MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial

Michael Weller¹⁺, Ghazaleh Tabatabai¹⁺, Bärbel Kästner², Jörg Felsberg³, Joachim P. Steinbach⁴, Antje Wick⁵, Oliver Schnelli⁶, Peter Hau⁷, Ulrich Herrlinger⁸, Michael C. Sabel⁹, Hans-Georg Wirsching¹, Ralf Ketter¹⁰, Oliver Bähr⁴, Michael Platten⁵, Jörg C. Tonn⁶, Uwe Schlegel¹¹, Christine Marosi¹², Roland Goldbrunner¹³, Roger Stupp¹⁴, Krisztian Homicsko¹⁴, Josef Pichler¹⁵, Guido Nikkhah¹⁶, Jürgen Meixensberger¹⁷, Peter Vajkoczy¹⁸, Spyros Kollias¹⁹, Johannes Hüsing², Guido Reifenberger³⁺, Wolfgang Wick⁵⁺, for the DIRECTOR Study Group

Departments of ¹Neurology and ¹⁹Neuroradiology, University Hospital Zurich, Zurich, Switzerland; ²Clinical Trial Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany; ³Department of Neuropathology, Heinrich Heine University Düsseldorf, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; ⁴Dr. Senckenberg Institute for Neuro-Oncology, University Hospital Frankfurt, Frankfurt, Germany; ⁵Department of Neurology, Heidelberg University Medical Center; National Center for Tumor Diseases Heidelberg, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; ⁶Department of Neurosurgery, Ludwig Maximilian University of Munich, Munich, Germany; ⁷Department of Neurology and Wilhelm Sander-NeuroOncology Unit, University Hospital Regensburg, Regensburg, Germany; ⁸Division of Clinical Neuro-Oncology, Department of Neurology, University of Bonn Medical Center, Bonn, Germany; ⁹Department of Neurosurgery, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ¹⁰Department of Neurosurgery,
Saarland University, Homburg, Germany; 11Department of Neurology, University Hospital Bochum, Bochum, Germany; 12Department of Oncology, Medical University Vienna, Vienna, Austria; 13Department of Neurosurgery, University Hospital Cologne, Cologne, Germany; 14Department of Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; 15Department of Oncology, Hospital Linz, Austria, 16Department of Neurosurgery, University Hospital Freiburg, Germany; 17Department of Neurosurgery, University Hospital Leipzig, Germany 18Department of Neurosurgery, University Hospital Berlin Charité, Germany

*MW and GT share first authorship, #GR and WW share senior authorship.

Running head
DIRECTOR trial for recurrent glioblastoma

Key words
dose-intensified temozolomide, recurrent glioblastoma

Financial support
The DIRECTOR trial was supported by a grant from MSD (formerly Schering Plough) and a Matching Funds grant from the University Hospital Zurich, Switzerland.

Corresponding author
Michael Weller, MD, Department of Neurology, University Hospital Zurich, Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland, Phone: +41-44-255-5500, Fax: +41-44-255-4507, E-mail: michael.weller@usz.ch
Trial registration ID

NCT00941460

Potential conflict of interest

J.S. and U.H. have received honoraria from Medac, G.T., M.W. and J.P. have received honoraria from MSD, J.T., M.W. and G.R. have received honoraria from Merck Serono, P.H. has provided expert testimony to Medac, W.W. has participated in a speaker’s bureau for MSD, W.W., M.W. and J.P. have received research funding from MSD, M.W. has received research funding from Merck Serono, W.W. has received research funding from Boehringer, R.S. and M.W. have a consultant relationship with MSD, J.T. and M.W. have a consultant relationship with Merck Serono.

Word count 3689

Figures 2

Tables 4
Statement of clinical relevance

The prospective randomized DIRECTOR trial assessed the efficacy and tolerability of two different regimens of rechallenge with intensified temozolomide (TMZ) at first progression of glioblastoma after temozolomide chemoradiotherapy (TMZ/RT→TMZ). Efficacy was similar in both arms, but depended strongly on MGMT promoter methylation status. TMZ rechallenge should no longer be considered for patients with tumors lacking MGMT promoter methylation, but is an appropriate option for patients with glioblastoma harboring MGMT promoter methylation at first relapse.
Abstract

Purpose
Rechallenge with temozolomide (TMZ) at first progression of glioblastoma after temozolomide chemoradiotherapy (TMZ/RT→TMZ) has been studied in retrospective and single-arm prospective studies, applying TMZ continuously or using 7/14 or 21/28 days schedules. The DIRECTOR trial sought to show superiority of the 7/14 regimen.

