MicroRNA-374b suppresses proliferation and promotes apoptosis in T-cell lymphoblastic lymphoma by repressing AKT1 and Wnt-16

Dong Qian1,3, Kailin Chen2,3, Haixia Deng3, Huilan Rao3,4, Huiqiang Huang2,3, Yiji Liao3, Xiaofei Sun3,5, Suying Lu3,5, Zhiyong Yuan1, Dan Xie3,4, Qingqing Cai2,3*

Authors’ Affiliations: 1Department of radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China; 2Department of Medical Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China; 3State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P.R. China; 4Department of Pathology, Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China. 5Department of Pediatric Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China;

D.Qian, K.Chen and H.Deng contributed equally to this work.

*Corresponding Authors:

Qingqing Cai, Department of Medical Oncology, Cancer Center, Sun Yat-sen University, 651 Dong Feng RD East, Guangzhou 510060, P.R. China. Phone: 86-20-87342562; Fax: +86-20-83568004; Email: caiqingqing199@hotmail.com;
Dan Xie, State key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, No. 651, Dongfeng Road East, Guangzhou, China 510060. Phone: 86-20-87343193; Fax: 86-20-87343170; E-mail: xied@mail.sysu.edu.cn.

Grant Support: The work was supported by National Natural Science Foundation of China (NO.81372883, NO.81001052), Science and Technology Planning Project of Guangdong Province, China (2011B031800222), Young Talents Project of Sun Yat-sen University Cancer Center (to Cai Qingqing), Young Talents Project of Sun Yat-sen University (to Cai Qingqing), and the Natural Science Foundation of Guangdong Province, China (8151008901000043). Sister Institution Network Fund of MD Anderson Cancer Center (to Rao Huilan).

Running Title: The tumor suppressor roles of miRNA-374b in T-LBL

Key Words: T-cell lymphoblastic lymphoma, miR-374b, Wnt-16b, AKT1, prognostic biomarker.

Disclosure of Potential Conflicts of Interest: No potential conflicts of interest were disclosed.

Word Count: 4236

Total number of figures and tables: 6
Abstract

Purpose: De-regulation of microRNA (miRNA) has been extensively investigated in both Hodgkin (HL) and non-Hodgkin lymphomas (NHL), however, little is known about the roles of miRNAs in T-cell lymphoblastic lymphoma (T-LBL). The aim of the present study was to investigate the potential roles of miR-374b in the development and treatment of T-LBL.

Experimental Design: MiRCURY LNA array was used to generate miRNA expressing profile. Real-time quantitative PCR and immunohistochemistry (IHC) were applied to detect the expression of miR-374b, AKT1 and Wnt16 in T-LBL samples. Dual-luciferase reporter assay was conducted to confirm target associations of miR-374b. The tumor suppressive effect of miR-374b was determined by both in-vitro and in-vivo studies.

Results: The expression of 380 miRNAs was evaluated in five human T-LBL tissues and five infantile thymus samples by microRNA microarrays. Down-regulation of miR-374b was frequently detected in primary T-LBL tissues, which was significantly associated with worse overall survival and increased risk of recurrence of the 58 patients enrolled in this study. miR-374b suppressed T-LBL cell proliferation in vitro and in vivo and sensitized cells to serum starvation- and chemotherapeutic agent-induced apoptosis. Furthermore, we characterized two AKT pathway-associated molecules, AKT1 and Wnt16, as direct targets of miR-374b. Consistently, in T-LBL patient tissues, AKT1 and Wnt16 expression was inversely correlated with miR-374b levels, and was an independent predictor of recurrence and survival.
Conclusions: Our data highlight the molecular etiology and clinical significance of miR-374b in T-LBL. Targeting miR-374b may represent a new therapeutic strategy to improve therapy and survival for T-LBL patients.

Translational Relevance

MicroRNAs are aberrantly expressed during the development and progression of a variety of human cancers, including leukemia and lymphoma, however, little is known about miRNAs in T-LBL. Here, we found that miR-374b was significantly downregulated in the T-LBL tissues by microRNA microarray assays and the downregulation of miR-374b was significantly associated with a high risk of relapse and worse overall survival in T-LBL patients. Our in vitro and in vivo studies showed that ectopic restoration of miR-374b suppressed cell proliferation and tumorigenicity and promoted cellular apoptosis by inhibiting AKT signal pathway though repressing Wnt-16 and AKT1 expression. Furthermore, Wnt-16 and AKT1, two direct targets of miR-374b, could also be independent predictors of patient’s survival and relapse. Thus, miR-374b together with downstream factors may be used as novel prognostic biomarkers and promising therapeutic target for patients with T-LBL.
Introduction

MicroRNAs (miRNAs) belong to a class of phylogenetically conserved noncoding RNAs that suppress protein expression through base pairing with 3’-untranslated regions (3’-UTR) of target genes\(^1\(^{-}\)\(^2\)\). Emerging evidence suggests that miRNAs are aberrantly expressed during the development and progression of a variety of human cancers, including leukemia and lymphoma\(^3\(^{-}\)\(^5\)\).

