Panobinostat for the Treatment of Multiple Myeloma

Jacob P. Laubach¹, Philippe Moreau², Jesús F. San-Miguel³, and Paul G. Richardson¹

Affiliations: ¹Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; ²Nantes University Hospital, Nantes, France; ³Clínica Universidad de Navarra, CIMA, IDISNA, Pamplona, Spain.

Corresponding Author: Paul G. Richardson, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215. Phone: 617-632-2104; Fax: 617-582-8608; Email: paul_richardson@dfci.harvard.edu

Running Title: Panobinostat for Treatment of MM
Abstract

Panobinostat is a potent oral deacetylase inhibitor that alters gene expression through epigenetic mechanisms and inhibits protein degradation. It was recently approved by the US Food and Drug Administration for use in combination with bortezomib and dexamethasone in patients with relapsed multiple myeloma who have received ≥2 prior regimens, including bortezomib and an immunomodulatory drug. Panobinostat was approved based on results from the phase 3 PANORAMA 1 trial in patients with relapsed or relapsed and refractory multiple myeloma, which showed that panobinostat plus bortezomib and dexamethasone significantly extended progression-free survival (median, 12.0 months) compared with placebo plus bortezomib and dexamethasone (median, 8.1 months; \(P < .0001 \)). Additional ongoing trials are evaluating panobinostat in combination with other partners in the relapsed/refractory and newly diagnosed treatment settings. This review focuses on panobinostat and its mechanism of action, pharmacokinetics, and clinical data in the treatment of relapsed or relapsed and refractory multiple myeloma.
Introduction

Multiple myeloma (MM) is a hematologic malignancy that accounts for $\approx 1\%$ of all neoplasms and 13\% of hematologic malignancies (1). It is characterized by proliferation of clonal plasma cells within the bone marrow and extramedullary sites that in most instances secrete a monoclonal protein. Typical clinical characteristics include hypercalcemia, renal insufficiency, anemia, and bone disease ("CRAB features"). Other manifestations of the disease include increased risk of infection and peripheral neuropathy (PN) (2). It has been estimated there were 24,050 new cases of MM and 11,090 deaths due to MM in the United States in 2014 (1).

Survival of patients with MM has significantly improved over the past decade with the introduction of the proteasome inhibitors (PIs) bortezomib and carfilzomib and immunomodulatory drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide (3, 4). However, these therapies are not curative, and nearly all patients with MM eventually relapse and require further therapy. The prognosis among patients with disease refractory to IMiDs and PIs is poor; among this group, only $\approx 22\%$ respond to subsequent therapy, and among those who do respond, the median event-free survival is < 5 months and median overall survival (OS) is 9 months (3). Thus, there is a need for new treatments, particularly those with mechanisms of action that are distinct from those of IMiDs and PIs (4).

Panobinostat belongs to a novel class of compounds called deacetylase (DAC) inhibitors and was recently approved by the FDA for use in combination with bortezomib and dexamethasone to treat patients with MM who have received ≥ 2 prior regimens, including bortezomib and an IMiD. This review focuses on important clinical aspects of panobinostat,
including its mechanism of action, pharmacokinetic profile, and clinical data derived from studies of the agent in relapsed MM.

Mechanism of Action

Panobinostat inhibits a broad range of DACs (Fig. 1), which are also known as histone DACs (HDACs) because histones were the first known targets of DACs. It is now known that DACs regulate the acetylation of ∼1750 proteins involved in diverse biological processes, including DNA replication and repair, chromatin remodeling, gene transcription, cell cycle progression, protein degradation, and cytoskeletal reorganization (5). Overexpression of DACs has been observed in MM and is associated with poor outcomes (6).

Panobinostat is an inhibitor of all class I (HDACs 1, 2, 3, and 8), class II (HDACs 4, 5, 6, 7, 9, and 10), and class IV (HDAC 11) HDACs, with half maximal inhibitory concentrations in the nanomolar range for all class I, II, and IV HDACs. The potency of panobinostat was 10-fold greater for all HDACs compared with vorinostat, another pan-DAC inhibitor that was investigated for the treatment of MM, and panobinostat is among the most potent pan-DAC inhibitors in clinical development (7, 8).