Patients & Methods
Patients with glioblastoma at first progression after TMZ/RT→TMZ and at least 2 maintenance TMZ cycles were randomized to Arm A (one week on (120 mg/m² per day) / one week off) or Arm B (three weeks on (80 mg/m² per day) / one week off). The primary end point was median time to treatment failure (TTF) defined as progression, premature TMZ discontinuation for toxicity, or death from any cause. O6-methylguanine DNA methyltransferase (MGMT) promoter methylation was prospectively assessed by methylation-specific PCR.

Results
Because of withdrawal of support, the trial was prematurely closed to accrual after 105 patients. There was a similar outcome in both arms for median TTF (A: 1.8 months [95% CI 1.8-3.2] versus B: 2.0 months [95% CI 1.8-3.5]) and overall survival (OS) (A: 9.8 months [95% CI 6.7-13.0] versus B: 10.6 months [95% CI 8.1-11.6]).

Median TTF in patients with MGMT-methylated tumors was 3.2 months [95% CI 1.8-7.4] versus 1.8 months [95% CI 1.8-2] in MGMT-unmethylated glioblastoma.

Progression-free survival rates at six months (PFS-6) were 39.7% with versus 6.9% without MGMT promoter methylation.

Conclusions
TMZ rechallenge is a treatment option for MGMT promoter-methylated recurrent glioblastoma. Alternative strategies need to be considered for patients with progressive glioblastoma without MGMT promoter methylation.

Introduction

The standard of care for newly diagnosed glioblastoma, with an incidence of more than 3/100,000 the most common primary malignant brain tumor, includes resection or biopsy as feasible, involved field radiotherapy, and concomitant and adjuvant temozolomide (TMZ/RT→TMZ) (1). While anti-angiogenic agents such as the antibody to vascular endothelial growth factor, bevacizumab, or the integrin inhibitor cilengitide failed to prolong overall survival (2-4), the novel approach of tumor-treating fields provided a survival advantage and may be incorporated into the future first-line treatment (5).

Standards of care at progression are less well defined (6): Depending on approval status, individual patient and tumor factors, and local preference, the most commonly used systemic therapeutic approaches include nitrosoureas such as lomustine (CCNU) which has become the standard of care in randomized clinical trials for recurrent glioblastoma (7, 8), temozolomide rechallenge using various regimens (9-12), and bevacizumab (13, 14). The need for prospective assessment of TMZ rechallenge after systematic recognition of pseudoprogression as a potential confounder of second-line treatments (15, 16) and the controversy regarding the optimal dosing of TMZ for patients with recurrent glioblastoma after failure of first-line TMZ/RT→TMZ led to the design of the DIRECTOR (Dose-Intensified Rechallenge with Temozolomide, One Week on One Week Off versus Three Weeks on One Week...
Off in Patients with Progressive or Recurrent Glioblastoma) trial, which sought to explore the activity of two widely used regimens of dose-intense TMZ for recurrent glioblastoma, one week on / one week off (7/14) (9) versus three weeks on / one week off (10).

Patients and Methods

Study design
DIRECTOR (NCT 00941460) was designed as a prospective, open-label, randomized, 2-arm trial of two competing TMZ dosing regimens for patients with glioblastoma at first relapse or progression. The primary objective was to show the superiority of Arm A (one week on / one week off) over Arm B (three weeks on / one week off), the primary endpoint being time to treatment failure (TTF). Major inclusion criteria were: progressive or recurrent glioblastoma documented by MRI no earlier than 180 days after first surgery for glioblastoma and no earlier than 90 days after completion of radiotherapy (patients with progression outside the radiation field were also not allowed to be entered into the trial unless these time frames were respected); histological diagnosis of glioblastoma; tissue available for the determination of O6-methylguanine DNA methyltransferase (MGMT) promoter methylation in the primary or in the recurrent tumor; prior treatment with TMZ/RT and at least two cycles of maintenance TMZ (5/28); informed consent; age 18-80 years; Karnofsky performance score ≥ 50%; absolute neutrophil counts > 1,500/µl; platelet counts > 100,000/µl; hemoglobin > 10 g/dl; serum creatinin < 1.5-fold upper normal range; ASAT or ALAT < 3-fold upper normal range unless attributed to anticonvulsants; alkaline phosphatase < 3-fold upper normal range; women with...
childbearing potential must have a negative serum pregnancy test ≤14 days prior to study enrollment. Obligatory *MGMT* testing of the recurrent tumor as opposed to the primary tumor tissue was initially required, but no longer requested when it became clear that the result of the *MGMT* status determination rarely changes in the course of disease (17). All patients gave written informed consent, and the study was approved by the local ethical committees and competent authorities. The trial was prematurely closed for withdrawal of support after the merger of Schering Plough (Kenilworth, NJ) with Merck, Sharp & Dohme (Whitehouse Station, NJ). Databank closure was on June 30, 2013.

