CD38-Targeted Immunochemotherapy in Refractory Multiple Myeloma: A New Horizon

Jacob P. Laubach and Paul G. Richardson

Jerome Lipper Multiple Myeloma Center, Division of Hematologic Malignancy, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.

Corresponding Author: Paul G. Richardson, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215. Phone: 617-632-2104; Fax: 617-632-6624; E-mail: paul_richardson@dfci.harvard.edu

Running Title: CD38-Targeted Immunochemotherapy in Refractory Myeloma

Disclosure of Potential Conflicts of Interest

J.P. Laubach reports receiving commercial research grants from Celgene, Millennium Pharmaceuticals, Novartis, and Onyx Pharmaceuticals. P.G. Richardson is a consultant/advisory board member for Genmab and Janssen. No other potential conflicts of interest were disclosed.
Summary

CD38 is a type II transmembrane glycoprotein that is highly expressed in multiple myeloma (MM), and is a promising target for immunotherapy. Daratumumab is a human monoclonal antibody that has potent anti-MM activity both as monotherapy and in combination with other MM treatments, and has breakthrough designation on this basis.
In this issue of *Clinical Cancer Research*, Nighof and colleagues demonstrate the *in vitro* as well as *in vivo* susceptibility of myeloma cells derived from lenalidomide and bortezomib-refractory MM patients to daratumumab. The authors suggest that this novel CD38 antibody may offer a new therapeutic approach for multidrug refractory MM. Importantly, they demonstrate that lenalidomide, whilst no longer active as a therapeutic agent in these patients, can still augment the anti-MM effects of daratumumab through the activation of natural killer cells in their model systems. They therefore conclude that multiply drug refractory patients may potential benefit from combination therapy with daratumumab and lenalidomide, as well as in combination with bortezomib (1).

Ideal targeted antigens for cancer immunotherapies include those molecules that demonstrate substantial overexpression on malignant cells (versus normal cells), and that are involved in key cellular growth or signaling mechanisms, with these characteristics clearly demonstrated by CD38 in MM (2-6). CD38 is a type II transmembrane glycoprotein that functions through receptor mediated adhesion signaling, as well as through ectoenzymatic activities involved in intracellular calcium mobilization (3-6). Importantly, CD38 shows low levels expression on normal hematopoietic cells and in non-hematopoietic tissues (6-7). In contrast, high and uniform expression of CD38 has been demonstrated in MM (2, 5-6); this, in combination with its role in cell signaling, makes CD38 an attractive target for antibody therapy in MM (Fig. 1).

Despite remarkable progress in the treatment of MM over the course of the last decade, the disease remains incurable, and typically follows a relapsing and ultimately refractory course, with patients requiring multiple lines of therapy (8-9). Treatment options for MM have expanded dramatically over the past decade to include the first- in-class proteasome inhibitor bortezomib,
then carfilzomib, and the immunomodulatory drugs, thalidomide, lenalidomide, and pomalidomide, with the very recent approval of the histone deacetylase inhibitor, panobinostat.

MM harbors various genetic abnormalities by which the disease may be classified into multiple different subgroups (10); however, although this genetic diversity results in a highly heterogeneous disease, characteristic features include enhanced expression of adhesion molecules, increased sensitivity to growth stimuli, upregulation of cell surface receptor-mediated signaling, resulting in increased tumor growth, survival, resistance and migration, as well as induction of angiogenesis (11). These processes are driven through complex stimulatory interactions with activated endothelial cells, bone marrow stromal cells and other cellular components of the bone marrow microenvironment, which result in cytokine and growth factor secretion and the subsequent induction of anti-apoptotic signaling (11).

Set against this, daratumumab appears to offer substantial promise for the treatment of MM based on extensive preclinical findings and preliminary clinical data. It has a novel mechanism of action that results in enhanced activity in combination with existing standard of care, including first generation novel agents, such as lenalidomide and bortezomib, as well as other therapeutics (Fig. 1). Specifically, it has also shown a strong signal in preclinical modeling with broad spectrum killing activity through CDC, ADCC, and ADC –phagocytosis (Fig. 1). The novel target of daratumumab, namely CD38, thus appears to represent a critical pathway in MM and this in turn may result in this monoclonal antibody being less vulnerable to resistance mechanisms, not least due to the broad expression of this target in MM cells as well as in the tumor-related microenvironment. This therefore translates into potent anti-MM activity regardless of clonal heterogeneity, seen both between and within patients, and so may make this
especially attractive as an agent for use broadly in treatment, as well as in specific high-risk subgroups of patients with molecularly-driven adverse characteristics (12).