Lymphoblastic lymphoma (LBL) is a rare heterogeneous group of immature B cells committed to the B-cell lineage (B-LBL) or T-cell lineage (T-LBL) whose incidence accounts for approximately 1–2% of non-Hodgkin’s lymphomas worldwide\(^6\(^{-}\)\(^7\)\). T-LBL comprises about 90% of all LBL that are typically seen in late childhood, adolescence, and young adulthood with a male predominance\(^8\(^{-}\)\(^9\)\). T-LBL is a chemotherapy-sensitive disease with a 75%–85% event-free survival rate using current treatment regimens. However, because of frequent relapse, 5-year overall survival is poor (30%–50%)\(^\text{10}\(^{-}\)\(^\text{11}\)\). Furthermore, 5-year survival in relapsed patients is only 10%–15%\(^\text{12}\(^{-}\)\(^\text{13}\)\). Therefore, reliable markers to predict T-LBL relapse and prognosis are highly desired to optimize therapeutic strategies and improve clinical outcomes. Deregulation of miRNAs has been extensively investigated in both Hodgkin and non-Hodgkin lymphomas\(^4\(^,\)\(^14\)\). Higher levels of miR-155, miR-21, and miR-221 predict a poor prognosis for diffuse large B-cell lymphoma\(^\text{15}\(^{-}\)\(^\text{17}\)\). Reduced expression of miR-143 and miR-145 has also been documented in B-cell malignancies, and re-expression of these miRNAs in a Burkitt lymphoma cell line demonstrated a dose-dependent growth inhibitory effect\(^\text{18}\)\). These findings suggest
the involvement of miRNAs in the pathogenesis of lymphoma, and miRNAs can be effective biomarkers to predict outcomes and improve therapy responses of patients with lymphoma. Most recently, K. Basso has reported the first characterization of childhood T-LBL by miRNA expression profiling and identified some miRNAs that are de-regulated in T-LBL\(^{(19)}\). However, little is known about miRNAs in the development and treatment of T-LBL. Therefore, extensive investigations on the functions of miRNAs that are deregulated in T-LBL are required.

In this study, for the first time, we report that the down-regulation of miR-374b is significantly associated with the survival of T-LBL patients. Moreover, in vitro and in vivo studies demonstrate that ectopic restoration of miR-374b promotes apoptosis and suppresses proliferation T-NHL cell through repressing AKT signaling pathway. Our findings highlight the functions and roles of miRNAs in T-LBL, and suggest miR-374b could be used as a novel prognostic marker and potential therapeutic target for T-LBL patients.

Materials and Methods

Tissue specimens and cell cultures

T-LBL tissue samples were obtained with informed consent under Institutional Review Board-approved protocols. The samples were collected at the Cancer Center, Sun Yat-Sen University (Guangzhou, China). The T-LBL cases selected were based on clear pathological diagnosis and follow-up data, and were from patients that had not
received previous local or systemic treatment. The infantile thymuses had been removed during cardiothoracic surgical procedures and were obtained from the Second Affiliated hospital, Sun Yat-sen University (Guangzhou, China). All samples were formalin-fixed, paraffin-embedded and pathologically diagnosed. This study was approved by the Institute Research Ethics Committee of the Cancer Center and the Second Affiliated hospital, Sun Yat-Sen University.

Two T-cell lines (Jurkat and SUP-T1) were obtained from ATCC (American Type Culture Collection). Cells were cultured less than three months after resuscitation and were maintained in RPMI 1640 media (Gibco Laboratories, Buffalo, Grand Island, NY, USA) with 10% (vol/vol) fetal bovine serum (Gibco Laboratories) at 37°C in a 5% CO₂ incubator. Cells were authenticated by short tandem repeat (STR) fingerprinting at Medicine Lab of Forensic Medicine Department of Sun Yat-sen University (Guanzhou, China).

MicroRCURY LNA array analysis

Total RNA was extracted from five pairs of T-LBL and normal infantile thymus using the mirVana miRNA isolation kit (Ambion, Austin, TX, USA). Microarray chip analysis was performed and analyzed by Applied Biosystems Human MicroRNA Cards (A and B Cards, respectively, Applied Biosystems, Vedbaek, Denmark). These 2 panels are designed with 768 unique assays of human miRNAs (The data have been deposited in the Gene Expression Omnibus database under accession code GPL17797). Among the 768 human miRNA probes, the microarray detected 367...
miRNAs in the T-LBL pairs (supplementary raw data) Before microarray analysis, RNA quality was determined using the Agilent 2100 bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). All the samples had an RNA integrity number greater than 7.0. The fold change was calculated by comparing the expression of miRNA in the T-LBL tumor pool and the infantile thymus in a log² format.

