Acquisition of Relative Interstrand Crosslinker Resistance and PARP Inhibitor Sensitivity in Fanconi Anemia Head and Neck Cancers

Anne J. Lombardi¹, Elizabeth E. Hoskins¹, Grant D. FogleSong¹, Kathryn A. Wikenheiser-Brokamp², Lisa Wiesmüller³, Helmut Hanenberg⁴,⁵, Paul R. Andreassen¹, Allison J. Jacobs⁶,⁷, Susan B. Olson⁸, Winifred W. Keeble⁶,⁷, Laura E. Hays⁶,⁷, and Susanne I. Wells¹

Abstract

Purpose: Fanconi anemia is an inherited disorder associated with a constitutional defect in the Fanconi anemia DNA repair machinery that is essential for resolution of DNA interstrand crosslinks. Individuals with Fanconi anemia are predisposed to formation of head and neck squamous cell carcinomas (HNSCC) at a young age. Prognosis is poor, partly due to patient intolerance of chemotherapy and radiation requiring dose reduction, which may lead to early recurrence of disease.

Experimental Design: Using HNSCC cell lines derived from the tumors of patients with Fanconi anemia, and murine HNSCC cell lines derived from the tumors of wild-type and Fanc–/– mice, we sought to define Fanconi anemia–dependent chemosensitivity and DNA repair characteristics. We utilized DNA repair reporter assays to explore the preference of Fanconi anemia HNSCC cells for non-homologous end joining (NHEJ).

Results: Surprisingly, interstrand crosslinker (ICL) sensitivity was not necessarily Fanconi anemia–dependent in human or murine cell systems. Our results suggest that the increased Ku-dependent NHEJ that is expected in Fanconi anemia cells did not mediate relative ICL resistance. ICL exposure resulted in increased DNA damage sensing and repair by PARP in Fanconi anemia–deficient cells. Moreover, human and murine Fanconi anemia HNSCC cells were sensitive to PARP inhibition, and sensitivity of human cells was attenuated by Fanconi anemia gene complementation.

Conclusions: The observed reliance upon PARP-mediated mechanisms reveals a means by which Fanconi anemia HNSCCs can acquire relative resistance to the ICL-based chemotherapy that is a foundation of HNSCC treatment, as well as a potential target for overcoming chemoresistance in the chemosensitive individual.

Clin Cancer Res; 21(8); 1–11. ©2015 AACR.
Translational Relevance

Because of the sensitivity of patients with Fanconi anemia to DNA damage caused by interstrand crosslinks, current therapy for head and neck squamous cell carcinomas (HNSCC) developing in patients with Fanconi anemia requires either dose reduction or omission of the radiotherapy and chemotherapy that are mainstays of treatment for sporadically occurring HNSCCs. However, frequent early locoregional recurrence suggests a discontinuity between constitutional DNA damage sensitivity and tumor cell chemotherapy sensitivity. The surprising degree of interstrand crosslinker (ICL) resistance of Fanconi anemia HNSCC cells questions the efficacy of low-dose conventional therapies. By identifying sensitivity to PARP inhibitors, this study demonstrates that systematic testing of alternative agents will be necessary using our established murine and human Fanconi anemia HNSCC models, and that results obtained from these studies may be directly translatable into phase I/I clinical trials for treatment of Fanconi anemia HNSCC using PARP inhibition via either systemic or directed means.

survival, the risk of HNSCC will become an increasingly prominent issue for patients with Fanconi anemia.

Once HNSCCs are clinically manifest, patients with Fanconi anemia fare exceedingly poorly with 2-year overall and relapse-free survival rates of less than 50% (15). Patients tolerate surgery well, but experience significant morbidity and also mortality with the radiation and/or interstrand crosslinker (ICL)–based chemotherapy that, depending upon tumor stage at presentation, may be necessary components of treatment (12, 15, 16). Although the poor prognosis of patients with Fanconi anemia HNSCC has been attributed to intolerance of conventional clastogenic therapy due to their constitutional sensitivity to DNA damaging agents, a high rate of early locoregional recurrence (15) may suggest that the tumors are not adequately controlled by the degree of genotoxic therapy that they can tolerate.

The desire to avoid severe toxicity and the hope that Fanconi anemia HNSCCs will share in the individual’s DNA damage sensitivity make the use of low-dose clastogenic treatments a possible option for therapy. However, the increased genomic instability caused by an underlying defect in error-free DNA repair by HR may facilitate Fanconi anemia tumor evolution by inducing genomic adaptations that could mitigate any inherent sensitivity to DNA damage, particularly in light of the ability of Fanconi anemia HNSCCs to share the individual’s global DNA damage hypersensitivity, thus perhaps contributing to the high rate of early locoregional recurrence in patients treated with reduced-intensity genotoxic therapies. Importantly, we also demonstrate that this increased resistance to ICLs is caused, at least in part, through PARP activation. PARP inhibitors may thus provide new avenues for treatment of HNSCC in Fanconi anemia.