Central pathology review, DNA extraction and *MGMT* promoter methylation analysis

All tissue samples from primary or recurrent tumor were confirmed by central pathology review (G.R.) to represent glioblastoma according to the World Health Organisation (WHO) classification of tumors of the central nervous system (18). Tumor DNA was extracted from formalin-fixed and paraffin-embedded tissue samples using the Qiagen blood and tissue DNA extraction kit (Qiagen, Hilden, Germany). Each tumor sample used for DNA extraction was histologically verified to contain vital glioblastoma tissue with an estimated tumor cell content > 80%. The *MGMT* promoter methylation status was determined by methylation-specific PCR (MSP) and evaluated as reported (19). This MSP assays had been used in several previous studies (20-22) and was proven to show high concordance with results obtained by the MSP assay of MDxHealth S.A. (Herstal, Belgium) (22) and DNA pyrosequencing (17).
Study Treatment

Patients were allocated either to the one week on / one week off regimen (7/14, Arm A) or to the three weeks on / one week off regimen (21/28, Arm B) of dose-intensified TMZ using a treatment allocation algorithm (23) with a probability of a minimizing allocation set at 0.9. Arm A patients were treated at an initial dose of 120 mg/m² unless there had been grade III or IV myelotoxicity with conventional TMZ (5/28) previously. These patients were started at 90 mg/m². TMZ was given orally on days 1-7 and 15-21. Arm B patients started with an initial dose of 80 mg/m² unless there had been significant myelotoxicity with conventional TMZ (5/28) previously. These patients started at 60 mg/m². TMZ was given orally on days 1-21. A treatment cycle was defined as two completed weeks of TMZ within four weeks in Arm A and as three weeks of continuous TMZ within four weeks in Arm B. Dose modifications were foreseen according to hematological parameters as outlined in Supplementary Table 1.

Assessments and endpoints

Patients were to be seen weekly during cycle 1 and monthly thereafter for general evaluation and blood tests. Toxicity was evaluated using the Common Terminology Criteria for Adverse Events (CTCAE v3.0). Cognitive function was assessed by Mini-Mental State Examination (MMSE) in 4-weekly intervals. Quality of life was monitored by EORTC QLQ-C30 and QLQ-BN20 in 8-weekly intervals. Disease status was monitored by MRI in 8-weekly intervals and assessed using Macdonald criteria as prespecified in the protocol (24). The primary endpoint, TTF, was calculated from randomization to any of the following: progressive disease defined by Macdonald criteria (24), death for any reason, or toxicity leading to discontinuation of study.
treatment for any reason. Secondary endpoints included progression-free survival (PFS) calculated as the time from randomization to the first documented evidence of progression of disease, survival from randomization, and efficacy parameters in subgroups defined by MGMT status. Radiological progression was evaluated at each center and also centrally verified post-hoc (blindly to previous results).

Statistical analyses

The targeted sample size was 83 patients per arm, and no interim analysis was planned. This size would have allowed for a detection of an improvement in median TTF from 18.2 weeks for Arm B to 29.2 weeks for Arm A (hazard ratio 0.63) (10, 25). Based on these assumptions, there was approximately 80% power to detect the stated difference in TTF between the two treatment arms for a two-sided level of 0.05. Treatment arms were compared using a permutation test (26) with 9999 replicates in the Cox proportional hazard model with the same parameters as explanatory variables used for the treatment allocation algorithm (MGMT promoter methylation status, >2 months since previous TMZ treatment, age at least 50 years, KPS 50-60, 70-80 or 90-100) along with the variable for treatment. Since p values from permutation tests were sufficiently close to those based on partial likelihoods as routinely used in parameter estimation in the Cox model, the latter were used for all subgroup analyses. Secondary analyses with respect to time-to-event variables were done using Cox proportional hazards models when considering multiple explanatory variables. Log-rank or bootstrap tests to compare median times and parametric tests with standard error approximation were used for univariate tests, especially when comparing rates at fixed time points. With respect to categorical variables, we used Fisher’s exact test or logistic regression, and with respect to continuous variables linear regression models. Specifically, quality of life was analyzed using a linear
mixed regression model with patient as random effect. All p values, statistical tests and confidence intervals beyond the analysis of the primary criterion were not corrected for multiplicity and are to be interpreted as exploratory.