RNA isolation and quantitative real-time PCR

Total RNA was isolated from formalin fixed and paraffin embedded tissues (FFPETs) using Trizol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. miRNA was extracted from all available formalin-fixed, paraffin-embedded tumor or infant thymus tissues in which the majority of cell populations (>75%) were cells of interest (T-LBL cells in tumor biopsies and thymus cells in infant thymus tissues). A total of 2 µg RNA was reverse-transcribed using the Advantage RT-PCR kit (Clontech Laboratories, Inc., Mountain View, CA, USA) for first-strand complementary DNA synthesis. Quantitative PCR was then carried out with primers for miR-374b, U6 snRNA, Wnt16a, Wnt16b and AKT1 (see Supplementary Table 1) with SYBR using the ABI 7900HT fast real-time PCR system (Applied Biosystems, Foster City, CA, USA) following a standard quantitative PCR protocol. Briefly, quantitative PCR started with the incubation of samples at 48°C for 2 min followed by 95°C for 15s and 60°C for 1 min. The expression level was normalized against endogenous U6 snRNA for the tested genes. The quantity of miR-374b in each T-LBL relative to the mean expression in 18 ANTs was calculated.
using the relative quantity (RQ) method = $2^{-\Delta\Delta CT}$, where \(\Delta CT = (CT_{miRNA} - CT_{U6RNA})_{T-LBL} - (CT_{miRNA} - CT_{U6RNA})_{MeanANTS}\). Each sample was analyzed in triplicate.

Receiver operating characteristic (ROC) curve analysis was performed to determine the cutoff score for tumor “high expression” using the 0, 1-criterion\(^{(20)}\). At the miR-374b expression RQ, the sensitivity and specificity for each outcome under study was plotted, thus generating various ROC curves. The score was selected as the cutoff value, which was closest to the point with both maximum sensitivity and specificity\(^{(21)}\).

Plasmid construction, lentivirus production and transduction

The pre-miR-374b precursor, anti-miR-374b (with sequence that was complementary to mature miR-374b) and the coding sequences of WNT16 and AKT1 constructs were amplified and cloned into the pCDH-CMV-MSC-EF1-coGFP cDNA expression lentivector (System Biosciences, CA, USA). Then the lentiviral expression construct and packaging plasmid mix were cotransfected into 293 cells to generate recombinant lentivirus according to the manufacturer’s manual. Jurkat and SUP-T1 cells were infected with recombinant lentivirus-transducing units plus 8μg/ml Polybrene (Sigma, St Louis, MO, USA).

MTT assay

Cell viability was measured by a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl
tetrazolium bromide (MTT) assay (Sigma). Briefly, cells were seeded in 96-well plates and cultured. Cell viability was examined by following standard procedures. Experiments were performed in triplicate.

In vivo experiments

For in vivo study, 2×10^6 mixed populations of SUP-T1 cells, stably expressing miR-374b, or the vector control, were injected subcutaneously into the flanks of BALB/C-nu/nu athymic nude mice (six mice per group). Over a 36-day period, tumor formation in nude mice was observed by measuring the tumor volume calculated by the formula \(V = 0.5 \times L \times W^2 \), where \(V \) = volume, \(L \) = length and \(W \) = width. Tumors were then excised and embedded in paraffin for hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) analysis. All procedures were in accordance with the guidelines of the laboratory animal ethics committee of Sun Yat-Sen University.

Flow cytometric analysis of apoptosis

Annexin V–APC and propidium iodide (PI) stains were used to determine the percentage of cells undergoing apoptosis. Cells were cultured in RPMI 1640 media with 10% fetal bovine serum for 36 h or treated with serum-free RPMI 1640 media for 36 h. In the group of chemotherapy, cells were treated with indicated dose of doxorubicin for 24 h. The apoptosis assay was conducted using the protocol supplied by the manufacturer (BioVision Inc. Milpitas, CA, USA). Each sample was then
subjected to flow cytometry analyses (Beckman Coulter, Cytomics FC 500, CA, USA).

Luciferase reporter assay

The putative miR-374b binding site at the 3′-UTR of WNT16 and AKT1 mRNAs was cloned downstream of the cytomegalovirus (CMV) promoter in a pMIR-REPORT vector (Ambion, Carlsbad, CA, USA). Two mutant constructs were generated by either deletion or mutation. The firefly luciferase construct was cotransfected with a control Renilla luciferase vector into Jurkat and SUP-T1 cells in the presence of either miR-374b or miR-control. A dual luciferase assay (Promega) was performed 48 h after transfection. The experiments were performed independently in triplicate.

Western blot analysis

Western blot was performed according to the standard protocol with antibodies to PARP, Caspase3, cleaved-Caspase3, AKT, AKT1, p-AKT, mTOR, p-mTOR, GSK3β, p-GSK3β, BAD, p-BAD, FOXO1/3 and p-FOXO1/3 (Cell Signaling Technology, Danvers, MA, USA). Anti-Wnt16 antibody was purchased from Santa Cruz Biotechnology (Santa Cruz Biotechnology, CA, USA). GAPDH (Santa Cruz Biotechnology) was used as a normalized control. All protein bands were detected using a SuperSignal West Pico Chemiluminescent Substrate (Pierce). The lanes of Western Blotting were scanned and band densities quantified using the Quantity-One
software from the Bio-Rad Image analysis systems (Bio-Rad Laboratories)