Materials and Methods

Human cell cultures and vectors

Three Fanconi anemia patient–derived HNSCC cell lines used in this study were kind gifts from other institutions. VU-1131 (FANCC−/−) and VU-1365 (FANCA−/−) lines were obtained from Drs. Johan de Winter and Ruud Brakenhoff at VU University, Amsterdam, the Netherlands, and OHSU-974 (FANCA−/−) cells were obtained from Dr. Grover Bagby at the Oregon Health and Science University (OHSU). These have been described previously as human papillomavirus (HPV)–negative head and neck cancer cells, and the respective patients were not treated with cisplatin or other ICL-causing agents before creation of the cell lines (19). Human sporadic HNSCC cell lines CAL-27, FADU, and SCC-4 were obtained from the American Type Culture Collection. Cell culture conditions are detailed in Supplementary Materials and Methods. All cell lines were authenticated regularly by their
morphologic characteristics and analysis of Fanconi anemia status and corresponding genetic and molecular markers.

The cDNAs for human FANCA and FANCC were cloned into the multicloning site of the oncoretroviral vector S91IN, which expresses an IRES-neomycin phosphotransferase cassette, thus conferring resistance to G418 (Invitrogen). S91IN and the two Fanconi anemia vectors, S91FAIN and S91FCIN, were transfected into ecf2Phoenix cells and then supernatant generated to stable transduce PG13 cells, as previously described (26, 27). Supernatant from G418-resistant PG13 cells were collected, filtered through 0.45 μm, stored at −80 °C, thawed, and then tested functionally for correction of FANCA- and FANCC-deficient reference cells with known bi-allelic mutations (data not shown). Subsequently, supernatants were utilized to transduce human HNSCC cell lines. Cultures with 0.8 mg/mL medium G418 were used for selection of transduced polyclonal HNSCC cell populations.

Murine HNSCC tumor induction

Fancc−/− mice were described previously (28) and were maintained and treated according to Institutional Animal Care and Use Committee guidelines at the Portland VA Medical Center. To generate murine oral HNSCCs, 2- to 4-month-old mice (22 WT and 18 Fancc−/−) were treated with 20 μg/mL 4-NQO (Sigma) in water for up to 45 weeks. Mice were monitored weekly for tumor development and euthanized at the first signs of morbidity. Following euthanasia, tumor masses were preserved in formalin for histologic analyses and/or prepared for cell isolation and culture. Tumor grade and type were determined by hematoxylin and eosin (H&E) staining and analysis by a cancer pathologist at OHSU blinded to the genotype of the specimens.

Murine cell culture

Cell isolation and culture of primary tongue epithelial cells and HNSCC cells from WT and Fancc−/− mice are described in Supplementary Materials and Methods.

Western blot analysis

Trypsinized cells were washed with PBS and collected by centrifugation. For FANCA, FANCC, FANCD2, and actin immunoblots, whole-cell protein extracts were lysed using the Laemmli method (29). For DNA-PKcs and pDNA-PKcsS2056 immunoblots, whole-cell protein extracts were lysed using RIPA buffer (1% Triton X-100, 1% DOC, 0.1% SDS, 0.16 mol/L NaCl, 10 mmol/L Tris, pH 7.4, and 5 mmol/L EDTA) supplemented with a protease inhibitor cocktail (BD Biosciences), 10 mmol/L NaF, and 5 mmol/L NaVO3. Protein concentrations were determined using a Pierce BCA Protein Assay kit (Thermo Scientific). Lysates were resolved by SDS–PAGE. Proteins were transferred to a polyvinylidene difluoride membrane (BioRad). Membranes were probed with the appropriate primary antibody overnight. Primary antibodies used were as follows: FANCA (Cascade), FANCC (a kind gift from the Fanconi Anemia Research Fund through OHSU), FANCD2 (Novus), actin (Seven Hills Bioscience), DNA-PKcs (Abcam), and pDNA-PKcsS2056 (Abcam). Membranes were washed with TNET (10 mmol/L Tris, 2.5 mmol/L EDTA, 50 mmol/L NaCl, and 0.1% Tween 20), and secondary antibody (Jackson Immunoresearch) antibodies conjugated to horseradish peroxidase were added for 30 minutes. Membranes were then exposed to chemiluminescence reagents (Thermo Scientific) for protein detection. For detection of mono-ubiquitinated FANCD2, cells were plated for 24 hours and subsequently left untreated or treated with 2 mmol/L hydroxyurea for 24 hours before collection. For detection of DNA-PKcs and pDNA-PKcsS2056, cells were pretreated with DNA-PKcs inhibitors DNA-PK inhibitors NU-7026 (Tocris) or NU-7771 (Tocris) for 24 hours and subsequently with 2 μg/mL bleomycin for 20 minutes before collection.