Results

Patient characteristics

105 patients were randomized at 16 sites from 9/2009 to 6/2012. Table 1 summarizes patient characteristics per treatment arm. Arms A and B were overall well balanced. More patients in Arm B had surgery for recurrent disease whereas more patients in Arm A had steroids at study entry. At the time of databank closure (30 June 2013), 87 deaths were documented, 84 were attributed to tumor progression, 3 documented with unknown course. No patient was still on study treatment. Four patients had not reached the primary endpoint of TTF (Figure 1).

Safety and tolerability

All adverse events were categorized by system organ class and graded according to CTCAE. There was no relevant difference between both arms regarding the frequency and severity of adverse events in the hematological system. Profound lymphopenia was the most common hematological toxicity, 19% in Arm A and 29% in Arm B (Supplementary Table 1). Severe infections, however, were rare. Non-hematological adverse events, e.g., disorders of the gastrointestinal system, nervous system, metabolism, respiratory system, skin, cardiovascular system or musculoskeletal system occurred at similar rates in both treatment arms and were overall infrequent.
Outcome by treatment and MGMT status

All clinical outcome parameters were comparable in Arms A and B (Figure 2, Table 2). Median TTF was below 2 months whereas median OS from first intake of study drug was in the range of 10 months. The p value from the permutation test (p=0.488) was close enough to the p value using partial likelihood from the Cox model (p=0.485) to justify taking the latter one for all other analyses. There were 2 CR (4%) and 2 PR (4%) in Arm A and 4 CR (8%) and 4 PR (8%) in Arm B by local assessment (p=0.68) in response to the study treatment. The median duration of the 6 CR was 4.5 months (95% CI 1.8-11.0). The median duration of the 6 PR was 3 months (95% CI 1.8-13.6). TTF was diagnosed because of PD in all but three patients, confirming that tolerability was good. One patient developed wound infection at day 26, necessitating TMZ discontinuation, 2 patients died without documented PD. Age was not prognostic. As required per protocol MGMT status from primary or recurrent tumor was available for all patients. MGMT promoter methylation was strongly associated with superior TTF and all other outcome parameters (Figure 2, Table 3). The TTF difference between patients with versus without MGMT promoter methylation was more prominent in Arm B than in Arm A (Supplementary table 2). Overall survival from initial histological diagnosis of glioblastoma was 25.4 months (95% CI 17.8-32.3) in Arm A and 22.7 months (95% CI 18.5-27.2) in Arm B. This shows that patients enrolled into randomized trials for recurrent glioblastoma represent a selected population.

Central radiology review

Serial MRI of 85 patients were available for post-hoc central review of progression. All these patients had measurable disease at baseline. The time point of progression
was centrally confirmed in 81 patients. It was antedated 1 scan in 2 patients and not confirmed in 2 patients; 0 of 1 CR and 2 of 3 PR were confirmed. Insufficient scans were provided for the other 12 patients considered objective responders locally.

Outcome by preexposure to TMZ

We also separated the patient populations by intensity and interval of preexposure to TMZ. Administration of more than 6 cycles of maintenance TMZ is uncommon in Europe (Table 1). To this end, we compared patients with intervals below (n=40) or above 2 months (n=65) since their last TMZ intake as specified in the study protocol. Four of 6 CR and all 6 PR were noted in the latter group. Further, there was significantly improved outcome in patients with a longer delay since the last administration of TMZ, more prominent in Arm A than in Arm B and largely confined to patients with *MGMT* promoter methylation (Supplementary table 3).

MMSE and quality of life

Serial assessments of MMSE and quality of life using EORTC QLQ-C30 and QLQ-BN20 were grouped into (i) pre-treatment, (ii) during study treatment and (iii) after study treatment assessments. For the latter two time intervals carrying multiple measures, we determined patient-wise minimum, median and maximum scores. The MMSE as a surrogate measure of cognitive function remained stable during treatment and did not exhibit a decline after the end of study treatment as long as data were captured (Supplementary Figure 1, Supplementary table 4). There was relatively little difference in quality of life assessed by QLQ-C30 and QLQ-BN20 when compared after the first 90 days of study treatment (Supplementary table 5). Treatment-by-time interaction indicated that quality of life developments were somewhat more favorable in Arm B, with significant differences for pain.
(Supplementary table 6). Although most scales are deteriorating over time (positive slope terms in either arm), the lack of major decline over time may result from the low number of assessments after the end of study treatment (Supplementary Table 7).