H&E staining analysis and IHC

H&E staining analysis was performed as previously described\(^{(22)}\). IHC staining was performed on 5-μm tissue sections rehydrated through graded alcohols. Endogenous peroxidase activity was blocked with 0.3% hydrogen peroxide for 15 min. Antigen retrieval was performed by boiling sections in a microwave oven with 10 mM citrate buffer, pH 6.0, for 15 min. Nonspecific binding was blocked with 10% normal rabbit serum for 10 min. The tissue slides were incubated with primary antibodies overnight at 4°C. Subsequently, the slides were sequentially incubated with biotinylated goat anti-rabbit immunoglobulin (IgG) at a concentration of 1:100 for 30 min at 37°C and then reacted with a streptavidin-peroxidase conjugate for 30 min at 37°C and 3′-3′ diaminobenzidine as a chromogen substrate. The nucleus was counterstained using Meyer’s hematoxylin. The negative control consisted of replacing the primary antibody with normal nonspecific IgG.

Immunohistochemistry evaluation

The expression of AKT1 and Wnt16 was assessed by three independent pathologists (D. Xie, Q. Cai and D.Qian) who were blinded to clinical follow-up data. Their conclusions were in complete agreement for 85% of cases indicating this scoring method was highly reproducible. If two or all three agreed with the scoring results, the value was selected. If the results were completely different, then the pathologists...
worked collaboratively to confirm the score.

For evaluation of AKT1 and Wnt16 IHC staining, a semi-quantitative scoring criterion was used, in which both staining intensity and positive areas were recorded. A staining index (values 0-12) obtained as the intensity of positive staining (week, 1; moderate, 2; strong, 3) and the proportion of immune-positive cells of interest (0%, 0; <10%, 1; 10–50%, 2; 51–80%, 3; >80%, 4) were calculated. Finally, cases were classified into two different groups: low expression cases (score 0–6) and cases with high expression (score 8–12).

Statistical analysis

Statistical analysis was carried out using SPSS 16.0 (SPSS Standard version 13.0, SPSS Inc., Chicago, IL, USA). Student’s t-test was used to analyze the results expressed as mean ± SD. The Chi-squared test or Fisher’s exact test was used to analyze the association of miR-374b expression and clinical-pathological parameters. The survival curves were plotted by Kaplan-Meier analysis. Differences were considered significant when the p value was less than 0.05.

Results

MiR-374b is frequently down regulated in T-LBL

To investigate the roles of miRNAs in T-LBL, miRCURY LNA array (Exiqon) containing 750 human miRNAs was performed to compare the miRNA expression
profiles between T-LBL tumor samples and infantile thymus. Among the 750 human miRNA probes, the microarray detected 367 miRNAs in the T-LBL pairs. With the two-fold cutoff point, 19 differentially expressed miRNAs (12 up regulated and seven down regulated) were detected in T-LBL tumor tissues compared with the non-tumor counterparts (Supplementary Table 2). The relative expression of these miRNAs is presented as a heat map (Figure 1A). miR-374b, which showed lower expression in all five primary T-LBL samples than in normal infantile thymus, was chosen for further study. Quantitative PCR was performed to confirm the expression of miR-374b in 30 infantile thymus and 58 primary T-LBL samples. Consistent with the array, miR-374b was strongly downregulated in these T-LBL samples (Figure 1B).

Down regulation of miR-374b is associated with poor prognosis of T-LBL

To address the clinical significance of the down regulation of miR-374b in T-LBL, the correlation of miR-374b with clinical-pathological features from these patients was studied. We first subjected the value of miR-374b expression in the 58 cases of T-LBL tissues to ROC curve analysis with respect to each clinicopathologic feature. The corresponding area under the curve and cutoff scores for high expression of miR-374b are shown in Supplementary Figure 1 and Supplementary Table 3. In this study, ROC curve analysis for relapse in 2 years had the shortest distance from the curve to the point (i.e., 1.0, 0.0), and were used to select the cutoff value (~0.312) determined by the relapse stage of T-LBL patients. The results showed that the down regulation of miR-374b was significantly correlated with advanced clinical stage and chemotherapy
resistance while no significant correlation was observed for other clinical-pathological parameters (Supplementary Table 4). Additionally, Kaplan-Meier analysis revealed lower miR-374b levels were associated with poorer overall survival and a higher risk of recurrence in the T-LBL cohort (p≤0.05) (Figure 1C, D). These results suggested that the down regulation of miR-374b might play an important role in the development and progression of T-LBL.