Organotypic epithelial raft culture

Three-dimensional organotypic rafts were generated as described previously and as detailed in Supplementary Materials and Methods (18). H&E staining was performed for morphologic examination by a cancer pathologist at Cincinnati Children’s Hospital Medical Center blinded to the gene complementation status of the specimens. Photographs were obtained on a Leica DM2500 microscope using Leica Application Suite software. Immunofluorescence for BrdUrd was performed as described below. The percentage of BrdUrd-positive cell population was quantified as the ratio of total BrdUrd-positive nuclei to total nuclei per 200× field. Such ratios were determined for three fields of each raft and averaged.

Immunofluorescence microscopy

Preparation of coverslips and epithelial raft sections for immunofluorescence and performance of immunofluorescence microscopy is described in Supplementary Materials and Methods.

Cell cycle analysis by flow cytometry

Assays were performed as previously described (30). Briefly, Fanconi anemia-deficient and –complemented HNSCC cells were either left untreated or treated with 0.25 μg/mL melphalan (Sigma) for 48 hours. Cells were trypsinized, washed in PBS, and fixed in 100 μL BD Cytofix/Cytoperm (BD Biosciences). Cells were prepared using the protocol for the APC BrdU Flow Kit (BD Biosciences). Cell cycle profiles were detected using 7AAD on a BD FACSCanto instrument (BD Biosciences), and these data were analyzed using FlowJo software (Tree Star).

Cellular proliferation assays

Cellular growth was measured by MTS assays as described (31) and by viable cell counts over time using dye exclusion and counted live cell assays as described in Supplementary Materials and Methods.

DNA repair assays

Flow cytometry–based DNA repair assays were performed as described (32) using constructs designed to measure the proportion of cells engaged in NHEJ. Briefly, equal numbers of Fanconi anemia-deficient and –complemented VIU-1131 cells were plated in 6-well plates. Following 24 hours of growth, transfections were performed utilizing FuGENE HD transfection reagent (Promega) and Opti-MEM reduced serum media (Invitrogen). Following 24 hours, GFP expression was measured using a BD FACSCanto instrument (BD Biosciences). These data were analyzed using FlowJo software (Tree Star). At least four independent experiments were performed with each construct.

Statistical analysis

Graphs were created and statistical analyses performed using GraphPad Prism software (GraphPad). Data points and error bars indicate mean and SD, respectively, of the raw data.
Results

Fanconi anemia complementation of patient-derived HNSCC cells reverses characteristic cellular Fanconi anemia phenotypes

The goal of this study was to determine Fanconi anemia–dependent growth and chemosensitivity properties of patient-derived HNSCC cells, with the expectation that substantial ICL sensitivity was to be observed in Fanconi anemia–deficient cells. One FANCC-deficient cell line (VU-1131) and two FANCA-deficient cell lines (OHSU-974 and VU-1365), all originally cultured from the HNSCCs of patients with Fanconi anemia, were utilized for gene correction. The cells were transduced with either control retroviral vector, FANCC retroviral vector for VU1131, or FANCA vector for OHSU-974 and VU-1365. FANCA and FANCC expression was confirmed in each case at the protein level by immunoblotting. Complementation restored pathway activation as demonstrated by FANCD2 monoubiquitination following HU treatment; thus, the mutant Fanconi anemia gene was corrected in each case (Fig. 1A). In addition, immunofluorescence experiments demonstrated that monoubiquitinated FANCD2 in complemented, but not control cells, was capable of localizing to sites of double-stranded DNA breaks following mitomycin C (MMC) treatment as shown by colocalization of FANCD2 and γH2AX foci (Fig. 1B). To verify Fanconi anemia pathway functionality, isogenic cell populations were treated with melphalan and subjected to cell cycle analysis. As predicted, Fanconi anemia complementation rescued cells from accumulation in the G2–M phase of the cell cycle, a hallmark of Fanconi anemia pathway deficiency, following melphalan treatment (Fig. 1C; ref. 30).