Multivariate modeling of outcome

Cox proportional hazards modeling for TTF revealed *MGMT* promoter methylation status and time interval from last TMZ exposure as independent prognostic factors whereas no such role was identified for age, KPS, surgery for recurrent tumor prior to enrolment (Table 4). Steroid administration at study entry, body surface area, body weight, red or white blood cell or lymphocyte counts, hemoglobin or hematocrit at study entry were not prognostic for TTF (data not shown). Similar results were obtained when Cox proportional hazards modeling was applied to PFS whereas only *MGMT* status was prognostic for survival from first study drug administration (data not shown).

Discussion

Standards of care in recurrent glioblastoma are not well defined. This definitive report of the phase II randomized DIRECTOR trial indicates that TMZ rechallenge is a valid treatment option for patients with recurrent glioblastoma with, but not without, *MGMT* promoter methylation.

The optimal dosing of TMZ in glioblastoma became a dominant topic in the first decade of this century in Neuro-Oncology, in part reflecting the lack of promising alternative drugs, in part also reflecting the consideration that TMZ activity is critically limited by chemoresistance afforded by *MGMT* (27, 28). *MGMT* promoter methylation
is observed in 30-40% of glioblastomas, presumably resulting in decreased \textit{MGMT} gene expression in the \textit{MGMT} promoter-methylated tumor cells, thereby rendering glioblastomas more sensitive to TMZ. However, a predictive role of \textit{MGMT} promoter methylation for benefit from alkylating chemotherapy including TMZ has only been defined for glioblastoma whereas \textit{MGMT} promoter methylation is prognostic for better outcome with either radiotherapy or chemotherapy in patients with anaplastic gliomas (29, 30). This difference in biological significance of \textit{MGMT} promoter methylation is probably not related to grade of malignancy \textit{per se}, but to the differential distribution of isocitrate dehydrogenase (\textit{IDH}) mutations among these tumors. \textit{MGMT} promoter methylation associated with \textit{IDH} mutation and the glioma-associated CpG island methylator phenotype (G-CIMP) does not have the same significance as MGMT promoter methylation on the wild-type \textit{IDH} background of glioblastoma (31, 32).

Since TMZ depletes MGMT protein in peripheral blood mononuclear cells (33) and presumably glioblastoma cells, too, it was tempting to speculate that higher doses of TMZ given over a longer time frame would eventually deplete MGMT. Accordingly, it was assumed that specifically patients with glioblastomas lacking \textit{MGMT} promoter methylation might benefit from dose-intense TMZ regimens. In addition and in parallel to DIRECTOR, two further trials explored the potential role of TMZ dose intensification in glioblastoma. For the newly diagnosed setting, the hypothesis that more TMZ might deplete MGMT and confer a survival benefit was falsified by the RTOG 0525 trial which confirmed the strong prognostic role of the \textit{MGMT} status in TMZ-treated patients, but showed no difference between standard-dosed TMZ or a three weeks on / one week off regimen for 6-12 cycles in the maintenance phase, also not when the analysis was stratified for \textit{MGMT} status (34). The BR12 trial analysed the same two regimens in comparison with procarbacine, CCNU and
vincristine (PCV) in recurrent malignant glioma and similarly observed no difference between the three arms (35). However, this trial had enrolled chemonaive patients with WHO grade III or IV gliomas which does not inform about the current situation in clinical practice where recurrent or progressive glioblastoma patients have commonly been pretreated with TMZ/RT→TMZ.

The DIRECTOR trial reports a median TTF in the range of 2 months and yields overall no evidence that there are clinically relevant differences between the two dosing regimens, regarding either efficacy, safety or tolerability (Figure 2. Tables 2 and 3). Importantly, the dosing regimens were both confirmed to be feasible, given that PD was driving TTF in all, but one patient(s). The PFS-6 rate of 21% is in the range of previously reported figures of 11-24% (11, 12, 36). In contrast to the RESCUE trial (11), we observed a better PFS in patients off TMZ for 2 months or more (Supplementary table 3). Of note, it is uncommon in Europe to give TMZ for more than 6 months (Table 1). These considerations indicate that some of the patients escalated to dose-intensified TMZ regimens early in the disease course in RESCUE as well as in our previous reports (37) were in fact suffering from pseudoprogression, artificially raising the PFS-6 rate. Increased awareness of pseudoprogression may thus explain an apparent decrease in PFS-6 rates with TMZ rechallenge in contemporary studies (12), and challenges all cross trial comparisons to older series. Moreover, differences in the PFS-6 figures for TMZ rechallenge – and probably CCNU, too - are likely to be related to the proportion of patients with tumors with MGMT promoter methylation in these studies, e.g., PFS-6 was 26% with versus 0% without MGMT promoter methylation in the control arm of the BELOB trial (38).