MiR-374b suppresses tumor cell growth

To explore the potential tumor-suppressive role of miR-374b in T-LBL, the miR-374b precursor was cloned and stably transfected into Jurkat and SUP-T1 cell lines. The expression of mature miR-374b was confirmed by quantitative PCR (Figure 2A). MTT assay showed that miR-374b inhibited cell growth compared with empty vector-transfected control cells (Figure 2B). Furthermore, we examined the anti-tumor effect of miR-374b on T-LBL xenografts in vivo. SUP-T1-374b cells and vector control SUP-T1 cells were inoculated into female athymic nude mice. Consistent with the in vitro study results, miR-374b inhibited tumor formation in vivo (Figure 2C). In addition, immunohistochemical staining of Ki67 was performed to detect proliferating cells. As expected, less Ki67 expression was detected in SUP-T1-374b cells than in SUP-T1-vector control cells (Figure 2D). Moreover, loss of function studies revealed that depletion of miR-374b promoted cell proliferation in both Jurkat and SUP-T1 cells (Supplementary Figure 2A-B). The effect of miR-374b on Jurkat xenografts was also studied. In consistent with the in vitro results, inhibition of miR-374b
promoted tumor formation in vivo. In contrast, overexpression of miR-374b suppressed tumor growth in Jurkat xenografts (Supplemental Figure 2C). These results implied that miR-374b has a strong ability to suppress tumor cell growth.

MiR-374b promotes apoptosis of T-LBL cells

To determine whether miR-374b has a pro-apoptotic effect on T-LBL cells, Annexin V/PI staining cell apoptosis assay was performed. Flow cytometry analysis indicated that miR-374b dramatically promoted tumor cell apoptosis in Jurkat and SUP-T1 cells compared with the vector-transfected control cells under normal conditions (p<0.05, Figure 3A). Additionally, we examined the effect of miR-374b on serum-deprived and chemotherapy-induced apoptosis using the same cell lines. Compared with negative controls, the enhanced expression of miR-374b significantly increased the apoptotic rate of cells cultured without serum for 36h (p<0.01, Figure 3A), or exposed to doxorubicin, a major drug used for chemotherapy of T-LBL, for 24h at the indicated concentration (p<0.01, Figure 3A). In contrast, depletion of miR-374b inhibited apoptosis in both Jurkat and SUP-T1 cells (Supplementary Figure 2D). Moreover, western blot analysis suggested a significant decrease in levels of pro-caspase-3, increased levels of cleaved caspase-3, and cleaved PARP in miR-374b restored cells treated with either serum deprivation or doxorubicin (Figure 3B). Together, these results demonstrate that miR-374b promotes the apoptosis of T-LBL cells.

Wnt16 and AKT1 are direct targets of miR-374b
As miR-374b suppressed cell growth and enhanced cell apoptosis in T-LBL, we explored the molecular mechanisms responsible for the effect of miR-374b. By searching TargetScan, pictar and miRanda, we compiled all the predicted genes for functional clustering analysis classified by DAVID 6.7, Kegg and Panther databases\(^{23}\). Based on a previously used method \(^{24}\), Wnt16 and AKT1 were identified as targets of miR-374b, and which contained a putative target sequence (Figure 4A). To validate whether Wnt16 and AKT1 were the direct downstream targets of miR-374b, fragments of the 3′-UTR of Wnt16 and AKT1 (Figure 4A) containing the potential miR-374b binding site were cloned into a vector with the firefly luciferase reporter gene. Luciferase activity was reduced by approximately 55% and 43% compared with the control but not that of the mutant reporter (Figure 4B). Furthermore, reverse transcription-PCR (RT-PCR) and Western blotting were used to test whether the expression of Wnt16 and AKT1 was repressed by miR-374b. The \(WNT16\) gene spans four exons with alternative exons 1a and 1b. Each exon 1 is associated with a unique promoter allowing the transcription of two different mRNA isoforms: Wnt16a and Wnt16b\(^{25}\). However, no expression of Wnt16a was detected in either Jurkat or SUP-T1 cells using specific primers (Figure 4C). We concluded that the isoform detected by RT-PCR and Western blot was Wnt16b in these cell lines. Furthermore, the result showed that miR-374b down regulated the expression of Wnt16 and AKT1 at the mRNA (Figure 4C) and protein level (Figure 4D). Moreover, both the anti-growth and apoptosis-promoting effects of miR-374b were partly rescued when Wnt16b or AKT1 was replenished in SUP-T1-374b cells respectively.
(Supplementary Figure 3A-C). A correlation between miR-374b levels and the expression of Wnt16 and AKT1 was further examined in T-LBL tissues by immunohistochemistry, and miR-374b was determined by qPCR in the same set of specimens shown in Figure 1. miR-374b levels were inversely correlated with Wnt16 and AKT1 expression (Figure 5A, B). Furthermore, higher Wnt16 and AKT1 levels were also associated with poorer overall survival and a higher risk of recurrence in the T-LBL cohort (p≤0.05, Figure 5C, D), which is consistent with that of lower miR-374b levels in T-LBL specimens.

These data suggest that miR-374b may negatively regulate the expression of Wnt16 and AKT1 by directly targeting the 3’-UTR of their mRNAs.