Fanconi anemia complementation does not affect HNSCC proliferation in three dimensions

Our previous work utilizing HPV E6/E7-immortalized Fanconi anemia patient–derived and Fanconi anemia knockdown keratinocyte models had shown that Fanconi anemia loss confers a proliferative advantage, specifically in the environment of three-dimensional organotypic epithelial rafts, despite characteristic Fanconi anemia phenotypes and increased DNA damage (18). To examine the growth of Fanconi anemia HNSCC in the context of the epithelial milieu wherein they arise, we generated rafts utilizing the above Fanconi anemia–deficient and –complemented HNSCC cells. H&E staining revealed comparable raft thickness, as well as similar morphologic features of the constituent cells (Fig. 2A). Immunofluorescence detection of BrdUrd incorporation revealed no significant differences, indicating that Fanconi anemia correction in malignant HNSCC cells does not affect proliferation (Fig. 2B). From this, we concluded that although differentiation-associated cell cycle exit of non-malignant, HPV-positive keratinocytes is Fanconi anemia–dependent and...
reversible upon complementation, the Fanconi anemia pathway is unable to exert any such antiproliferative influence following tumorigenesis.

Fanconi anemia HNSCC cells acquire relative resistance to ICLs

The expectation that Fanconi anemia–deficient HNSCC cells possess the same hypersensitivity to ICLs as nonmalignant cells from patients with Fanconi anemia has not previously been tested in murine or human systems. We therefore sought to develop a murine model of nonmalignant oral keratinocytes and HNSCCs using Fancc^{+/−} and WT mice. Oral keratinocytes were harvested from either WT (W-NR) or Fancc^{+/−} (M-NR) mice, SV40-transduced for immortalization, and analyzed in survival assays to test for relative sensitivities to MMC and cisplatin. As expected, SV40-immortalized Fancc^{+/−} oral keratinocytes exhibited significantly increased sensitivity to MMC and cisplatin when compared with their WT counterparts (Fig. 3A). Specifically, Fancc^{+/−} cells displayed an approximately 5-fold average decrease in half maximal effective concentration (EC₅₀) compared with WT cells (Fig. 3B; Supplementary Table S1).

For HNSCC induction, we utilized a well-known carcinogen, 4-NQO, which has been shown to cause the development of murine HNSCCs that closely mimic human tumors histopathologically (33, 34). WT and Fancc^{+/−} mice were treated with 4-NQO in water for up to 45 weeks. Mice were monitored weekly for visible tumor development and euthanized at the first signs of morbidity. Survival (time to morbidity that necessitated sacrifice) and tumor incidence were similar for WT and Fancc^{+/−} mice (Supplementary Fig. S1A and S1B). Median survival for both cohorts of mice was 40 weeks. Greater than 80% of mice of both genotypes developed tumors that were located mainly on the tongue, with a subset developing on or in the lip, buccal mucosa, and esophagus (Supplementary Fig. S1C). All tumors were well-differentiated HNSCCs, ranging from low- to high-grade (Supplementary Fig. S1D and Supplementary Table S1). We did not detect metastases in either genotype, analogous to previous studies (33, 34), perhaps due to the necessity of early euthanasia after tumor development. Tumors were harvested for generation of WT (W-SCC) or Fancc^{+/−} (M-SCC) cell lines. These were subsequently tested in survival assays for relative sensitivities to MMC and cisplatin. Interestingly, Fancc^{+/−} mutant compared with WT HNSCC cells did not differ significantly in their sensitivity to MMC or cisplatin (Fig. 3C). In fact, three of six WT lines displayed an MMC EC₅₀ of 10 to 20 nmol/L, similar to an EC₅₀ of 5 to 20 mmol/L in Fancc^{+/−} lines, whereas one other WT line displayed an only slightly higher EC₅₀ of 29 nmol/L (Fig. 3D; Supplementary Table S1). The lack of uniform ICL sensitivity in Fancc^{+/−} versus WT cell lines does not appear to be due to increased chromosomal instability in WT cells during malignant transformation, as Fancc^{+/−} cell lines showed more complex karyotypes and had greater levels of MMC-induced chromosomal breakage (Supplementary Table S1).

To compare the murine with human Fanconi anemia HNSCC cell models, we also subjected uncorrected Fanconi anemia patient–derived cell lines and cell lines derived from sporadically occurring HNSCCs to MMC treatment and performed viable cell counts after 5 days of exposure. These experiments revealed results similar to those obtained with murine HNSCC cells; overlap of survival curves of Fanconi anemia and sporadic cell lines was
observed, and two of three Fanconi anemia and two of three sporadic lines had an EC$_{50}$ of 9 to 17 nmol/L (Fig. 4A and B). Taken together, we concluded that Fanconi anemia–deficient HNSCC cells can largely overcome Fanconi anemia–dependent sensitivity to chemical crosslinkers.