Panobinostat is thought to elicit antitumor activity primarily through epigenetic modulation of gene expression and inhibition of protein metabolism. Inhibition of class I HDACs, which target histones and transcription factors such as p53, may help reactivate epigenetically silenced tumor suppressor genes (eg, p21) (9, 10) and modify gene expression via inhibition of signal transducer and activator of transcription 3, Akt, and hypoxia-inducible factor 1α (8).
Panobinostat has also been shown to act synergistically with the PI bortezomib. This synergy can be explained in part via the effects of panobinostat on protein degradation. MM cells have high levels of protein turnover and hence a susceptibility to PIs, which inhibit metabolism and elimination of proteins generated within the cell and through this mechanism produce a proapoptotic signal. However, there is an alternative pathway of protein metabolism wherein if the proteasome cannot eliminate these proteins quickly enough, the proteins form aggregates known as aggresomes that are transported by microtubules to an autophagosome where they are degraded by lysosomes. HDAC6 interaction with tubulin and the motor protein, dynein, is critical to the transport of these protein aggregates for degradation. Inhibition of HDAC6 leads to hyperacetylated microtubules and inefficient aggresome-mediated degradation. Bortezomib inhibits proteasome degradation of protein and induces aggresome formation; coadministration of bortezomib and panobinostat, and simultaneous inhibition of the proteasome and aggresome pathways, results in synergistic cytotoxicity (11). In addition, in vitro and in vivo models of MM have demonstrated that panobinostat in combination with bortezomib plus dexamethasone or the IMiD lenalidomide plus dexamethasone enabled dysregulation of additional genes that were not altered by doublet therapy alone (12).

Pharmacokinetics

Panobinostat was rapidly absorbed following a single 20-mg oral dose, with a time to maximum absorption of 2 hours. The median maximum concentration was 21.2 ng/mL, and the median area under the curve was 96 ng•h/mL (13).

Panobinostat was extensively metabolized into at least 77 metabolites. Contributions of the liver and kidney to the elimination of panobinostat were comparable, with mean
percentages of unchanged panobinostat recovered in urine and feces of only $\approx 2\%$ and 3%, respectively. Both cytochrome P450 (CYP) and non-CYP enzymes may play a significant role in panobinostat metabolism, with minor contributions from CYP2D6 and CYP2C19. The primary metabolic pathways of panobinostat are reduction, hydrolysis, oxidation, and glucuronidation processes. The terminal elimination half-life of panobinostat is ≈ 30 hours (13).

Coadministration of bortezomib (1.3 mg/m^2) and panobinostat (20 mg) did not significantly affect the mean exposure of either agent. Dexamethasone (20 mg) reduced panobinostat exposure by $\approx 20\%$ (14).

Clinical Development

The development of panobinostat for the treatment of MM was primarily based on 5 clinical trials from phase 1 to phase 3 that included 1099 patients in total. One study included patients with advanced hematologic malignancies, while the others included only patients with MM.

A single-arm, open-label, multicenter phase 1a/2 study was conducted to determine the maximum tolerated dose (MTD) of panobinostat administered via 2 dosing schedules: 3 times per week every week or every other week. The study included 176 adult patients with hematologic malignancies that had progressed on or after available standard treatments or for whom no standard therapy existed. In patients with MM or lymphoma, 40 mg of panobinostat 3 times weekly and 60 mg 3 times every other week were the recommended phase 2 doses for the 2 dosing schedules. Among the patients with MM ($n = 12$), 1 achieved a partial response.