MiR-374b suppresses cell growth and enhances cell apoptosis through inhibiting the AKT signaling pathway

Given that both Wnt16 and AKT1 play crucial roles in the AKT signaling pathway\(^{(26-27)}\), the roles of miR-374b in the activation of AKT were investigated. Interestingly, the expression of phosphorylated AKT and total AKT was dramatically decreased by the restoration of miR-374b in Jurkat and SUP-T1 cells. The detection of AKT-phosphorylated substrates demonstrated levels of phosphorylated mTOR, phosphorylated BAD and total FOXO1/3 were decreased, while levels of phosphorylated FOXO1/3 increased in miR-374b over-expressing cells. However, the activation of GSK3β, another key AKT-phosphorylated substrate, was not affected by miR-374b restoration (Figure 6A). Additionally, when we used a high dose of AKT
inhibitor (40 µM AKT inhibitor V) that it sufficiently block AKT activation, the effect of miR-374b disappeared almost completely (Figure 6B-D). Interestingly, the additive effect was well presented when miR-374b combined with lower dose of AKT inhibitor V (20 µM) (Supplementary Figure 4). These results further confirm that miR-374b suppresses cell growth and enhances cell apoptosis through inhibiting the AKT signaling pathway.

Discussion

MiR-374b was significantly down-regulated in the T-LBL tissues examined in this study, and was involved in multiple physical functions and diseases, such as lipid metabolism, renal Ca\(^{2+}\) homeostasis and vascular permeability in injury\(^{(28-31)}\). However, little is known about the roles and mechanisms of miR-374b in the human cancer process. In the present study, we demonstrated that down regulation of miR-374b was significantly associated with a high risk of relapse and worse overall survival in T-LBL patients. Furthermore, our in vitro and in vivo studies showed that ectopic restoration of miR-374b suppressed cell proliferation and tumorigenicity and promoted cellular apoptosis by repressing Wnt-16 and AKT1 expression. Taken together, our findings emphasize the fundamental roles of miR-374b in human lymphomas, and implicate the potential application of miR-374b for prognosis prediction and therapy of T-LBL.

Cell proliferation and apoptosis play central roles in cancer development and therapy, and are regulated by multiple molecular pathways, such as Ras, P53 and AKT/PKB,
among others (32-34). In the present study, we characterized AKT1 as a functional target of miR-374b. This suggested that the AKT might be a downstream signaling molecule of miR-374b and play a pivotal role. Wnt16 was another gene we identified as a target of miR-374b for the first time. The WNT pathway is a powerful signaling pathway that is widely involved in developmental processes and oncogenesis. Wnt signaling is very complicated and 19 Wnt proteins have been identified, including Wnt16 (35-36), which has two isoforms, Wnt16a and Wnt16b. Only Wnt16b expression was detected by RT-PCR in the T-LBL cells. A similar result was observed in MRC5 human fibroblasts (26). Wnt16b was initially described as an oncogene that activated β-catenin in pre-B acute lymphoblastic leukemia or enhanced the survival of cancer cells with or without cytotoxic therapy via a β-catenin-independent non-canonical WNT transduction pathway (37-38). Furthermore, Binet et al. reported Wnt16b was identified as a new marker of senescence and over-expression of Wnt16b activated the PI3K/AKT pathway (26). Consistent with previous reports, overexpression of Wnt16b in our SUP-T1-374b cells partly rescued the levels of phosphor-AKT which was suppressed by miR-374b (Supplementary Figure 3A). Up-regulation of Wnt16b in both Jurkat and SUP-T1 blank cells enhanced the activation of AKT (Supplementary Figure 5A). Moreover, the anti-growth and apoptosis-promoting effects of miR-374b were only slightly rescued when β-catenin was up-regulated in SUP-T1-374b cells (Supplementary Figure 5B). In addition, XAV-939, a Wnt inhibitor that augments β-catenin degradation though its stabilization of AXIN (39), at 2 uM was applied to block the Wnt/β-catenin signaling pathway in our T-LBL cells. Our results showed
that there was a marked addictive effect when using XAV-939 in miR-374b-over-expression T-LBL cells (Supplementary Figure 5C-D). These results further supported that inhibition of AKT activation which induced by suppressing a β-catenin-independent effect of Wnt16b may be a mechanism by which miR-374b suppresses proliferation and promotes apoptosis in T-LBL cells. Based on these findings, we hypothesized whether reintroduction of miR-374b could regulate the PI3K/AKT pathway. Our results clearly showed that phosphor-AKT levels were markedly down regulated in miR-374b-restored T-LBL cells. To our knowledge, activated AKT promotes proliferation and decrease of apoptosis in cancer cells by phosphorylating a large number of downstream substrates containing the consensus sequence RXRXXS/T, such as mTOR, GSK3β, caspase cascade, and FoxO family members(40-42). Our results also showed that AKT/mTOR, AKT/BAD and AKT/FoxO signaling were all inhibited followed by deregulation of phosphor-AKT in the miR-374b over-expressing cells. These AKT-mediated signaling pathways play a profound role in multiple critical cellular processes, including cell proliferation and apoptosis(43-44). These findings further support the idea that miR-374b functions mainly through the AKT signaling pathway. However, GSK3, another important AKT-phosphorylated substrate(45), was not affected by miR-374b restoration. Further studies are required to elucidate the complex interactions between miR-374b and the AKT signaling pathway. PTEN has been showed to be a tumor suppressor gene that inhibits the PI3K/AKT signaling pathway and is either deleted or mutated in high percentage of human tumors(46-48). The relationship between miR-374b and PTEN was
studied subsequently. Our results showed that the expression of PTEN was not influenced by miR-374b. Depletion of PTEN enhanced the activation of AKT in both control cells and miR-374b overexpression cells significantly, and entirely rescued the effect of miR-374b on cell proliferation and cell apoptosis (Supplementary Figure 6). These results suggest that miR-374b and PTEN might inhibit the AKT signaling pathway by different mechanisms.