Fanconi anemia HNSCC cells engage in increased NHEJ at baseline, but do not require Ku-dependent NHEJ for repair of cisplatin-induced DNA damage

Given the reported stimulation of NHEJ that is regulated by Fanconi anemia in other cellular models (6, 7), we next sought to define Fanconi anemia–deficient NHEJ DNA repair properties of Fanconi anemia HNSCC using established reporter constructs (Fig. 5A). Isogenic VU-1131 cell lines were cotransfected with I-SceI endonuclease plus NHEJ-GFP reporter plasmids as described in mammary epithelial cell lines (32). Flow cytometry was then used to detect the percentage of cells with the corresponding repair events. As expected, Fanconi anemia HNSCC cells had significantly increased occurrences of NHEJ in comparison with their complemented counterparts (Fig. 5B).

NHEJ has been identified as encompassing two distinct and competing pathways (35). Classical NHEJ is dependent upon recruitment of the Ku70/80 heterodimer to DNA double-strand breaks (DSB) and subsequent activation by phosphorylation of DNA-PKcs (36); alternative NHEJ is suppressed by the binding of Ku70/80 to DSBs and is initiated by binding of PARP1 to DSB ends (37, 38). The performance of Ku-dependent NHEJ has been implicated in the increased defective DNA repair that occurs in Fanconi anemia–deficient cells (6, 7). To determine whether Fanconi anemia HNSCC cells relied upon increased performance of Ku-dependent NHEJ in response to ICLs, we next investigated the effect of its inhibition using the DNA-PKcs inhibitors NU-7026 and NU-7441 on cisplatin sensitivity of human Fanconi anemia–deficient and –complemented cell populations. We hypothesized that, if Ku-dependent NHEJ were the necessary DNA repair pathway used by Fanconi anemia HNSCC cells following ICL exposure, then inhibition would produce an early decrease in survival in deficient versus complemented cells. To understand baseline behavior, isogenic cell lines were first treated with cisplatin alone for two days, following which growth was quantified by MTS assays. Fanconi anemia–deficient and corrected cells for each donor possessed similar sensitivities (Supplementary Fig. S2A). Viable cell counts following 2 days of MMC treatment of VU-1131 and OHSU-974 cell lines also revealed comparable survival (Supplementary Fig. S2B). Sensitivity to other chemotherapeutic agents that are used clinically for the treatment of head and neck cancer was also evaluated, including paclitaxel, 5-fluorouracil, and rapamycin. No differences in the response to these drugs were observed between Fanconi anemia–deficient versus proficient cells (Supplementary Fig. S2C and S2D). Reduced DNA-PKcs phosphorylation in the presence of NU-7026 or NU-7441 was confirmed via immunoblotting (Fig. 5C; Supplementary Fig. S3A). Next, the cells were exposed to cisplatin, and treated versus untreated cells were subjected to cellular growth assays. Interestingly, DNA-PKcs inhibition did not differentially affect the cisplatin sensitivity of Fanconi anemia–deficient and –complemented human HNSCC cells (Fig. 5D; Supplementary Fig. S3B), suggesting that Ku-dependent NHEJ was not specifically upregulated by Fanconi anemia HNSCC cells following ICL exposure.

Figure 3.
ICL sensitivity of murine Fanconi anemia HNSCC. A, cisplatin (left) and MMC (right) cellular growth assays of immortalized, nonmalignant oral epithelial cells of Fancc$^{-/-}$ (M-NR) and WT (W-NR) mice show significantly increased sensitivity of Fancc$^{-/-}$ cell lines. B, MMC EC$_{50}$s of immortalized, nonmalignant murine Fancc$^{-/-}$ and WT oral epithelial cells. **, $P < 0.01$ (t test). C, cisplatin (left) and MMC (right) cellular growth assays of murine Fancc$^{-/-}$ (M-SCC) and WT (W-SCC) mice indicate overlap of sensitivities. D, MMC EC$_{50}$s of Fancc$^{-/-}$ and WT HNSCC cell lines following 5 days of exposure; a t test revealed no significant difference.
PARP activity is required by Fanconi anemia HNSCC, and tumor cells are sensitive to PARP inhibitors