Overall, common panobinostat-related grade 3/4 adverse events (AEs) included thrombocytopenia (42%), fatigue (21%), and neutropenia (21%). The most common dose-limiting toxicities included thrombocytopenia, fatigue, and cardiac-related events (15).
The safety and efficacy of panobinostat monotherapy were further investigated in a single-arm, open-label, multicenter phase 2 study in 38 adult patients with symptomatic MM who had received ≥ 2 prior lines of therapy (median, 5) and who had disease refractory to their most recent line of therapy. Panobinostat was administered at a dose of 20 mg 3 times weekly until disease progression, intolerance, or withdrawal of consent. The activity of panobinostat monotherapy was modest, with 1 patient achieving partial response, 1 achieving minimal response, and 9 achieving stable disease. Common grade 3/4 AEs included neutropenia (32%), thrombocytopenia (26%), and anemia (18%). One patient had a single episode of Fridericia corrected QT (QTcF) interval prolongation of > 480 ms, and 2 patients experienced a single > 60-ms increase in QTcF from baseline (16).

Because panobinostat monotherapy had only modest activity in MM but showed synergy when administered in combination with bortezomib in a preclinical study, a phase 1b dose-escalation and dose-expansion study of this combination was conducted in 63 adult patients with relapsed or relapsed and refractory MM. In the dose-escalation phase (n = 47), panobinostat was administered 3 times per week at a starting dose of 10 mg and bortezomib was administered intravenously 2 times per week for 2 weeks at a starting dose of 1.0 mg/m² during each 3-week cycle. At the investigator’s discretion, patients could also receive 20 mg of dexamethasone on the day of and day after bortezomib administration. The MTD was established at 20 mg of panobinostat plus 1.3 mg/m² of bortezomib. The overall response rate (ORR) was 45% among all patients and 53% among those who received the MTD. Responses in the MTD cohort were durable, with a median duration of response of 509 days. Common grade
3/4 AEs included thrombocytopenia (85%), neutropenia (64%), and asthenia (30%). Only 1 patient experienced a prolonged QT interval; 2 patients each had a myocardial infarction (14).

For the dose-expansion phase (n = 15), a noncontinuous dosing schedule (2 weeks on, 1 week off) was chosen to reduce the risk of thrombocytopenia and the need for dose interruptions. In addition, dexamethasone was given to all patients based on preclinical (12) and emerging clinical efficacy data. The ORR in the dose-expansion phase was 73%, including 20% who achieved at least a very good partial response. Of note, responses were observed in some patients with bortezomib-refractory and bortezomib and IMiD–refractory disease.

Common grade 3/4 AEs in the dose-expansion phase were thrombocytopenia (67%), neutropenia (47%), diarrhea (20%), and fatigue (20%) (14). These results warranted further development of the panobinostat-bortezomib-dexamethasone combination in the PANobinostat ORAl in Multiple MyelomA (PANORAMA) program.

PANORAMA 2 was a single-arm, open-label, multicenter, phase 2 study of panobinostat in combination with bortezomib and dexamethasone in 55 adult patients with bortezomib-refractory MM. Patients had received ≥ 2 prior regimens (median, 4 [range, 2-11]); 98.2% had received prior lenalidomide in addition to having disease refractory to bortezomib. The study consisted of 2 treatment phases (TPs); TP1 consisted of eight 3-week cycles and TP2 consisted of 6-week cycles until disease progression, death, toxicity, or withdrawal of consent. During both phases, patients received 20 mg of panobinostat 3 times per week using a 2-weeks-on, 1-week-off schedule. Patients also received 1.3 mg/m² of intravenous bortezomib 2 times per week during the first 2 weeks of each cycle in TP1 and once weekly during weeks 1, 2, 4, and 5.
of each cycle during TP2. During both phases, patients received dexamethasone the day of and after bortezomib administration (17).

Responses included near complete (2%), partial (33%), and minimal (18%) responses for an ORR of 35% and a clinical benefit rate (CBR) of 53% (17). Among the 14 patients with high-risk cytogenetics—defined as del(17p), t(4;14), or t(14;16)—the ORR was 43% and the CBR was 71%; among the 8 patients who had del(17p), the ORR was 38% and the CBR was 88% (18). The median progression-free survival (PFS) was 5.4 months (17), and the median OS was 17.5 months (18). These results provide proof of concept that panobinostat is able to revert bortezomib resistance in some myeloma patients. Common grade 3/4 AEs were thrombocytopenia (64%), diarrhea (20%), fatigue (20%), anemia (15%), neutropenia (15%), and pneumonia (15%). No significant cardiac abnormalities were observed. There were 4 on-treatment deaths, but none were assessed as treatment related (17).