He et al. reported that miR-374b was down regulated in prostate cancer tissue, and was identified as an independent predictor of biochemical recurrence-free survival\(^{(31)}\). Our result also clearly showed that miR-374b was frequently down regulated in T-LBL tissues. However, a most recently study showed that the expression levels of miR-374b was not different between HCC and non-cancerous liver tissues\(^{(49)}\), suggesting that the functions of miR-374b in tumorigenesis are complicated and may be tumor-type-specific. In the cohorts of our T-LBL patients, low expression of miR-374b was found to correlate positively with a high risk of relapse in T-LBL patients, and miR-374b down regulation was a strong and independent predictor for poor survival. In our clinical T-LBL tissues, we found that the expression levels of both AKT1 and Wnt16 were inversely correlated with miR-374b levels. Therefore, miR-374b might be a promising biomarker for predicting relapse and survival of T-LBL patients. Collectively, these results suggest that the functional loss of miR-374b might result in the enhanced expression of AKT1 and Wnt16, and in turn, the promotion of cellular proliferation and the resistance of cells to serum deprivation/anthracycline-induced apoptosis at least in part, which consequently
favors tumor progression. Thus, this study suggests the examination of miR-374b expression and its downstream functional targets could be used as an effective additional tool to predict the relapse and outcome of T-LBL patients and to optimize clinical decisions. Clearly, further studies are required to clarify the mechanisms of miR-374b regulation of cell survival and apoptosis.

In summary, this report describes an altered miRNA expression pattern in T-LBL and demonstrates the potential role of miR-374b in tumorigenesis. Furthermore, functional studies of miR-374b suggested a critical role for miR-374b in cell proliferation and apoptosis by regulating the AKT signaling pathway. Moreover, our results provide a basis for the concept that low expression of miR-374b may be a novel predictor of disease relapse and an independent prognostic factor for T-LBL patients, enabling clinicians to identify high-risk patients that require treatment that is more intensive. Thus, targeting the miR-374b pathway may represent a new therapeutic strategy to improve the therapy and survival of patients with T-LBL or other cancers.

Acknowledgements

The authors thank prof. Ruihua Xu (Cancer Center, Sun Yat-sen University, Guangzhou, P.R. China) and Prof. Ping Wang (Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China) for their critical review of the manuscript.

Authors’ contributions

Concept and design: Q. Cai, D. Qian and D. Xie
Development of methodology: D. Qian, K. Chen and H. Deng

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): D. Qian, K. Chen, H. Deng, H. Rao, Y. Liao, X. Sun and H. Huang

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): D. Qian, K. Chen, S. Lu, Z. Yuan and D. Xie

Writing, review, and/or revision of the manuscript: Q. Cai, D. Qian and D. Xie

Administrative, technical, or material support (i.e., reporting or organizing data, constructing database): Q. Cai, D. Qian, K. Chen and H. Deng
References

17. Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of

25. Fear MW, Kelsell DP, Spurr NK, Barnes MR. Wnt-16a, a novel Wnt-16 isoform,

40. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in

Figure legends

Figure 1. Down regulation of miR-374b in T-LBL, which is associated with poor prognosis. (A) Hierarchical clustering heat map of significantly differentially expressed miRNAs. (B) miR-374b was significantly downregulated in 58 primary T-LBL. (C) Downregulation of miR-374b was significantly associated with poorer overall survival and (D) higher risk of relapse. All the values represent means ± SD (**p<0.01).

Figure 2. miR-374b suppresses tumor cell growth in vitro and in vivo. (A) Relative expression of miR-374b was detected by quantitative PCR in stably transfected Jurkat (Jurkat-374b) and SUP-T1 (SUP-T1-374b) cells relative to empty vectors (Jurkat-Vector and SUP-T1-Vector). Expression was normalized against an endogenous control U6 levels. (B) Cell growth rate was suppressed by miR-374b in Jurkat (left) and SUP-T1 (right) cells detected by MTT assay. Results are expressed as mean ± SD of three independent experiments. (**p<0.01). (C) Tumor growth curves show that miR-374b inhibited tumor formation in nude mice. Tumor volume of xenografts was measured with calipers every 3 days for 36 days. The mean tumor volume in the SUP-T-374b group (457.6 ± 86.2 mm³) was significantly smaller than that of the SUP-T-vector group (1067.9 ± 137.5 mm³; n=6, **p<0.01). (D) Representative images show xenograft tumors in null mice with SUP-T1-Vector and SUP-T1-374b cells. H&E staining and IHC staining of Ki67 were performed on sections of tumors excised from mice.
Figure 3. miR-374b sensitizes cells to apoptosis. (A) miR-374b sensitizes cells to serum starvation- or doxorubicin-induced apoptosis. Jurkat-374b, SUP-T1-374b and vector control cells (Jurkat-Vector and SUP-T1-Vector) treated with serum-free RPMI 1640 media for 36 h or indicated dose of doxorubicin for 24 h. Cell apoptotic death events were monitored by Annexin V/PI staining and flow cytometry assays. The percentage of cell apoptosis was shown as the mean±SD from three independent experiments. (B) After treatment, caspase 3 and PARP levels were determined by western blot, and GAPDH was used as a normalized control. The quantitative values under the bands were the relative ratios of cleaved PARP, cleaved caspase-3 to GAPDH from densitometric analysis.

