time PCR. AR proteins was detected with AR N-20 antibody, which detects both AR_{FL} and AR-Vs. D, M12 cells by stable transfection of AR-V567es cDNA were treated for 48 hours with the AR-ASO and protein and mRNA extracts were analyzed by Western blotting and real-time PCR for AR-V567es. AR-V567es protein (80 kDa) was detected with AR N-20 antibody. MR49F cells (E) were treated with 100 nM AR-ASO in CSS media with ENZ. 22Rv1 cells (F) were treated with 100 nM AR-ASO in CSS media. The next day cells were transiently transfected with 1 μg of ARR-3–luciferase, followed by 1 nM R1881 treatment for 12 hours and luciferase activity was determined. **, p<0.01; *, p<0.05.

Figure 3. **Exon-1 and -8 AR-ASO similarly inhibit cell growth and induce apoptosis in ENZ-R LNCaP cells.** A, AR-positive LNCaP, four ENZ-R derived LNCaP cell lines, and AR-negative PC3 cell lines were cultured in CSS media for 96 hours with the indicated AR-ASO and cell growth was determined by crystal violet assay and compared with SCRB. B, MR49F cells were treated in CSS media with exon-1 and -8 AR-ASO for 96 hours and PARP and Caspase-3 expression levels were measured by Western blotting. C, left, MR49F cells were treated in CSS
media with exon-1 and -8 AR-ASO for 96 hours and the proportion of cells in sub-G1, G0/G1, S, and G2/M was determined by propidium iodide staining. C, right, MR49F cells were treated with exon-1 and -8 AR-ASO for 96 hours and CDK4 and CyclinD1 expression levels were measured by Western blotting. D, 22Rv1 cells were cultured in CSS media for 96 hours with the indicated AR-ASO and cell growth was determined by crystal violet assay and compared with SCRB. *, p < 0.05.

Figure 4. Relative role of AR_{FL} vs AR-V in AR activity after transient transfection of AR-V₇ in MR49F LNCaP cells. MR49F cells were transiently transfected with empty vector or AR-V₇ cDNA and then treated in CSS media with exon-1 and -8 AR-ASO for 72 hours. A, left, AR_{FL}, AR-V₇, PSA and β-Actin protein expression levels were measured by Western blotting. A, right, AR_{FL}. AR-V₇ mRNA extracts were analyzed by quantitative real-time PCR. B, AR-regulated mRNA extracts were analyzed by quantitative real-time PCR. C, The next day cells were transiently transfected with 1 μg of ARR-3–luciferase, followed in media with ENZ supplemented with CSS and luciferase activity was determined. D, After the transiently transfection with empty vector or AR-V₇ cDNA and the treatment in CSS media with exon-1 and -8 AR-ASO for 96 hours, PARP and Caspase-3 expression levels were measured by Western blotting. E, Cell growth was determined by crystal violet assay and compared with SCRB at the same concentration. *, p<0.05; **, p<0.01.

Figure 5. Relative role of AR-V after knockdown of AR-V in ENZ-R LNCaP and 22Rv1 cells. MR49F and 22Rv1 cells were treated in CSS media with AR-V siRNA for 72 hours. AR_{FL}, AR-V₇, PSA, PARP, Caspase-3 and β-Actin protein expression levels were measured by Western blotting in MR49F (A, left) and 22Rv1 (A, right). AR_{FL}. AR-V₇ and AR-regulated mRNA extracts were analyzed by quantitative real-time PCR in MR49F (B, left) and 22Rv1 (B, right). MR49F and 22Rv1 cells were cultured in CSS media for 96 hours and Cell growth was determined by crystal violet assay and compared with SCR siRNA at the same concentration in MR49F (C, left) and 22Rv1 (C, right). ***, p<0.001; **, p<0.01; *, p<0.05.