PANORAMA 1 was a randomized, multicenter, placebo-controlled, double-blind phase 3 trial conducted in 768 adult patients with relapsed or relapsed and refractory MM, excluding patients with primary- or bortezomib-refractory MM, who had received 1-3 prior treatments (48% received ≥ 2 prior therapies). Patients were randomized to receive panobinostat (n = 381) or placebo (n = 387) in combination with bortezomib and dexamethasone. The treatment doses and schedule were identical to those used in PANORAMA 2 (17), except that TP2 was limited to 4 cycles (19).

Median PFS was significantly longer in the panobinostat arm (12.0 months) than in the placebo arm (8.1 months; \(P < .0001 \)), and a subgroup analysis revealed a PFS benefit in all subgroups, including patients with prior bortezomib and/or IMiD treatment. A recent
subanalysis has confirmed the clinical benefit in patients with prior exposure to bortezomib and IMiDs or bortezomib and IMiDs with ≥ 2 prior therapeutic regimens (20). These data supported the approval of the PAN-BTZ-Dex by the FDA and the recent positive recommendation by the European Medicines Agency Committee for Medicinal Products for Human Use. There was also a trend toward increased OS in the panobinostat arm versus the placebo arm (33.6 months vs 30.4 months; \(P = .26 \)) at an interim analysis. The ORRs for the 2 arms were similar (61% vs 55%; \(P = .09 \)), but the rate of high-quality responses (complete and near complete responses) was nearly twice as high in the panobinostat arm (28% vs 16%; \(P = .00006 \)). The median duration of response was 13.1 months vs 10.9 months in the panobinostat and placebo arms, respectively (19).

Grade 3/4 laboratory abnormalities and AEs were more common in the panobinostat arm and included thrombocytopenia (67% vs 31%), lymphopenia (53% vs 40%), diarrhea (26% vs 8%), asthenia or fatigue (24% vs 12%), and PN (18% vs 15%). There were a few instances of QTcF prolongation in both arms: 5 patients in the panobinostat arm and 2 in the placebo arm had a maximum QTcF value > 480 ms, and 3 patients in the panobinostat arm and 4 in the placebo arm had a QTcF increase > 60 ms from baseline. The rate of discontinuation due to AEs was higher in the PAN arm (36%) than in the placebo arm (20%). On-treatment deaths occurred in 8% of patients in the panobinostat arm and 5% of patients in the placebo arm (19).

Safety

The safety profile of panobinostat was consistent across the clinical trials. AEs were primarily gastrointestinal and hematologic. The gastrointestinal events (diarrhea, nausea, and vomiting) were generally grade 1/2 events that could be managed through the use of antidiarrheal...
medication, proper hydration, and antiemetics. The frequency of diarrhea may also be improved through appropriate dose modifications of panobinostat and/or bortezomib (14).

The most common hematologic laboratory abnormality was thrombocytopenia, which was significantly reduced via noncontinuous dosing of panobinostat, considering platelet counts tended to recover during the off-treatment week. While trials in the PANORAMA program administered panobinostat in a 2 week on/1 week off schedule, on-going trials of panobinostat in novel combinations are currently evaluating every other week and 3 week on/1 week off treatment schedules (21-23). Despite a relatively high incidence of grade 3/4 thrombocytopenia, platelet transfusions (33%), severe hemorrhages (4%), and discontinuations due to thrombocytopenia (2%) were infrequent (19).