Figure 4. AKT1 and Wnt16 are direct downstream targets of miR-374b. (A) Putative miR-374b-binding sequence in the 3′-UTR of AKT1 and Wnt16 mRNA. Mutations were generated in the AKT1 and Wnt16 3′-UTR sequence in the complementary site for the seed region of miR-374b as indicated. (B) Analysis of luciferase activity. Human AKT1 and Wnt16 3′-UTR fragment containing a wild-type or mutant miR-374b-binding sequence was cloned downstream of the luciferase reporter gene. The plasmids were transfected into empty vectors or miR-374b stably expressing cells. Renilla luciferase plasmids were cotransfected for normalization. pGL3-control vector was cotransfected as a positive control. Data of the reporter assays are the mean ± SD of three independent experiments, **p<0.01. (C and D)
Reverse transcription-PCR (C) and Western blot analysis (D) show that miR-374b inhibits both mRNA and protein levels of AKT1 and Wnt16 in Jurkat-374b and SUP-T1-374b cells. GAPDH was used as an internal control. Only Wnt16b was detected in Jurkat and SUP-T1 cells (C). The quantitative values under the bands were the relative ratios of Wnt 16, AKT1 and p-AKT to GAPDH from densitometric analysis (D). All the values represent means ± SD (**p<0.01).

Figure 5. The expression of AKT1 and Wnt16 was negatively correlated with the miR-374b expression level in T-LBL. (A) IHC staining of AKT1 and Wnt16 in T-LBL samples. Representative images show higher expression of AKT1 and Wnt16 in samples with low miR-374b levels and lower expression of AKT1 and Wnt16 in samples with high miR-374b levels. (B) Negative correlation between AKT1 (left), Wnt16 (right) and miR-374b expression in 58 T-LBL samples, the correlation between miR-374b and AKT1 or Wnt16 was determined with linear regression lines and Pearson correlation significance (**p<0.01). (C and D) Up regulation of AKT1 (C) and Wnt16 (D) is significantly associated with poorer overall survival (left) and higher risk of relapse (right).

Figure 6. MiR-374b suppresses cell growth and enhances cell apoptosis by inhibiting the AKT signaling pathway. (A) Western blot analysis of the expression of AKT pathway-associated downstream factors. All data are derived from three individual experiments. (B) AKT phosphorylation is significantly inhibited in cells...
treated with AKT inhibitor V (40 µM). (C and D) The anti-growth (C) and apoptosis-promoting (D) effects of miR-374b on T-LBL cells almost disappear when AKT phosphorylation is inhibited by AKT inhibitor V. Results are representative of three individual experiments. All the values represent means ± SD (**p<0.01).
Figure 2
Figure 3
Figure 4

(A) Mutant WNT16
hsa-miR-374b
WNT16

(B) Vector control
miR-374b

(C) Relative luciferase activity

(D) Western Blot Analysis

Vector 374b
Wnt16
AKT1
GAPDH

Jurkat
SUP-T
Figure 5

(A) miR-374b high expression vs. miR-374b low expression

(B) Scatter plots showing correlation between miR-374b/UG and AKT1 expression (R (Pearson) = -0.75, P = 0.021) and Wnt16 expression (R (Pearson) = -0.84, P = 0.013).

(C) Kaplan-Meier survival analysis for AKT1 expression:
- High expression: n=58, p<0.001
- Low expression:

(D) Kaplan-Meier survival analysis for Wnt16 expression:
- High expression: n=58, p<0.001
- Low expression:
Clinical Cancer Research

MicroRNA-374b suppresses proliferation and promotes apoptosis in T-cell lymphoblastic lymphoma by repressing AKT1 and Wnt-16

Dong Qian, Kailin Chen, Haixia Deng, et al.

Clin Cancer Res Published OnlineFirst June 22, 2015.

Updated version Access the most recent version of this article at: doi:10.1158/1078-0432.CCR-14-2947

Supplementary Material Access the most recent supplemental material at: http://clincancerres.aacrjournals.org/content/suppl/2015/06/23/1078-0432.CCR-14-2947.DC1

Author Manuscript Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.