PARP inhibitors were initially developed as chemotherapeutic agents for BRCA-deficient cancers following the identification of synthetic lethality of PARP inhibition in BRCA1-mutated cells (39). In light of the intrinsic relationship between the Fanconi anemia and BRCA pathways, we sought to determine the effect of PARP inhibition on the growth of Fanconi anemia HNSCC cells. Viable cell counts were taken over time in the presence of the combined PARP1/PARP2 inhibitor olaparib and the PARP1 inhibitor PJ-34. The results indicated profound sensitivity of human Fanconi anemia HNSCC cells to olaparib that was significantly decreased by complementation (Fig. 6A). A similar result was observed in VU-1131 cells treated with PJ-34 (Supplementary Fig. S4A). Intranuclear PAR foci, but not cytoplasmic signal, are an indicator of PARP-mediated DNA damage sensing and repair activity (40). Thus, we next quantified PAR polymer foci following MMC treatment, and detected increased formation of intranuclear PAR foci following MMC treatment, and detected increased formation of intranuclear PAR foci in Fanconi anemia-deficient cells (Fig. 6B and C). To test olaparib sensitivity in the above malignant murine tumor cell system, we quantified viable cell counts using WT and Fancc−/− cell lines. PARP inhibitor sensitivity was present uniformly in the Fancc−/− cell lines (Fig. 6D; Supplementary Fig. S4B). Taken together, activation of PARP-mediated DNA damage responses provides a mechanism upon which Fanconi anemia HNSCC cells can rely for response to both endogenous and exogenous DNA damage.

Discussion

The lack of knowledge about the natural behavior and response to therapy of HNSCCs arising in patients with Fanconi anemia is a major hindrance to their successful treatment. Therapy for HNSCC includes surgery and possibly radiotherapy or chemotherapy, depending upon disease stage. In light of the established sensitivity of patients with Fanconi anemia to genotoxic agents, their poor survival has traditionally been attributed to intolerance of therapy. However, long-term follow-up of patients who survive initial therapy and obtain a complete response indicates a very high rate of recurrence of 50% by age 40 (15). Most of these recurrences are at the original site of disease, suggesting incomplete disease control rather than origination of a metachronous tumor. Although the rate of second or multiple primary tumor formation in patients with Fanconi anemia HNSCC had been reported to be over 60% (15), the majority of these are in the anogenital regions, further underscoring that tumors arising in the head and neck area after a first occurrence of HNSCC are likely to be recurrent tumor. Given that current therapy provided for these tumors may be insufficient to provide lasting progression-free survival, and that treatment of Fanconi anemia patients with HNSCC could benefit from an in-depth understanding of tumor biology and response to therapy, we considered whether patients’ poor prognosis extends beyond their constitutional susceptibility to DNA damage. To address this lack of understanding in human and murine models, we utilized a panel of HNSCC cell lines derived from the tumors of patients with Fanconi anemia or mice and their Fanconi anemia–proficient counterparts.

A significant body of research has provided insight into the behavior of Fanconi anemia hematopoietic cells. Bone marrow transplantation for Fanconi anemia patients with severe bone marrow failure, AML, or myelodysplastic syndrome can be successfully performed with low rates of toxicity-related morbidity using T-cell–depleted grafts and reduced-intensity preparative regimens (41). Unfortunately, the hope that Fanconi anemia HNSCC could also be treated both effectively and safely with low-dose clastogenic therapies may be incorrect. Published research suggests that the extrahematopoietic compartments of these patients possess a distinct set of characteristics; for instance, in both in vitro and in vivo models of the epidermal compartment, Fanconi anemia deficiency leads to unique and unexpected gains in keratinocyte proliferation despite increased DNA damage (17, 18).

Thorough understanding of Fanconi anemia HNSCC has been impaired by the need of a comprehensive model. We used an isogenic human Fanconi anemia HNSCC model that allowed for observations of tumor cell characteristics that were strictly Fanconi anemia–dependent. Three-dimensional organotypic tumor rafts utilized here provide a view of Fanconi anemia HNSCC as a carcinoma in situ, and allow for quantifiable examination of tumor cell proliferation in a physiologic but controlled environment. However, although available human Fanconi anemia HNSCC cell lines are well characterized (19), they are few in number. The difficulty in faithfully recapitulating the Fanconi anemia epithelial compartment is underscored by the fact that Fanconi anemia mice do not spontaneously form HNSCCs (42). We thus used 4-NQO to induce HNSCCs in WT and Fancc−/− mice. The cell lines isolated from these and nonmalignant oral keratinocytes of WT and Fancc−/− mice reveal data similar to that obtained in the human Fanconi anemia HNSCC cell system.

Figure 4.

ICL sensitivity of human Fanconi anemia HNSCC. A, MMC cellular growth assays of Fanconi anemia patient–derived (black) and sporadic (gray) HNSCC cell lines indicate overlap of sensitivities following 5 days of treatment. B, MMC EC50s of Fanconi anemia patient–derived and sporadic HNSCC cell lines following 5 days of exposure; a t test revealed no significant difference.
We find that the growth characteristics between Fanconi anemia–deficient and Fanconi anemia–complemented HNSCC cells are similar. In contrast, Fanconi anemia complementation of patient-derived nonmalignant keratinocytes decreases hyperplasia (17, 18). In light of the chromosomal instability induced by Fanconi anemia deficiency, loss of the suppressive effect of the Fanconi anemia pathway on proliferation of the premalignant epithelium could conceivably contribute to the increased risk of HNSCC in patients with Fanconi anemia. However, the loss of growth suppression seen in Fanconi anemia–complemented HNSCC cells suggests that, following malignant transformation, cellular machineries become less dependent upon Fanconi anemia deficiency.