Electrocardiogram analyses showed a low frequency of QTcF prolongation (1% and 0.5% QTcF > 480 ms in the panobinostat and placebo arms, respectively, and 0.8% and 1.1% QTcF > 60-ms increase from baseline, respectively). Additionally, T-wave and ST-segment changes were generally asymptomatic. The risk of cardiac toxicity can be reduced by monitoring electrocardiogram scans and electrolyte levels and treatment interruption in the event of QT prolongation. Deaths due to cardiac toxicity were rare: myocardial infarction was the principal cause of death in < 1% in the panobinostat arm and 0% in the placebo arm; cardiac arrest was the principal cause of death in < 1% in each arm (19). The rate of cardiac-related deaths for the panobinostat-bortezomib-dexamethasone combination was similar to that for single-agent carfilzomib (1.5%) (24). The addition of panobinostat to bortezomib plus dexamethasone did not increase the risk or severity of PN, which is a common bortezomib-related AE. In the PANORAMA 1 trial, PN (all grades) occurred in 61% of patients in the panobinostat group and
67\% of patients in the placebo group, and grade 3/4 PN occurred in 18\% and 15\% of patients in the panobinostat and placebo groups, respectively (19).

In all studies of the panobinostat-bortezomib-dexamethasone combination summarized here, bortezomib was administered intravenously, and patients received twice weekly dosing during TP1 of both PANORAMA 1 and PANORAMA 2. Recent data have demonstrated that subcutaneous administration as well as once-weekly dosing of bortezomib improve tolerability (25, 26). Thus, the safety profile of the triple combination may be improved with subcutaneous, once-weekly administration of bortezomib.

Panobinostat in the Treatment of MM

Significant advances in the treatment of MM have been made over the past decade; however, approvals have primarily been limited to agents in 2 classes (PIs and IMiDs; Table 1), with the notable exception of liposomal doxorubicin given in combination with bortezomib. An unmet need remains for patients with relapsed or refractory disease (3, 4). It is therefore critical to develop agents with novel mechanisms of action.

Results from the phase 3 PANORAMA 1 trial of panobinostat in combination with bortezomib and dexamethasone demonstrated that panobinostat is the first DAC inhibitor with clear clinical benefit, as evidenced by a statistically significant and clinically meaningful improvement in median PFS, in patients with relapsed or relapsed and refractory MM (19). Based on results of the PANORAMA 1 trial, the FDA on February 23, 2015 approved panobinostat in combination with bortezomib and dexamethasone for the treatment of patients with MM who received ≥ 2 prior regimens, including bortezomib and IMiDs (27). The US FDA concluded that the benefit:risk ratio appeared to be greater in this more heavily
pretreated population. Panobinostat therefore addresses an unmet need for patients who progress following PI and IMiD therapy.

Several ongoing trials are evaluating panobinostat with other combination partners (Table 2), including next-generation PIs (carfilzomib or ixazomib), an IMiD (lenalidomide) plus dexamethasone, and bortezomib plus an IMiD (thalidomide or lenalidomide) and dexamethasone in the relapsed/refractory setting. Panobinostat as maintenance therapy will be evaluated following combination therapy with bortezomib, thalidomide, and dexamethasone. Two trials are investigating the combination of panobinostat-lenalidomide-bortezomib-dexamethasone, 1 in the upfront setting and the other in the relapsed setting. These and other trials will provide insights on optimal dosing and administration, optimal combination partners, and therapeutic settings.

Conclusions and Future Directions

Panobinostat is the first DAC inhibitor approved by the US FDA for the treatment of relapsed MM and has been submitted for approval to regulatory agencies globally. In combination with bortezomib and dexamethasone, panobinostat increases PFS and the rate of high-quality responses. While this combination led to a higher rate of AEs and AE-related discontinuations than placebo, bortezomib and dexamethasone, proactive management of common AEs including panobinostat and/or bortezomib dose interruptions or reductions, should help mitigate AEs in the clinic. Anti-diarrheal therapy should be also considered at the first signs of symptoms and thorough platelet monitoring with transfusion when clinically necessary should also be considered during treatment. Additionally, recent data suggest that subcutaneous and once weekly bortezomib dosing can improve tolerability. Current trials investigating
combinations of panobinostat and bortezomib and are currently evaluating these alternative bortezomib administration and dosing strategies. Panobinostat is therefore a valuable addition to the current treatment options for relapsed MM, and opens the door to the further development of agents in this class with similar mechanisms of action (28). Moreover, trials are ongoing to evaluate additional rationally-designed combinations incorporating panobinostat in the upfront, relapsed/refractory and, maintenance MM settings (29).