Figure 6. AR-ASO suppress ENZ-R LNCaP and patient-derived CRPC tumor growth in vivo. When MR49F xenograft tumors reached 200 mm³, mice were randomly assigned to 12.5 mg/kg exon-1, exon-8 AR-ASO or SCRB. The mean tumor volume (A, left) and the serum PSA level (A, right) were compared between the 3 groups ± SEM (n = 11 per group). Waterfall plots of greatest percent decline in tumor volume (B, left) and the serum PSA level (B, right) from baseline at any time. C, left, total proteins were extracted from 4 representative xenograft tumors from each group and AR_{FL} and PSA were analyzed by Western blotting. C, right, mRNA were extracted from 11 xenograft tumors from each group and AR_{FL}. AR-V₇ and AR regulated mRNA were analyzed by quantitative real-time PCR. D, tumors (n = 11 per group) were collected and TUNEL was evaluated by immunohistochemical analysis. E, when patient-derived CRPC xenograft tumors became palpable through the abdominal wall, mice were randomly assigned to 40 mg/kg exon-1 or SCRB. The mean tumor volume and tumor weight (E, left) and
the serum PSA level (E, right) were compared between the 2 groups ± SEM (n = 9 per group). **, P < 0.01 *, P < 0.05.
Figure 1

A

<table>
<thead>
<tr>
<th></th>
<th>CR LNCaP</th>
<th>ENZ resistant LNCaP/+ENZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-FL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR-V7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR-V7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinculin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NR1881

B

AR mRNA expression (% of control)

CR LNCaP ENZ resistant LNCaP/+ENZ

VehD VehA MR1F MR57A MR49F MR49C

C

AR-FL AR-V7

CR LNCaP ENZ resistant LNCaP/+ENZ

VehD VehA MR1F MR57A MR49F MR49C

C

Mean AR-V7 / AR-FL

ENZ-R LNCaP xenograft

D

LNCaP MR49F

R1881

AR-FL AR-V7

Shorter exposure

Longer exposure

Lamin B1

α-tublin
Figure 3

A

Cell growth (% of SCRB)

Exon 1 AR-ASO (nM)

Exon 8 AR-ASO (nM)

LNCaP

MR1F/+ENZ

MR57A/+ENZ

MR49F/+ENZ

MR49C

PC-3

SCRB

50

100

250

B

Exon 1 AR-ASO

Exon 8 AR-ASO

(nM)

C

MR49F/+ENZ

SCRB 50 nM

SCRB 100 nM

SCRB 250 nM

Exon 1 AR-ASO 50 nM

Exon 1 AR-ASO 100 nM

Exon 1 AR-ASO 250 nM

Exon 8 AR-ASO 50 nM

Exon 8 AR-ASO 100 nM

Exon 8 AR-ASO 250 nM

% of cell-cycle repartition

sub-G1

G0/G1

S

G2/M

CDK4

CyclinD1

Vinculin

β-Actin

MR49F/+ENZ

D

Cell growth (% of SCRB)

Exon 1 AR-ASO

Exon 8 AR-ASO

22Rv1

SCRB

50

100

250

(nM)
Figure 4

A

<table>
<thead>
<tr>
<th>Empty SCRB</th>
<th>SCRB</th>
<th>Exon1 ASO</th>
<th>Exon8 ASO</th>
<th>Exon1 ASO</th>
<th>Exon8 ASO</th>
<th>(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-FL</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>AR-V7</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>PSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-Actin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MR49F/ENZ

B

<table>
<thead>
<tr>
<th>Empty SCRB</th>
<th>SCRB</th>
<th>Exon1 ASO</th>
<th>Exon8 ASO</th>
<th>Exon1 ASO</th>
<th>Exon8 ASO</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-FL</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>AR-V7</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>PSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKBP5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMPRSS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNX3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Empty SCRB</th>
<th>SCRB</th>
<th>Exon1 ASO</th>
<th>Exon8 ASO</th>
<th>Exon1 ASO</th>
<th>Exon8 ASO</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-FL</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>AR-V7</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>PSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FKBP5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMPRSS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNX3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Empty SCRB</th>
<th>SCRB</th>
<th>Exon1 ASO</th>
<th>Exon8 ASO</th>
<th>Exon1 ASO</th>
<th>Exon8 ASO</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-FL</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>AR-V7</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>PSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaved PARP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caspase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaved Caspase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinculin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Empty SCRB</th>
<th>SCRB</th>
<th>Exon1 ASO</th>
<th>Exon8 ASO</th>
<th>Exon1 ASO</th>
<th>Exon8 ASO</th>
<th>(nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-FL</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>AR-V7</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>PSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PARP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaved PARP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caspase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaved Caspase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinculin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cell growth (% of SCRB with Empty)
Figure 5