Previous work utilized colony assays to explore the chemosensitivity of Fanconi anemia compared with sporadic HNSCC cells, and found a lack of MMC sensitivity in the FANCA-deficient OHSU-974 cell line (20). Importantly, the present study confirms this result. In contrast, ICL sensitivity has been observed in Fanconi anemia fibroblasts (5, 20, 43, 44). We postulated that, in the background of Fanconi anemia deficiency, tumorigenesis and the resulting genomically unstable environment, as illustrated by the complex karyotypes of Fancc−/− HNSCCs (Supplementary Table S1), could lead to adaptations in cellular processes that may confer relative chemoresistance. Such adaptation is in line with comparisons between murine keratinocytes versus HNSCC-derived cell lines; early passage–immortalized oral keratinocytes are consistently hypersensitive to ICLs, whereas HNSCC cell populations are not (Fig. 3A–D). Alterations in DNA repair mechanisms are one of a variety of means for tumor cells to become chemoresistant, and would be especially advantageous to a cancer arising in a patient with intrinsic DNA damage sensitivity. It thus stands to reason that Fanconi anemia HNSCCs would, in the process of tumor generation and development, and in response to the increased cellular stress during transformation, be preferentially selected for cells that have enhanced DNA repair mechanisms.

Increased performance of NHEJ at the expense of HR is an expected result of Fanconi anemia pathway loss and so is a natural first choice for examination of the impact of DNA repair on chemosensitivity of Fanconi anemia HNSCCs. However, the extent to which NHEJ participates in the survival of Fanconi anemia HNSCC has not previously been explored, nor has DNA repair by NHEJ been directly measured in Fanconi anemia HNSCC. Using DNA repair reporter assays, we show that, as expected, Fanconi anemia–deficient VU-1131 cells exhibit increased NHEJ (Fig. 5B). We found that DNA-PKcs inhibition does not decrease the cisplatin EC_{50} of the human Fanconi anemia–deficient VU-1131 cells (Fig. 5D), while all are uniformly sensitive to PARP inhibition. The lack of enhanced cisplatin sensitivity of Fanconi anemia–deficient HNSCC cells following DNA-PKcs inhibition suggests that DNA-PKcs-dependent NHEJ is not the DNA repair mechanism required by Fanconi anemia HNSCCs for repair of damage caused by ICLs.

In contrast with the NHEJ machinery, PARP appears to be a more promising target in Fanconi anemia HNSCCs. We show increased activation of PARP in Fanconi anemia–deficient HNSCC cells by greater formation of intranuclear PAR foci following MMC treatment (Fig. 6B and C). In addition, rescue of PARP inhibitor sensitivity of human Fanconi anemia HNSCC cells occurred by gene complementation (Fig. 6A; Supplementary Fig. S4A), and uniform PARP inhibitor sensitivity was additionally observed in murine Fanconi anemia HNSCC cells (Fig. 6D; Supplementary Fig. S4B). PARP inhibitor sensitivity has previously been examined in MMC-sensitive fibroblasts derived from Fanconi anemia mice as well as patients with Fanconi anemia, with conflicting results (5, 44); the present work adds to this not only by showing PARP sensitivity in Fanconi anemia HNSCC cells but also by linking PARP activity to cellular response to ICLs and
subsequent relative resistance. We thus postulate that PARP hyperactivation is a mechanism frequently acquired during malignant transformation whereby Fanconi anemia HNSCC overcome constitutional DNA damage sensitivity.

PARP activation could conceivably overcome Fanconi anemia pathway deficiency by multiple mechanisms. PARP1, which comprises approximately 90% of intranuclear PARP, engages numerous modes of DNA repair, including single-strand break repair (45), base excision repair (45), nucleotide excision repair (46), Ku-independent NHEJ (37), and HR (47). PARP1 has also been implicated in Chk1 signaling at stalled replication forks (40), plays a role in control of transcription by maintaining chromatin in a transcriptionally active state (48), and may promote survival by functioning as a cofactor for NF-kB-dependent transcription (49). PARP2 has also been implicated in Chk1 signaling at stalled replication forks (40), plays a role in control of transcription by maintaining chromatin in a transcriptionally active state (48), and may promote survival by functioning as a cofactor for NF-kB-dependent transcription (49).