Disclosure of Potential Conflicts of Interest

J.P. Laubach reports receiving commercial research grants from Celgene, Millennium Pharmaceuticals, Novartis Pharmaceuticals Corporation, and Onyx. P. Moreau is a consultant/advisory board member for Amgen, Bristol-Myers Squibb, Celgene, Janssen, Novartis Pharmaceuticals Corporation, and Takeda. J.F. San-Miguel is a consultant/advisory board member for Bristol-Myers Squibb, Celgene, Janssen, Merck, Millennium Pharmaceuticals, Novartis Pharmaceuticals Corporation, and Onyx. P.G. Richardson is a consultant/advisory board member for Johnson & Johnson, Novartis Pharmaceuticals Corporation, and Takeda. No other potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: J.P. Laubach, P. Moreau, J.F. San-Miguel, P.G. Richardson

Writing, review, and/or revision of the manuscript: J.P. Laubach, P. Moreau, J.F. San-Miguel, P.G. Richardson

Acknowledgments

Editorial assistance was provided by Julie Shilane, PhD, and funded by Novartis Pharmaceuticals Corporation, East Hanover, New Jersey.
References

Table 1. Trials of FDA-approved novel agents for the treatment of relapsed or refractory MM

<table>
<thead>
<tr>
<th>Study name</th>
<th>Phase</th>
<th>N</th>
<th>Median age, y</th>
<th>No. prior regimens</th>
<th>Treatment</th>
<th>Response rates</th>
<th>Survival</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APEX</td>
<td>3</td>
<td>333</td>
<td>62 (10th, 90th percentiles, 48, 74)</td>
<td>Median, 2 (range, 1-4+)</td>
<td>BTZ</td>
<td>ORR: 38%; CR: 6%; PR: 32%</td>
<td>1-y OS: 80%</td>
<td>(30)</td>
</tr>
<tr>
<td>MMY-3021</td>
<td>3</td>
<td>74</td>
<td>64.5 (range, 38-86)</td>
<td>1 prior: 65%; > 1 prior: 35%</td>
<td>IV BTZ</td>
<td>ORR: 42%; CR: 8%; PR: 34%</td>
<td>PFS: 8.0 mo 1-y OS: 76.7%</td>
<td>(25)</td>
</tr>
<tr>
<td>MMY-3021</td>
<td>3</td>
<td>148</td>
<td>64.5 (range, 42-88)</td>
<td>1 prior: 62%; > 1 prior: 38%</td>
<td>SC BTZ</td>
<td>ORR: 42%; CR: 6%; PR: 36%</td>
<td>PFS: 10.2 mo 1-y OS: 72.6%</td>
<td>(25)</td>
</tr>
<tr>
<td>Len</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM-009</td>
<td>3</td>
<td>177</td>
<td>64 (range, 36-86)</td>
<td>1 prior: 38.4%; > 1 prior: 61.6%</td>
<td>Len-Dex</td>
<td>ORR: 61.0%; CR: 14.1%; nCR: 10.2%; PR: 36.7%</td>
<td>OS: 29.6 mo</td>
<td>(31)</td>
</tr>
<tr>
<td>MM-010</td>
<td>3</td>
<td>176</td>
<td>63 (range, 33-84)</td>
<td>1 prior: 31.8%; > 1 prior: 68.2%</td>
<td>Len-Dex</td>
<td>ORR: 60.2%; CR: 15.9%; nCR: 8.5%; PR: 35.8%</td>
<td>OS: 36+ mo</td>
<td>(32)</td>
</tr>
<tr>
<td>NCT00378209</td>
<td>2</td>
<td>64</td>
<td>65 (range, 32-83)</td>