The major limitations of the DIRECTOR trial are the relatively small sample size and the premature closure of the study which allows for less definitive conclusions. Yet, despite the lower than planned sample size and the premature trial closure, the
likelyhood of a major difference in efficacy between the different TMZ schedules is very low.

In fact, the most important result of DIRECTOR is the strong prognostic role of the \textit{MGMT} promoter methylation status in patients rechallenged with TMZ that has not previously been studied prospectively in an adequately sized patient population. In contrast, age and KPS were not prognostic, likely reflecting preselection of patients enrolled into randomized trials for recurrent as opposed to newly diagnosed glioblastoma enriching patients with a similar, relatively favorable outcome. \textit{MGMT} status was centrally assessed and was available for all patients. Although there was only a moderate advantage in median TTF of 3.2 versus 1.8 months in patients with MGMT promoter-methylated versus unmethylated tumors, PFS-6 was increased 5.8-fold, and OS at 12 months 2.4-fold (Figure 2, Table 3). Yet, given the absence of an inactive comparator or a placebo, it cannot be excluded that \textit{MGMT} promoter methylation is merely prognostic. Thus, bevacizumab alone was associated with superior PFS at 6 months in patients with tumors with \textit{versus} without \textit{MGMT} promoter methylation in the BELOB trial, too (38), supporting a prognostic role of \textit{MGMT} promoter methylation in recurrent glioblastoma. Randomization between TMZ and placebo and the demonstration of benefit from TMZ exclusively in patients with tumors with \textit{MGMT} promoter methylation would be required for definitive confirmation, but is neither feasible nor ethical in patients with recurrent glioblastoma.

The findings of the DIRECTOR trial have implications for current clinical practice. Based on DIRECTOR, TMZ rechallenge should no longer be considered for patients with tumors lacking \textit{MGMT} promoter methylation, but remains a viable option for patients with \textit{MGMT} promoter-methylated glioblastomas, notably after a drug-free interval of 2 months or more. Whether TMZ given at 5 out of 28 days would be as effective as dose-intense regimens in patients recurring after a drug-free interval,
remains uncertain, but the 5/28 regimen may be preferred in that setting because of better tolerability. More importantly, it may be speculated that a similarly profound prognostic effect of the MGMT status would have been seen, had the patients been treated with nitrosoureas instead of TMZ (38). If confirmed, this would call for MGMT testing of primary or recurrent tumor and stratification for all, notably smaller randomized recurrent glioblastoma trials carrying an alkylator control arm because imbalances in the distribution of patients with MGMT-unmethylated versus MGMT-methylated tumors could severely bias outcome. In conclusion, DIRECTOR supports stratified treatment algorithms based on MGMT promoter methylation status in recurrent glioblastoma and advocates an alkylator regimen, including dose-dense TMZ, as the most appropriate option for patients with glioblastoma harboring MGMT promoter methylation.

Acknowledgement

The following institutions (in alphabetical order) and investigators or study personnel participated in the trial: University Hospital Berlin Charité (P. Vajkoczy, M. Stoffels), University Hospital Bochum (U. Schlegel, T. Kowalski, A. Pox), University Hospital Bonn (U. Herrlinger, M. Stuplich, N. Schäfer, C. Landwehr), University Hospital Düsseldorf (J. Felsberg, G. Reifenberger, M. Sabel), University Hospital Frankfurt (J. Steinbach, O. Bähr, J. Hartan), University Hospital Freiburg (G. Nikkhah), University Hospital Heidelberg (W. Wick, A. Wick, M. Platten, D. Schemmer), University Hospital Homburg (R. Ketter), University Hospital Cologne (R. Goldbrunner, S. Grau, E. Cakmak), University Hospital Leipzig (J. Meixensberger), University Hospital Munich (J.C. Tonn, O. Schnell), University Hospital Regensburg (P. Hau, C. Wismeth, C. Reinert) in Germany, Hospital Linz (J. Pichler) and Medical University Vienna (C. Marosi) in Austria, and CHUV Lausanne (R. Stupp, A. Hottinger, K.
Homicsko) and University Hospital Zurich (M. Weller, G. Tabatabai, H.G. Wirsching, V. Reichl) in Switzerland. The Clinical Coordination Center (KKS) in Heidelberg was responsible for data management, biometry, monitoring and data analysis (B. Kaestner, J. Huesing, S. Luntz). The authors thank J. Schuth and S. Hecker (MSD, formerly Essex Germany) and B. Winograd, L. Hollis and M. Manzo (MSD, formerly Schering Plough) for their support in the early phase of this project and all patients and their families for participation in the trial.