The relative ICL resistance of Fanconi anemia HNSCC cells highlights the delicate balance between providing effective therapy and avoiding excessive toxicity in cancer treatment. The difficulty in achieving this balance becomes especially profound in patients with Fanconi anemia HNSCC, as the therapy de-escalation that may be necessary to avoid overwhelming toxicity-related morbidity may simultaneously undertreat their malignancy. In this light, it is essential to identify new therapies that will enhance survival of this fragile patient population. Identification of PARP-mediated DNA repair as a key survival mechanism employed by Fanconi anemia HNSCCs provides a promising new potential avenue of treatment. PARP inhibitor therapy could enhance efficacy of low-dose clastogenic treatments via synergistic effects. PARP inhibition could greatly benefit patients that have undergone bone marrow transplantation that are at the highest risk for HNSCC development, as the presence of a hematopoietic compartment unaffected by Fanconi anemia could prevent excessive myelotoxicity in a patient group with an otherwise grim

![Figure 6](image-url).

Figure 6.
PARP inhibitor sensitivity of human and murine Fanconi anemia HNSCC cells. A, cellular growth assays on isogenic human HNSCC cells exposed to the PARP1/PARP2 inhibitor olaparib show uniform sensitivity of FAmut cell lines. *, P < 0.05; **, P < 0.01 (t test). B, immunofluorescence for PAR foci in VU-1131 cells shows increased PAR foci formation in FAmut cells over a 24-hour course of MMC treatment. Results shown are representative of two (no treatment) or three (2, 4, and 24 hours) independent experiments of each time point, each with similar results. C, quantification of intranuclear PAR foci in VU-1131 cells over a 24-hour course of MMC treatment reveals a significantly increased number of PAR foci in FAmut cells at 4 hours of exposure. *, P < 0.01 (t test). D, cellular growth assays performed on murine Fanc−/− (M-SCC) and WT (W-SCC) HNSCC cell lines treated with olaparib show significantly increased sensitivity of Fanc−/− cell lines. *, P < 0.05.
prognosis. Further studies targeting PARP will hopefully allow for forward progress in improvement of outcomes of Fanconi anemia patients with HNSCC.

Disclosure of Potential Conflicts of Interest

I. Wiesmüller is an inventor of a patent on a test system for determining genotoxicities. L.E. Hays is an employee of Fanconi Anemia Research Fund. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Conception and design: A.J. Lombardi, E.E. Hoskins, G.D. Foglesong, P.R. Andreassen, L.E. Hays, S.I. Wells
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): A.J. Lombardi, E.E. Hoskins, G.D. Foglesong, A.J. Jacobs, S.B. Olson, W.W. Kreeble, L.E. Hays
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): A.J. Lombardi, E.E. Hoskins, G.D. Foglesong, K.A. Wilkenheiser-Brokamp, L. Wiesmüller, S.B. Olson, L.E. Hays
Writing, review, and/or revision of the manuscript: A.J. Lombardi, E.E. Hoskins, G.D. Foglesong, L. Wiesmüller, H. Hanenberg, S.B. Olson, L.E. Hays, S.I. Wells
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): E.E. Hoskins, S.B. Olson

Study supervision: A.J. Lombardi, S.I. Wells
Other (provided novel research material): H. Hanenberg

Acknowledgments

The authors thank Dr. James Lessard of Cincinnati Children’s Hospital Medical Center (CCHMC) and Seven Hills Bioresearch for his gift of the C4 pan-actin monoclonal antibody used in this work; Dr. Jeremy Stark, Department of Cancer Biology, Division of Radiation Biology, Beckmann Research Institute of the City of Hope, for the NHEJ reporter EJ53ScGFP; and Dr. Adam Lane, also of CCHMC, for assistance with statistical analysis. They also thank Drs. Patrina Mehta, Stella Davies, and Kasiani Myers of CCHMC and the Cincinnati Children’s Fanconi Anemia Comprehensive Care Center for thoughtful experimental guidance and discussion.

Grant Support

This work was supported in part by NIH award RO1 CA102357 (to S.I. Wells), NHLBI grant PO1HL048546 (to S.B. Olson), and a grant from the Fanconi Anemia Research Fund (to L.E. Hays).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received October 13, 2014; revised December 22, 2014; accepted December 28, 2014; published OnlineFirst January 21, 2015.

References

Acquisition of Relative Interstrand Crosslinker Resistance and PARP Inhibitor Sensitivity in Fanconi Anemia Head and Neck Cancers

Anne J. Lombardi, Elizabeth E. Hoskins, Grant D. Foglesong, et al.

Clin Cancer Res Published OnlineFirst January 21, 2015.

Updated version
Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-2616

Supplementary Material
Access the most recent supplemental material at:
http://clincancerres.aacrjournals.org/content/suppl/2015/01/22/1078-0432.CCR-14-2616.DC1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.