<td>Median, 2 (range, 1-3)</td>
<td>Len-BTZ-Dex</td>
<td>ORR: 64%; CR: 11%; nCR: 14%; VGPR: 3%; PR: 36%</td>
<td>PFS: 9.5 mo OS: 30 mo</td>
<td>(33)</td>
</tr>
<tr>
<td>CFZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PX-171-003-A1</td>
<td>2</td>
<td>266</td>
<td>63 (range, 37-87)</td>
<td>Median, 5 (range, 1-20)</td>
<td>CFZ, 20 mg/m² then 27 mg/m²</td>
<td>ORR: 23.7%; CR: 0.4%; VGPR: 5.1%; PR: 18.3%</td>
<td>PFS: 3.7 mo OS: 15.6 mo</td>
<td>(34)(35)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>NCT No.</th>
<th>Patients</th>
<th>Median Age (range)</th>
<th>Response to Therapy</th>
<th>PFS</th>
<th>OS</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPIRE</td>
<td>NCT01351623</td>
<td>2</td>
<td>44 (range, 45-86)</td>
<td>CFZ, 20 mg/m² then 56 mg/m² with slower (30-min) infusion</td>
<td>ORR: 55%; CR: 2%; VGPR: 21%; PR: 31%</td>
<td>PFS: 4.1 mo OS: 20.3 mo</td>
<td>(35)</td>
</tr>
<tr>
<td>ASPIRE</td>
<td>ASPIRE</td>
<td>3</td>
<td>396 (range, 38-87)</td>
<td>Median, 2 (range, 1-3)</td>
<td>CFZ-Len-Dex</td>
<td>ORR: 87.1%; sCR: 14.1%; CR: 17.7%; VGPR: 38.1%; PR: 17.2%</td>
<td>PFS: 26.3 mo 2-y OS: 73.3%</td>
</tr>
<tr>
<td>Pom</td>
<td>MM-002</td>
<td>2</td>
<td>108 (range, 37-88)</td>
<td>> 2 prior: 95%</td>
<td>Pom</td>
<td>ORR: 18%; CR: 2%; PR: 16%</td>
<td>PFS: 2.7 mo OS: 13.6 mo</td>
</tr>
<tr>
<td>Pom</td>
<td>MM-002</td>
<td>2</td>
<td>113 (range, 34-88)</td>
<td>> 2 prior: 95%</td>
<td>Pom-Dex</td>
<td>ORR: 33%; CR: 3%; PR: 30%</td>
<td>PFS: 4.2 mo OS: 16.5 mo</td>
</tr>
<tr>
<td>Pom</td>
<td>MM-003</td>
<td>3</td>
<td>302 (range, 35-84)</td>
<td>Median, 5 (range, 2-14)</td>
<td>Pom-Dex</td>
<td>ORR: 31%; sCR or CR: 1%; VGPR: 5%; PR: 26%</td>
<td>PFS: 4.0 mo OS: 12.7 mo</td>
</tr>
<tr>
<td>PAN</td>
<td>PANORAMA 2</td>
<td>2</td>
<td>55 (range, 41-88)</td>
<td>Median, 4 (range, 2-11)</td>
<td>PAN-BTZ-Dex</td>
<td>ORR: 34.5%; nCR: 1.8%; PR: 32.7%</td>
<td>PFS: 5.4 mo</td>
</tr>
<tr>
<td>PAN</td>
<td>PANORAMA 1</td>
<td>3</td>
<td>387 (range, 56-69)</td>
<td>1 prior: 51%; 2-3 prior: 49%</td>
<td>PAN-BTZ-Dex</td>
<td>ORR: 60.7%; CR: 11%; nCR: 17%; PR: 33%</td>
<td>PFS: 11.99 mo OS: 33.64 mo</td>
</tr>
</tbody>
</table>

Abbreviations: APEX, Assessment of Proteasome Inhibition for Extending Remissions; BTZ, bortezomib; CFZ, carfilzomib; CR, complete response; Dex, dexamethasone; IV, intravenous; Len, lenalidomide; nCR, near complete response; NR, not reported; PAN,
panobinostat; Pom, pomalidomide; PR, partial response; SC, subcutaneous; sCR, stringent complete response; VGPR, very good partial response.
Table 2. Current clinical trials of panobinostat in MM