A

<table>
<thead>
<tr>
<th>SCR siRNA</th>
<th>CE3 siRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (nM)</td>
<td>5 (nM)</td>
</tr>
<tr>
<td>10 (nM)</td>
<td>10 (nM)</td>
</tr>
<tr>
<td>20 (nM)</td>
<td>20 (nM)</td>
</tr>
</tbody>
</table>

MR49F/+ENZ

<table>
<thead>
<tr>
<th>Protein</th>
<th>MR49F/+ENZ</th>
<th>22Rv1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-FL</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>AR-V7</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>PSA</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>PARP</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>C-PARP</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>Caspase 3</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>C-Caspase 3</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
<tr>
<td>β-Actin</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
</tbody>
</table>

B

MR49F/+ENZ

<table>
<thead>
<tr>
<th>mRNA expression (% of SCR)</th>
<th>SCR siRNA</th>
<th>CE3 siRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5 (nM)</td>
<td>5 (nM)</td>
</tr>
<tr>
<td>20</td>
<td>10 (nM)</td>
<td>10 (nM)</td>
</tr>
<tr>
<td>40</td>
<td>20 (nM)</td>
<td>20 (nM)</td>
</tr>
</tbody>
</table>

22Rv1

<table>
<thead>
<tr>
<th>mRNA expression (% of SCR)</th>
<th>SCR siRNA</th>
<th>E2b+CE3 siRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5 (nM)</td>
<td>5 (nM)</td>
</tr>
<tr>
<td>20</td>
<td>10 (nM)</td>
<td>10 (nM)</td>
</tr>
<tr>
<td>40</td>
<td>20 (nM)</td>
<td>20 (nM)</td>
</tr>
</tbody>
</table>

C

MR49F/+ENZ

<table>
<thead>
<tr>
<th>Cell growth (% of SCR siRNA)</th>
<th>SCR</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR siRNA</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>CE3 siRNA</td>
<td>98</td>
<td>95</td>
<td>90</td>
<td>80</td>
<td>70</td>
</tr>
</tbody>
</table>

22Rv1

<table>
<thead>
<tr>
<th>Cell growth (% of SCR siRNA)</th>
<th>SCR</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCR siRNA</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>E2b+CE3 siRNA</td>
<td>98</td>
<td>95</td>
<td>90</td>
<td>80</td>
<td>70</td>
</tr>
</tbody>
</table>

Downloaded from clincancerres.aacrjournals.org on April 20, 2017. © 2015 American Association for Cancer Research.
Figure 6

A

ENZ-R LNCaP xenograft

- Tumor volume (mm3)

- Serum PSA (ng/ml)

B

ENZ-R LNCaP xenograft

- Tumor volume change (%)

- PSA change (%)

C

- mRNA expression (% of SCR)

D

- TUNEL expression score

E

Patient-derived CRPC xenograft

- Tumor volume (mm3)

- Tumor weight (mg)

- Serum PSA (ng/ml)
Clinical Cancer Research

Generation 2.5 Antisense Oligonucleotides Targeting the Androgen Receptor and its Splice Variants Suppress Enzalutamide Resistant Prostate Cancer Cell Growth

Yoshiaki Yamamoto, Yohann Loriot, Eliana Beraldi, et al.

Clin Cancer Res Published OnlineFirst January 29, 2015.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-14-1108

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2015/02/03/1078-0432.CCR-14-1108.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.