Daratumumab was first evaluated clinically in a phase I trial involving patients with relapsed/refractory MM (13). The study employed a standard 3+3 dose escalation with doses ranging from 0.005 to 0.24 mg/kg. The median number of prior therapies was 5.5 and 75% of patients were refractory to both lenalidomide and bortezomib. The rate of minimal response (MR) or better was 30%, and notably the rate of MR or better among patients who received at least 4 mg/kg was 67%, with a partial response (PR) rate of 42%. Treatment-related adverse events included anemia, thrombocytopenia, and infusion reactions. These promising results led to designation of daratumumab by the US FDA as a ‘breakthrough therapy,’ reflecting the agent’s potential to address an important area of unmet medical need.

Daratumumab was partnered with lenalidomide and dexamethasone in phase I/II trial in which patients with relapsed/refractory disease receive lenalidomide 25 mg days 1 – 21 of a 28 day cycle, dexamethasone 40 mg weekly, and daratumumab 2 – 16 mg/kg weekly for eight weeks, every other week for 16 weeks, and monthly thereafter (14). This study was informed by the promising pre-clinical signal seen for this combination as described above (Fig. 1).

In a preliminary analysis involving 20 patients, the rate of PR or better was 75%, with three patients achieving CR and six a VGPR. There were no dose limiting toxicities and the most frequent adverse events included neutropenia, thrombocytopenia and diarrhea, which generally proved manageable with dose reduction and supportive care (14).

A phase II study of daratumumab in the ‘double refractory’ MM patients resistant to both immunomodulatory and proteasome inhibitor therapy has completed enrollment. Results of this
study involving a patient population known to have particularly poor prognosis are awaited with great interest.

The clinical development of daratumumab has quickly moved forward into phase 3 clinical trials, including studies evaluating lenalidomide-dexamethasone +/- daratumumab and bortezomib-dexamethasone with +/- daratumumab. A study of daratumumab in smoldering MM is also underway.

Daratumumab may offer particular utility in these high risk populations due to its unique mechanism of action. Of note, the safety profile of daratumumab appears to be favorable, with few off-target effects apparent to date, despite concerns regarding potential bystander toxicity associated with its mechanism of action. Ongoing and future investigation will hopefully determine the therapeutic index of daratumumab more comprehensively in combination with other agents. Similarly, ongoing studies will also determine the tolerability of daratumumab as a long-term treatment for MM, an aspect of considerable importance in specific areas of the treatment algorithm, such as maintenance (12).

In summary, monoclonal antibodies represent a very promising new field of investigation in MM, and have dramatically expanded therapeutic horizons to date with great potential apparent as a new therapeutic modality. Daratumumab in particular appears to offer strong single agent activity as well as remarkable efficacy in combination. This agent thus provides a potential breakthrough as a biologically rational approach in the treatment of MM to meaningfully improve patient outcome.

Acknowledgments

The authors gratefully acknowledge the editorial support of Michelle Maglio and Megan Hiserodt in the preparation of this manuscript.
Grant Support

J.P. Laubach and P.G. Richardson are supported by the R.J. Corman Multiple Myeloma Research Fund.

References

Figure 1. Mechanisms of daratumumab’s anti-myeloma activity. DARA directly targets the myeloma cell through apoptosis induced by cross-linking of DARA with FcRs expressed on effector cells and by inhibition of CD38 ADPR-ribosyl cyclase activity. Antibody-dependent cellular phagocytosis (ADPC) and antibody-dependent cell-mediated cytotoxicity (ADCC) are mediated by NK cells and macrophages through binding of tumor cell-bound DARA to FCRs. Complement-mediated toxicity (CDC) occurs through interaction between antibody Fc and the complement-activating protein C1q, which leads opsonization of antibody and activation of complement resulting in tumor cell phagocytosis. Activation of the membrane attack complex (MAC) through binding of C3b to C3 convertase, which results in formation of C5 convertase. These mechanisms of DARA’s anti-myeloma activity are markedly augmented by lenalidomide, as well as by bortezomib, melphalan and dexamethasone. Adapted from Laubach et al. (12).

Dex, dexamethasone; Mel, melphalan.
Figure 1:

Daratumumab

- Direct cytotoxicity
 - BTZ
 - Dex
 - Apoptosis
 - Mel
 - Other cytotoxics

Lenalidomide

- Effector cell activation
 - ADPC
 - ADCC
 - CDC

Macrophage

- FcR1
- FcR1

NK cell

- FcR1

Effectors

- MAC
- Clq
- CR3
- C1q
- FcR1

Apoptotic MM cells

- cADPR, NAADP, NAD

Apoptotic MM cell lysis

MM cell
CD38-Targeted Immunochemotherapy in Refractory Multiple Myeloma: A New Horizon

Jacob P. Laubach and Paul G. Richardson

Clin Cancer Res Published OnlineFirst April 15, 2015.

Updated version Access the most recent version of this article at:
doi:10.1158/1078-0432.CCR-14-3190

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.