<table>
<thead>
<tr>
<th>Phase</th>
<th>N</th>
<th>Patient population</th>
<th>Treatment</th>
<th>Primary endpoints</th>
<th>Institution</th>
<th>ClinicalTrials.gov ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28</td>
<td>Rel or R/R</td>
<td>PAN + Len + BTZ + Dex</td>
<td>MTD, RP2D</td>
<td>Dana-Farber Cancer Institute</td>
<td>NCT01965353</td>
</tr>
<tr>
<td>1/2</td>
<td>38</td>
<td>Newly diagnosed</td>
<td>PAN + Len + BTZ + Dex</td>
<td>MTD</td>
<td>MD Anderson Cancer Center</td>
<td>NCT01440582</td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>Rel or R/R</td>
<td>PAN + Len + Dex</td>
<td>ORR</td>
<td>Mount Sinai School of Medicine</td>
<td>NCT01651039</td>
</tr>
<tr>
<td>1/2</td>
<td>54</td>
<td>Rel or R/R</td>
<td>PAN + Thal + BTZ + Dex + PAN maintenance</td>
<td>DLT, ORR</td>
<td>University of Leeds</td>
<td>NCT02145715</td>
</tr>
<tr>
<td>1</td>
<td>48</td>
<td>Rel and/or ref</td>
<td>PAN + CFZ</td>
<td>MTD</td>
<td>Emory University</td>
<td>NCT01549431</td>
</tr>
<tr>
<td>1</td>
<td>66</td>
<td>R/R</td>
<td>PAN + CFZ</td>
<td>MTD</td>
<td>MD Anderson Cancer Center</td>
<td>NCT01301807</td>
</tr>
<tr>
<td>1/2</td>
<td>80</td>
<td>R/R</td>
<td>PAN + CFZ</td>
<td>MTD, ORR</td>
<td>Sarah Cannon Research Institute Developmental Innovations</td>
<td>NCT01496118</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>Rel or ref</td>
<td>PAN + Ixazomib + Dex</td>
<td>DLT</td>
<td>Case Comprehensive Cancer Center</td>
<td>NCT02057640</td>
</tr>
<tr>
<td>1/2</td>
<td>148</td>
<td>Recurrent MM, non-Hodgkin lymphoma, or Hodgkin lymphoma</td>
<td>PAN + everolimus</td>
<td>MTD, ORR</td>
<td>Mayo Clinic</td>
<td>NCT00918333</td>
</tr>
</tbody>
</table>

Abbreviations: BTZ, bortezomib; CFZ, carfilzomib; Dex, dexamethasone; DLT, dose-limiting toxicity; ID, identification; Len, lenalidomide; PAN, panobinostat; Ref, refractory; Rel, relapsed; RP2D, recommended phase 2 dose; R/R, relapsed and refractory; Thal, thalidomide.
Figure 1. Panobinostat inhibits a broad range of DACs that target histone and nonhistone proteins implicated in epigenetic dysregulation and protein degradation. Adapted with permission from Novartis Pharmaceuticals Corporation (ref. 39). HDAC, histone DACs; HSP90, heat shock protein 90.
Nonhistone HDAC activation of tumor suppressor genes (e.g., p21, p27) leads to cell death. Accumulation of misfolded proteins is involved in this process. Figure 1:

- Activation of tumor suppressor genes (e.g., p21, p27)
- Histone (epigenetic)
- Nonhistone
- Accumulation of misfolded proteins

Figure 1:

[Diagram showing the interaction of various molecules including HDAC1, 2, 3, HDAC6, Histones, Nucleus, Cytoplasm, Tubulin, HSP90, and Aggresome.]
Panobinostat for the Treatment of Multiple Myeloma
Jacob P. Laubach, Philippe Moreau, Jesus F. San-Miguel, et al.

Clin Cancer Res Published OnlineFirst September 11, 2015.

Updated version
Access the most recent version of this article at:

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.