References

with temozolomide compared to temozolomide alone in patients with newly
diagnosed GBM. Presented at: 19th Annual Meeting of the Society for Neuro-

7. Wick W, Puduvalli VK, Chamberlain MC, van den Bent MJ, Carpentier AF,
Cher LM, et al. Phase III study of enzastaurin compared with lomustine in the
treatment of recurrent intracranial glioblastoma. Journal of clinical oncology:

Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and
in combination with lomustine, versus lomustine alone in patients with recurrent
glioblastoma. Journal of clinical oncology: official journal of the American Society of

week on/one week off: a novel active regimen of temozolomide for recurrent

Temozolomide 3 weeks on and 1 week off as first-line therapy for recurrent
glioblastoma: phase II study from gruppo italiano cooperativo di neuro- oncologia

trial of continuous dose-intense temozolomide in recurrent malignant glioma:
RESCUE study. Journal of clinical oncology: official journal of the American Society

Table 1. Patient characteristics prior to enrolment

<table>
<thead>
<tr>
<th></th>
<th>Arm A</th>
<th>Arm B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7/7</td>
<td>21/7</td>
</tr>
<tr>
<td>N=52</td>
<td></td>
<td>N=53</td>
</tr>
<tr>
<td>Age at diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median (years)</td>
<td>58</td>
<td>56</td>
</tr>
<tr>
<td>Range (years)</td>
<td>21-62</td>
<td>37-59</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>34 (65%)</td>
<td>35 (66%)</td>
</tr>
<tr>
<td>Female</td>
<td>18 (35%)</td>
<td>18 (34%)</td>
</tr>
<tr>
<td>MGMT promoter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylated</td>
<td>28 (53.8%)</td>
<td>31 (58.5%)</td>
</tr>
<tr>
<td>Unmethylated</td>
<td>24 (46.2%)</td>
<td>22 (41.5%)</td>
</tr>
<tr>
<td>First-line therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMZ/RT</td>
<td>52 (100.0%)</td>
<td>53 (100.0%)</td>
</tr>
<tr>
<td>Number of maintenance TMZ cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No data</td>
<td>1 (1.9%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td><3</td>
<td>9 (17.3%)</td>
<td>12 (22.6%)</td>
</tr>
<tr>
<td>4-6</td>
<td>32 (61.5%)</td>
<td>33 (62.3%)</td>
</tr>
<tr>
<td>7 or more</td>
<td>10 (19.2%)</td>
<td>8 (15.1%)</td>
</tr>
<tr>
<td>Time since last TMZ administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 2 months</td>
<td>20 (38.5%)</td>
<td>20 (37.7%)</td>
</tr>
<tr>
<td>> 2 months</td>
<td>32 (61.5%)</td>
<td>33 (62.3%)</td>
</tr>
<tr>
<td>Survival</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median PFS (months, 95% CI)</td>
<td>12.0 (8.8-17.0)</td>
<td>11.0 (9.2-12.9)</td>
</tr>
<tr>
<td>KPS at study entry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90-100</td>
<td>30 (57.7%)</td>
<td>30 (56.6%)</td>
</tr>
<tr>
<td>70-80</td>
<td>15 (28.8%)</td>
<td>16 (30.2 %)</td>
</tr>
<tr>
<td><70</td>
<td>7 (13.5%)</td>
<td>7 (13.2%)</td>
</tr>
<tr>
<td>Steroids at study entry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>16 (30.8%)</td>
<td>12 (22.6%)</td>
</tr>
<tr>
<td>No</td>
<td>36 (69.2 %)</td>
<td>41 (77.4%)</td>
</tr>
<tr>
<td>Surgery for recurrence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>29 (55.8%)</td>
<td>32 (60.4%)</td>
</tr>
<tr>
<td>No</td>
<td>23 (44.2%)</td>
<td>21 (39.6%)</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; KPS, Karnofsky performance score; MGMT, O\(^6\)-methylguanine DNA methyltransferase; OS, overall survival; PFS, progression-free survival; TMZ, temozolomide.
Table 2. Outcome by treatment arm.

<table>
<thead>
<tr>
<th></th>
<th>Arm A (7/14)</th>
<th>Arm B (21/28)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Patients</td>
<td>Events</td>
<td>Time in months (95% CI)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Median TTF</td>
<td>52</td>
<td>49</td>
<td>1.8 [1.8; 3.2]</td>
</tr>
<tr>
<td>Median survival from first study drug administration</td>
<td>52</td>
<td>42</td>
<td>9.8 [6.6; 13.0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Rate in % (95% CI)</th>
<th>Rate in % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTF-6</td>
<td>50 42</td>
<td>17.1 [8.2; 28.8]</td>
</tr>
<tr>
<td>PFS-6</td>
<td>50 42</td>
<td>17.1 [8.2; 28.8]</td>
</tr>
<tr>
<td>Survival rate at 12 months from first study drug administration</td>
<td>45 27</td>
<td>41.0 [26.7; 54.8]</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; PFS, progression-free survival; TTF, time to treatment failure.
Table 3. Outcome by *MGMT* promoter methylation status.

<table>
<thead>
<tr>
<th></th>
<th>MGMT-unmethylated glioblastoma</th>
<th>MGMT-methylated glioblastoma</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>Events</td>
<td>Patients</td>
<td>Events</td>
</tr>
<tr>
<td>Median TTF</td>
<td>59</td>
<td>46</td>
<td>1.8 [1.8; 2.0]</td>
</tr>
<tr>
<td>Median survival from first study drug administration</td>
<td>59</td>
<td>46</td>
<td>7.9 [6.3; 10.3]</td>
</tr>
<tr>
<td>Rate in % (95% CI)</td>
<td>PFS-6</td>
<td>6.9 [2.2; 15.3]</td>
<td>39.7 [25.5; 53.5]</td>
</tr>
<tr>
<td>Survival rate at 12 months from first study drug administration</td>
<td>53</td>
<td>41</td>
<td>22.9 [12.7; 34.9]</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; PFS, progression-free survival; TTF, time to treatment failure.
Table 4. Multivariate analyses of predictors for inferior TTF.

<table>
<thead>
<tr>
<th></th>
<th>Hazard ratio and 95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm A versus Arm B</td>
<td>1.16 (0.76-1.76)</td>
<td>0.485</td>
</tr>
<tr>
<td>Age at study entry 50+ versus 18-49 years</td>
<td>1.27 (0.76-2.20)</td>
<td>0.381</td>
</tr>
<tr>
<td>Time interval since last TMZ: < versus ≥ 2 months</td>
<td>1.60 (1.00-2.55)</td>
<td>0.036</td>
</tr>
<tr>
<td>Salvage surgery: no versus yes</td>
<td>1.02 (0.65-1.57)</td>
<td>0.945</td>
</tr>
<tr>
<td>KPS 50-60 versus 90-100</td>
<td>1.03 (0.52-1.92)</td>
<td>0.786</td>
</tr>
<tr>
<td>KPS 70-80 versus 90-100</td>
<td>1.05 (0.63-1.73)</td>
<td>0.841</td>
</tr>
<tr>
<td>MGMT promoter: unmethylated versus methylated</td>
<td>1.76 (1.11-2.82)</td>
<td>0.017</td>
</tr>
</tbody>
</table>

1Hazard ratios as exponential function of parameter estimates and confidence interval. Estimates from a Cox model containing arm, treatment, age, time since last TMZ, salvage surgery: no versus yes, KPS, and MGMT promoter methylation status as explanatory variables. Other factors which are mentioned in the text, were included as additional variables in turn (one at a time).
Figure Legends

Figure 1. CONSORT chart.

Figure 2. Clinical outcome. TTF (A) and OS (B) in Arm A (7/14) versus Arm B (21/28). TTF (C) and OS (D) in patients without versus with MGMT promoter methylation.
FIGURE 1 CONSORT CHART

Excluded (n=17):
- Not met eligibility criteria (n=7)
- No consent given (n=4)
- At investigator’s discretion (n=4)
- Others (n=1)
- Reason not known (n=1)

Screened (n=122)

Randomized (n=105)

Arm A (n=52)

Arm B (n=53)

Consent withdrawn (n=1)

Lost to Follow-up (n=2)
- Failure (n=49):
 - Termination of study treatment due to toxicity (n=2)
 - Progression (n=45)
 - Death (n=2)

Received study medication (n=52)

Received study medication (n=52)

Endpoint not reached by end of study (n=1)

Endpoint not reached by end of study (n=3)

Failure (n=49):
- Termination of study treatment due to toxicity (n=1)
 - Progression (n=48)
Clinical Cancer Research

MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial

Michael Weller, Ghazaleh Tabatabai, Bärbel Kästner, et al.

Clin Cancer Res Published OnlineFirst February 5, 2015.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-14-2737

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2015/02/07/1078-0432.CCR-14-2737.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.